Nuclear Energy FIFTH EDITION

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Energy FIFTH EDITION Nuclear Energy FIFTH EDITION Nuclear Energy An Introduction to the Concepts, Systems, and Applications of Nuclear Processes FIFTH EDITION Raymond L. Murray Nuclear Engineering Department, North Carolina State University, Raleigh, North Carolina 27695 USA To Elizabeth Preface to the Fifth Edition AT THE transition to the new millennium the future of nuclear energy looks brighter. Nuclear power plants worldwide have operated safely. Applications for extension of reactor operating licenses in the U.S. are in place and construction is continuing abroad. Uses of isotopes and radiation in applications to medicine, research, and industry continue to assure human benefit. Research and development are active in the areas of controlled fusion, accelerator uses, isotope separation, space exploration, and excess weapons material disposition. Unfortunately, progress toward solutions for the nuclear waste problem has been frustratingly slow. And there are no new orders for nuclear plants in the U.S. Controversies surround the validity of the linear no-threshold model of the effect of low-level radiation and the anticipated consequences to climate of the buildup of greenhouse gases. It is the author’s firm belief that nuclear power will be necessary in the twenty-first century, as world population continues to grow, expectations for a better life are sought, and energy demands increase. The phenomenon of the Internet is dramatically changing communication of information and knowledge, including education at all levels. This new edition of the book includes citations to sites on the World Wide Web in addition to references in the print media. The author has explored the Web extensively, searching for sites that are relevant, useful, and accurate. However, the reader must beware of sites that become outdated or vanish. Further comments on the Internet appear in the Appendix. A few new Exercises are included in the fifth edition. The diskette containing programs in BASIC for use with Computer Exercises is now available free of charge on request from the author. The author hopes that the book will continue to serve in the orientation and education of the next generation of nuclear professionals and leaders, as well as being helpful to scientists and engineers in related fields. Communication by e-mail ([email protected]) with teachers, students, and other users of the book will be most welcome. Many persons have provided valuable ideas and information. They are recognized at appropriate points in the book. The advice and assistance of Michael Forster, Cate Rickard-Barr, and Lisa Jelly of Butterworth- Heinemann was most helpful. Special thanks are due Nancy Reid Baker for vii viii Preface to the Fifth Edition vital computer support, for preparation of new artwork, and for formatting the final camera-ready copy. Finally, the author is grateful for the encouragement provided by his wife, Elizabeth Reid Murray. Raleigh, North Carolina, 2000 RAYMOND L. MURRAY Preface to the Fourth Edition WORLD EVENTS in the early 1990s have accentuated the benefits of nuclear energy. The political revolutions in Eastern Europe and the U.S.S.R. have produced welcome relief in international tensions between the superpowers, with opportunity for the West to assist in enhancement of safety of reactors. The end of the Cold War produced a “peace dividend” for the U.S. that can help in solving social and financial problems. Weapons and their production capability can be phased out, and there remain scores of contaminated facilities to deal with. Military aspects of space can now be de-emphasized, with the prospect of space exploration using nuclear propulsion and nuclear power sources. The nuclear industry has taken bold positive steps to develop new and better nuclear power reactors, while the U.S. government and states continue to attack the problem of disposal of radioactive wastes. The public appears to better recognize the need for nuclear power, but remains reluctant to accept facilities to implement it. The beneficial uses of nuclear energy continue to grow, including the application of radioisotopes and radiation to medical diagnosis, treatment, and research. Regulatory policies in the U.S. that have hampered investment in nucle ar power plants have largely been resolved by congressional action. At the same time, the laws encourage competition by alternative energy sources. It is the author’s belief that nuclear power will be necessary, as world population continues to grow, as expectations for better lives for people of the world are sought, but as the limits of energy efficiency are reached and fossil fuel resources become scarce. Leadership in the technology of a closed fuel cycle -enrichment, new reactor construction, breeding, and reprocessing-has been assumed by countries such as France and Japan. In the U.S., expertise necessary to maintain and expand the nuclear option in the next century needs to be preserved and extended, as professionals leave or retire