Nuclear and Emerging Technologies for Space 2015 Conference (2015) 5012.pdf Preliminary Design Study of an Innovative High-Performance Nuclear Thermal Rocket Utilizing LEU Fuel Seung Hyun Nam1, Paolo F. Venneri1, Jae Young Choi1, Yong Hoon Jeong1, and 1,2 Soon Heung Chang 1Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea 2Handong Global University, Pohang-si, Gyeongbuk, Korea +82-42-350-3891;
[email protected] Abstract. A Nuclear Thermal Rocket (NTR) is a viable and efficient option for manned deep-space missions such as to Mars and beyond. The NTR technology has already been developed and successfully tested for over 50 years since the 1950s by the United States (US) and Russia. The representative US NERVA type reactors traditionally load hexagonal shaped fuel elements utilizing High Enriched Uranium (HEU) due to the imperative of making a high power reactor with a minimum size. This state-of-the-art NTR technology could be applicable with contemporary space vehicles. However, even though the NTR designs utilizing HEU is the best choice in terms of rocket performance and technical maturity, they inevitably arouse nuclear proliferation obstacles on all Research and Development (R&D) activities by civilians and non-nuclear weapon states, and its eventual commercialization. To cope with the security issue to use HEU, the innovative future NTR engine concept utilizing Low Enriched Uranium (LEU) fuel is proposed in this paper. The Korea Advanced NUclear Thermal Engine Rocket utilizing LEU (KANUTER-LEU) is currently being designed at Korea Advanced Institute of Science and Technology (KAIST).