from the field. The author hopes that this book will continue to serve as a useful vehicle to orient, train, and educate the next generation of professionals and leaders. The book is expected to be helpful as well for scientists and engineers in non-nuclear but related fields. As in past editions, the level of mathematics demanded by the book is not excessive. A new feature - Computer Exercises - has been added, however, intended to enhance the appreciation of effects, trends, and ix x Preface to the Fourth Edition magnitudes. They use a set of computer programs available from the author on a non-proprietary, non-profit basis. These are written in the BASIC language or utilize a popular spreadsheet. Each type of program demands a minimum of expertise in computer programming, but permits calculations that go well beyond those possible or practical by use of a hand-held calculator. Some of the programs have convenient menus; others yield directly a set of numbers; still others give graphical displays. It would have been good to be able to provide greater opportunity for the student to do creative programming and open-ended problem solving, but that was sacrificed because there is so much to learn in a field as varied and complex as nuclear technology. The author welcomes communication with teachers and students about difficulties, errors, and suggestions for improvement of the computer programs, the exercises, and the text itself. Those kind individuals who provided helpful comments are recognized in the pertinent sections. Special thanks are due the author’s wife, Elizabeth Reid Murray, for continued encouragement and advice. Raleigh, North Carolina, 1993 RAYMOND L. MURRAY Preface to the Third Edition THE ROLE of nuclear processes in world affairs has increased significantly in the 1980s. After a brief period of uncertainty, oil has been in adequate supply, but expensive for use in generating electricity. For countries without coal resources, nuclear power is a necessity, and new plants are being built. The U.S. nuclear industry has been plagued with a combination of high construction costs and delays. The latter are attributed to actions of intervenors, to inadequate management, and to regulatory changes. No new orders for nuclear reactors have been placed, and work has been suspended on a number of plants. It appears that less than 20% of the country’s electricity will be provided by nuclear power by the year 2000. Concerns about reactor safety persist in spite of major improvements and an excellent record since TMI-2. The Chernobyl accident accentuated public fears. Concerns about waste disposal remain, even though much technical and legislative progress has been made. The threat of nuclear warfare casts a shadow over commercial nuclear power despite great differences between the two applications. Although the ban on reprocessing of spent nuclear fuel in the United States has been lifted, economic factors and uncertainty have prevented industry from taking advantage of recycling. Spent fuel will continue to accumulate at nuclear stations until federal storage facilities and repositories are decided upon. Through compacts, states will continue to seek to establish new low-level radioactive waste disposal sites. Progress on breeder reactor development in the United States was dealt a blow by the cancellation of the Clinch River Breeder Reactor Project, while the use of fusion for practical power is still well into the future. Applications of radioisotopes and nuclear radiation for beneficial purposes continue to increase, and new uses of nuclear devices in space are being investigated. Although nuclear power faces many problems, there is optimism that the next few decades will see a growing demand for reactors, to assure industrial growth with ample environmental protection. In the long term-into the 21st century and beyond-nuclear will be the only available concentrated energy source. The challenge of being prepared for that future can be met through meticulous attention to safety, through continued research and development, and with the support of a public that is adequately informed about the technology, including a fair assessment of benefits and risks. xi xii Preface to the Third Edition This book seeks to provide useful information for the student of nuclear engineering, for the scientist or engineer in a non-nuclear field, and for the technically oriented layman, each of whom is called upon to help explain nuclear energy to the public. In this new edition, Part I Basic Concepts is only slightly changed; Part II Nuclear Systems involves updating of all chapters; Part III Nuclear Energy and Man was extensively revised to reflect the march of events. The “Problems” to be solved by the reader are now called “Exercises.” Many persons provided valuable ideas and information. They are recognized at appropriate points in the book. Special thanks are due my colleague Ephraim Stam, for his thorough and critical technical review, and to my wife Elizabeth Reid Murray, for advice, for excellent editorial suggestions, and for inspiration.
Recommended publications
  • MULTIPHYSICS DESIGN and SIMULATION of a TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET a Thesis by BRAD APPEL Submitted to the Office O
    MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2012 Major Subject: Nuclear Engineering Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket Copyright 2012 Brad Appel ii MULTIPHYSICS DESIGN AND SIMULATION OF A TUNGSTEN-CERMET NUCLEAR THERMAL ROCKET A Thesis by BRAD APPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Karen Vierow Committee Members, Shannon Bragg-Sitton Paul Cizmas Head of Department, Yassin Hassan August 2012 Major Subject: Nuclear Engineering iii iii ABSTRACT Multiphysics Design and Simulation of a Tungsten-Cermet Nuclear Thermal Rocket. (August 2012) Brad Appel, B.S., Purdue University Chair of Advisory Committee: Dr. Karen Vierow The goal of this research is to apply modern methods of analysis to the design of a tungsten-cermet Nuclear Thermal Rocket (NTR) core. An NTR is one of the most viable propulsion options for enabling piloted deep-space exploration. Concerns over fuel safety have sparked interest in an NTR core based on tungsten-cermet fuel. This work investigates the capability of modern CFD and neutronics codes to design a cermet NTR, and makes specific recommendations for the configuration of channels in the core. First, the best CFD practices available from the commercial package Star-CCM+ are determined by comparing different modeling options with a hot-hydrogen flow experiment.
    [Show full text]
  • Nuclear Propulsion
    16 Nuclear Propulsion Claudio Bruno DIMA, University of Rome (La Sapienza), Roma Italy 1. Introduction Nuclear propulsion (NP) concepts go back to the very end of WW II. Scientists informed about the effects of the US atomic bomb thought of exploiting its energy release for applications like commercial electric power generation, but also rockets and space flight [Shepherd and Cleaver, 1948, 1949; Bussard and DeLauer, 1958]. However, space flight was still considered science fiction, and the military had to deal with more concrete things, like the Cold War. Thus, besides power generation, second stages of ICBM, submarine propulsion, long range and long duration airplanes and missiles became the focus of nuclear energy applications. It was the second-stage and airplane application that drove R&D in nuclear propulsion. With the advent of reliable ICBM (the Atlas missile) and lighter fission and thermonuclear warheads, a nuclear-powered second stage became no longer necessary. Airplane applications were found impractical: the Convair NB-36 required such a heavy lead shield for the crew that testing and operation were much restricted. Nuclear-powered missiles were easier to design, e.g., project PLUTO, but still far more complicated compared to conventional. The Soviets investigated airplanes and rockets powered by nuclear power as well, and discarded them too. The history of NP can be found in [Czysz and Bruno, 2009, Chapter 7; Lawrence, 2008; Lawrence et al, 1995; Gunn and Ehresman, 2003; Dewar, 2004] and will not be reported here. Basic technology is also discussed in the references above, in particular reactor design is in [Lawrence et al, 1995].
    [Show full text]
  • ABSTRACTS §§Il
    TR0700270 13™ INTERNATIONAL CONFERENCE ON EMERGING NUCLEAR ENERGY SYSTEMS June 03 - 08, 2007 İstanbul, Türkiye ABSTRACTS HOST ORGANIZATIONS Gazi University, Ankara Bahçeşehir University, Istanbul MAJOR SPONSORS I S T C §§il iililSl M H T Permission is granted for single photocopies of single articles may be made for personal use to reproduce or distribute an individual abstract for educational purposes only. No commercial use or sale is permitted and on this purpose no part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. ISBN-978-975-01805-0-7 The copyright to the full work naturally remains with the editor or other current copyright holder. Any copyright questions regarding this publication work therefore should be addressed to the publisher. All other questions also relating to copyright and permissions should be addressed to: Prof. Dr.-Ing. Sümer ŞAHİN Gazi Üniversitesi Teknik Eğitim Fakültesi Makina Bölümü Enerji Anabilim Dalı Teknikokullar-ANKARA 06503-TÜRKİYE Tel. + Fax: +90-312-212 43 04 E-mail: [email protected] Printed in TÜRKİYE ICENES 2007 13»T1H" INTERNATIONAL CONFERENCE ON EMERGING NUCLEAR ENERGY SYSTEMS ABSTRACTS June 03 - 08, 2007 Istanbul, Türkiye 13th International Conference on Emerging Nuclear Energy Systems June 03-08,2007, Istanbul, Türkiye INTRODUCTION AND WELCOME to ICENES2007 The main objective of International Conference series on Emerging Nuclear Energy Systems (ICENES) is to provide an international scientific and technical forum for scientists, engineers, industry leaders, policy makers, decision makers and young professionals who will shape future energy supply and technology, for a broad review and discussion of various advanced, innovative and non-conventional nuclear energy production systems.
    [Show full text]
  • Preliminary Design Study of an Innovative High-Performance Nuclear Thermal Rocket Utilizing LEU Fuel
    Nuclear and Emerging Technologies for Space 2015 Conference (2015) 5012.pdf Preliminary Design Study of an Innovative High-Performance Nuclear Thermal Rocket Utilizing LEU Fuel Seung Hyun Nam1, Paolo F. Venneri1, Jae Young Choi1, Yong Hoon Jeong1, and 1,2 Soon Heung Chang 1Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea 2Handong Global University, Pohang-si, Gyeongbuk, Korea +82-42-350-3891; [email protected] Abstract. A Nuclear Thermal Rocket (NTR) is a viable and efficient option for manned deep-space missions such as to Mars and beyond. The NTR technology has already been developed and successfully tested for over 50 years since the 1950s by the United States (US) and Russia. The representative US NERVA type reactors traditionally load hexagonal shaped fuel elements utilizing High Enriched Uranium (HEU) due to the imperative of making a high power reactor with a minimum size. This state-of-the-art NTR technology could be applicable with contemporary space vehicles. However, even though the NTR designs utilizing HEU is the best choice in terms of rocket performance and technical maturity, they inevitably arouse nuclear proliferation obstacles on all Research and Development (R&D) activities by civilians and non-nuclear weapon states, and its eventual commercialization. To cope with the security issue to use HEU, the innovative future NTR engine concept utilizing Low Enriched Uranium (LEU) fuel is proposed in this paper. The Korea Advanced NUclear Thermal Engine Rocket utilizing LEU (KANUTER-LEU) is currently being designed at Korea Advanced Institute of Science and Technology (KAIST).
    [Show full text]
  • Nuclear Reactors and Radioisotopes for Space
    01. 05. 2020. Nuclear Reactors for Space - World Nuclear Association Home / Information Library / Non-power Nuclear Applications / Transport / Nuclear Reactors for Space Nuclear Reactors and Radioisotopes for Space (Updated April 2020) Radioisotope power sources have been an important source of energy in space since 1961. Nuclear ƒssion reactors for space have been used mainly by Russia, but new and more powerful designs are under development in both the USA and Russia. Plutonium-238 is a vital power source for deep space missions. Nuclear power reactors use controlled nuclear ƒssion in a chain reaction. With the use of neutron absorbers, the rate of reaction is controlled, so the power depending on the demand. Radioisotope Thermoelectric Generators (RTGs) are an alternative source of power where a chain reaction does not take place. The power depends on the initial amount of the radioisotope used as fuel and the power is provided by converting the heat generated by radioactive decay of the radioisotope into electricity using thermocouples. Most RTGs use plutonium- 238. With the use of RTGs, the power generated cannot be varied or shut down so supplementary batteries need to be taken into account for the peak times. RTGs are used when spacecraft require less than 100 kW. Above that, ƒssion systems are much more cost effective than RTGs. The United Nations has an O∆ce for Outer Space Affairs (UNOOSA)* which implements decisions of the Committee on the Peaceful Uses of Outer Space (COPUOS) set up in 1959 and now with 71 member states. UNOOSA
    [Show full text]
  • Alternatives for Electrical Power Production from a Nuclear Thermal Propulsion Engine
    ALTERNATIVES FOR ELECTRICAL POWER PRODUCTION FROM A NUCLEAR THERMAL PROPULSION ENGINE Emily Wood and Dr. Dale Thomas 4/23/21 1 Ductile-to-Brittle Transition Temperature (DBTT) • DBTT of 373 K • Past this temperature, the fuel elements will experience embrittlement issues • At idle, the reactor will generate around 10 MWt • Fuel elements near the center need this heat actively removed • Current design is a non-propulsive hydrogen coolant loop 4/23/21 2 Decay Heat vs Idle Heat Decay Heat Idle Heat • Occurs due to the • Reactor intentionally continued radioactive generates enough heat decay of fission products to keep the fuel • Reactor will continue to elements above the generate decay heat until DBTT of 373 K. power level is increased 4/23/21 3 Bimodal NTP • Two modes of operation – propulsion mode and electrical production mode • Proposed capability to provide 50 kWe of power • Intrusive changes to the engine design 4/23/21 4 Minimally Intrusive Power generation System (MIPS) • Convert extra heat produced in idle mode and removed by the coolant loop to usable electric power for the vehicle • No changes to the reactor core and minimal changes to the engine design • For use in a Mars Transfer Vehicle (MTV) for a round-trip to Mars 4/23/21 5 Mass and Power • Requirements estimated to range from 25 kWe to 100 kWe • This study aims to determine the mass and power relationship of each of the MIPS alternatives • Alternatives are: thermoelectric generators, closed- loop Brayton cycle, and a Stirling engine 4/23/21 6 Thermoelectric Generators
    [Show full text]
  • Low-Enriched Uranium Nuclear Thermal Propulsion Systems
    Low-Enriched Uranium Nuclear Thermal Propulsion Systems Mike Houts Sonny Mitchell Ken Aschenbrenner 1 Why is NTP Attractive for Human Missions to Mars? Short Stay Opposition Mission with Earth Departure Dates 2028‐2045 Ref: Borowski et al., Space 2013, AIAA-2013-5354 • NTP allows for shorter total mission time and shorter trip time (Less exposure to galactic cosmic radiation and zero-g) • NTP allows mission robustness and potential abort scenarios • Fewer SLS launches can save operation time, money, and reduce risk • NTP is initial step towards advanced space nuclear power and propulsion, which could eventually help enable exploration and development of the solar system 2 Why is NTP Attractive for Human Missions to Mars? 3 Fission is Different from Previous NASA “Nuclear” Radioisotope Decay (Pu-238) Fission (U-235) Fission U-235 Radioisotope U-234 Neutron Neutrons ( 2.5) 5.5 MeV 190 MeV* Fissile Nucleus Pu-238 (U-235) (He-4) Product Nuclei U-235 (KE 168 MeV) Heat Energy = 0.023 MeV/nucleon (0.558 W/g Pu-238) Heat Energy = 0.851 MeV/nucleon Natural decay rate (87.7-year half-life) Controllable reaction rate (variable power levels) Used terrestrially for over 70 years Long history of use on Apollo and space science Fissioning 1 kg of uranium yields as much energy as missions burning 2,700,000 kg of coal (>20 GW-hr) One US space reactor (SNAP-10A) flown (1965) 44 RTGs and hundreds of RHUs launched by U.S. during past 5 decades Former U.S.S.R. flew 33 space reactors Heat produced from neutron-induced splitting of a Heat produced from natural alpha () particle nucleus (e.g.
    [Show full text]
  • Iaa Commission Iii Sg 2 – Nuclear Space Power and Propulsion
    IAA COMMISSION III SG 2 – NUCLEAR SPACE POWER AND PROPULSION M. Auweter-Kurtz C. Bruno D. Fearn H. Kurtz T.J. Lawrence R.X. Lenard List of contents Introduction 8 1. Physics of Nuclear Propulsion – An Introduction 11 1.1. ABSTRACT 11 1.2. Introduction 11 1.3. Fundamental Physics 12 1.3.1. Forces 12 1.4. Propulsion 19 1.4.3. Power 23 1.4.4. Mass 25 1.5. Nuclear Propulsion Strategies 27 1.5.1. Nuclear Thermal Rockets (NTR) 27 1.5.2. Nuclear Electric Propulsion (NEP) 31 1.5.3. A Comparison between Chemical and NTR/NEP Isp 32 1.6. Massless (Photonic) Propulsion 33 1.7. Conclusions 34 1.8. References 35 2. Nulcear Thermal Rocket Propulsion Systems 38 2.1. ABSTRACT 38 2.2. Introduction 38 2.3. System Configuration and Operation 41 2.4. Particle-Bed Reactor 46 2.4.1. CERMET 47 2.5. Safety 49 2.6. MagOrion and Mini-MagOrion 51 2.7. Conclusions 53 2.8. References 54 3. The application of ion thrusters to high thrust, high specific impulse nuclear-electric missions 57 3.1. ABSTRACT 57 3.2. Introduction 60 3.3. Background 62 3.3.1. Space Nuclear Programmes 62 2 3.3.2. Advantages of Electric Propulsion 63 3.3.3. Propulsion System Parameters 64 3.3.4. Propulsion Technology Review 66 3.3.4.1. Gridded Ion Engines 66 3.3.4.2. The Hall-Effect Thruster 69 3.3.4.3. Magnetoplasmadynamic (MPD) Thrusters 71 3.3.4.4. Variable Specific Impulse Magnetoplasma Rocket (VASIMR) 72 3.4.
    [Show full text]
  • Nuclear Propulsion ..;
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com NATIONAL SECURITY AGENCY FORT GEORGE G. MEADE, MARYLAND 20755-6000 FOIA Case: 103629A 12 September 2018 JOHN GREENEWALD 27305 W LIVE OAK ROAD SUITE 1203 CASTAIC CA 91384 Dear Mr. Greenewald: This responds to your Freedom of Information Act (FOIA) request of 19 February 2018 for Intellipedia records on Project Pluto. As stated in our initial response to you dated 7 March 2018, your request has been assigned Case Number 103629. For purposes of this request and based on the information you provided, you are considered an "all other" requester. As such, you are allowed 2 hours of search and the duplication of 100 pages at no cost. There are no assessable fees for this request. Your request has been processed under the provisions of the FOIA. For your information, NSA provides a service of common concern for the Intelligence Community (IC) by serving as the executive agent for Intelink. As such, NSA provides technical services that enable users to access and share information with peers and stakeholders across the IC and DoD. Intellipedia pages are living documents that may be originated by any user organization, and any user organization may contribute to or edit pages after their origination.
    [Show full text]
  • Nuclear Thermal Rocket Simulation in NPSS
    Nuclear Thermal Rocket Simulation in NPSS Michael L. Belair,∗ Charles J. Sarmiento,y and Thomas M. Lavellez NASA Glenn Research Center, Cleveland, OH, 44135 Four nuclear thermal rocket (NTR) models have been created in the Numerical Propul- sion System Simulation (NPSS) framework. The models are divided into two categories. One set is based upon the ZrC-graphite composite fuel element and tie tube-style reactor developed during the Nuclear Engine for Rocket Vehicle Application (NERVA) project in the late 1960s and early 1970s. The other reactor set is based upon a W-UO2 ceramic- metallic (CERMET) fuel element. Within each category, a small and a large thrust engine are modeled. The small engine models utilize RL-10 turbomachinery performance maps and have a thrust of approximately 33.4 kN (7,500 lbf). The large engine models utilize scaled RL-60 turbomachinery performance maps and have a thrust of approximately 111.2 kN (25,000 lbf). Power deposition profiles for each reactor were obtained from a detailed Monte Carlo N-Particle (MCNP5) model of the reactor cores. Performance factors such as thermodynamic state points, thrust, specific impulse, reactor power level, and maximum fuel temperature are analyzed for each engine design. Nomenclature AR Area Ratio CERMET Ceramic-Metallic fuel element DRA Design Reference Architecture g Acceleration of gravity at sea level γ Ratio of specific heats GRC Glenn Research Center Isp Specific Impulse kN kilownewtons force lbf pounds force MCNP Monte Carlo N-Particle transport code MW Megawatts MW Molecular
    [Show full text]
  • Nuclear Thermal Propulsion Systems (Last Updated in January 2021) Eric PROUST Eric Proust
    Lecture Series on NUCLEAR SPACE POWER & PROPULSION SYSTEMS -2- Nuclear Thermal Propulsion Systems (Last updated in January 2021) Eric PROUST Eric Proust To cite this version: Eric Proust. Lecture Series on NUCLEAR SPACE POWER & PROPULSION SYSTEMS -2- Nuclear Thermal Propulsion Systems (Last updated in January 2021) Eric PROUST. Engineering school. France. 2021. hal-03147500 HAL Id: hal-03147500 https://hal.archives-ouvertes.fr/hal-03147500 Submitted on 19 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. FROM RESEARCH TO INDUSTRY LECTURE SERIES ON NUCLEAR SPACE POWER & PROPULSION SYSTEMS -2- Nuclear Thermal Propulsion Systems Eric PROUST Commissariat à l’énergie atomique et aux énergies alternatives - www.cea.fr Last update: January 2021 Lecture Series on SPACE NUCLEAR POWER & PROPULSION SYSTEMS -2- Nuclear Thermal Propulsion Systems (last updated in January 2021) Eric PROUST Nuclear Space Power & Propulsion in the last 2 month news Nuclear Thermal Propulsion Nuclear Thermal Propulsion Nuclear Electric Propulsion Space Nuclear Power Reactor
    [Show full text]
  • Nuclear Power and Propulsion Systems for Unmanned Spacecraft
    Conference Session A7 Paper 5061 NUCLEAR POWER AND PROPULSION SYSTEMS FOR UNMANNED SPACECRAFT Nicholas Malagari ([email protected], 10:00 Mahboobin), Connor Sullivan ([email protected], 10:00 Mahboobin) Abstract— Nuclear power and propulsion systems are a Earth. The development of space technologies has led to smart alternative to traditional rocket systems. Topics many advancements in unrelated fields such as medicine, discussed include, a brief history of nuclear power and transportation, and public safety. Examples of technologies propulsion is provided along with a background on nuclear that are a direct result of space technology development power in space. The current nuclear technologies of include low-cost heart pump implants, improved insulation, Radioisotope Thermoelectric Generators (RTGs), Nuclear and faster battery chargers [1]. In order to continue these Thermal Propulsion (NTP) and Nuclear Electric Propulsion everyday technology developments, the exploration of space (NEP) are described to provide the reader with enough continue. knowledge to compare nuclear to chemical. The case for After a lull in nuclear space exploration, due to replacing chemical propulsion with nuclear propulsion is government cutbacks and nuclear scares, there has been a made by presenting the pros and cons of nuclear and revived interest in nuclear space exploration. The increased chemical side by side. Furthermore, the safety and ethicality amount of nuclear power acceptance has enabled continued of nuclear power and propulsion systems are explained and development of nuclear engines. To create missions that last presented against the public opposition to nuclear longer and travel further, chemical rockets need to be technology. Future potential and development of nuclear replaced.
    [Show full text]