The Los Alamos Thermonuclear Weapon Project, 1942-1952

Total Page:16

File Type:pdf, Size:1020Kb

The Los Alamos Thermonuclear Weapon Project, 1942-1952 LA-13577-T Thesis Approved for public release; distribution is unlimited. Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942–1952 Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. This thesis was accepted by the Department of Philosophy, Virginia Polytechnic Institute and State University,Blacksburg, Virginia, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The text and illustrations are the independent work of the author and only the front matter has been edited by the CIC-1 Writing and Editing Staff to conform with Department of Energy and Los Alamos National Laboratory publication policies. An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. LA-13577-T Thesis Issued: July 1999 Igniting the Light Elements: The Los Alamos Thermonuclear Weapon Project, 1942–1952 Anne Fitzpatrick* *Consultant at Los Alamos. The George Washington University, Center for History of Recent Science, Department of History, 801 22nd Street, N.W., Washington, DC 20052. Los Alamos NATIONAL LABORATORY Los Alamos, New Mexico 87545 Acknowledgments I would like foremost to thank Joe Pitt, who first sent me to New Mexico, where I met Bob Seidel; our acquaintance was an act of fate. Subsequently, I discovered that Los Alamos not only changed the world, but it changed my life. No less influential were my advisory committee members at Virginia Tech. Burton Kaufman consistently supported my work since my undergraduate days. Bert Moyer, Richard Hirsh, and Dick Burian were always encouraging, and provided valuable comments and critiques. All of my committee members were excellent teachers. All of the people of Los Alamos National Laboratory who welcomed me and assisted me with this project are too numerous to mention here, but several were outstanding. Beverly Mattys, Judy Rose, and Evelyn Martinez in the Technology and Safety Assessment Division Office kept everything running smoothly. Dale Henderson was helpful in introducing me to many knowledgeable people. Steve Becker, Pat Garrity, Larry Germain, John Hopson, Karl Lautenschlager, Steve Maaranen, Jas Mercer-Smith, Ray Pollack, John Richter, Rod Schultz, Paul Whalen, and Steve Younger provided enlightening information. Many people assisted me with the research for this study. Roger Meade and Linda Sandoval allowed me access to the Los Alamos Laboratory Archives. Jack Carter, Marcia Gallegos, Linda Kolar, and Marlene Lujan in V the Los Alamos Report Library let me scour their old documents. Bill Davis and Herb Rawlings-Milton of the National Archives helped me to collect much important historical documentation. A couple of individuals at Los Alamos assisted in other capacities. Bill Palatinus read every page of this dissertation and worked tirelessly to see that it survived security review. Carolyn Mangeng supported me professionally, and became a role model and friend along the way. Several people from the history of science and science studies communities gave helpful feedback. Professors Lillian Hoddeson and Andy Pickering at the University of Illinois, and Tom Cornell at the Rochester Institute of Technology shared very useful critiques. Professor Joseph Wieczynski at Virginia Tech inspired me to retain my academic first love -- Russian history -- while I pursued this project. Many of those who were the subjects of this study graciously told me their stories. They are Hans A. Bethe, Bengt Carlson, Foster Evans, Ed Hammel, Roger Lazarus, J. Carson Mark, Nick Metropolis, Robert Richtmyer, Robert Serber, Edward Teller, Anthony Turkevich, and Edward Voorhees. Spencer Weart and the American Institute of Physics Center for the History of Physics Grants-in-Aid Program kindly sponsored my interviews with Drs. Richtmyer and Serber. Thanks to my parents for everything else. This dissertation is dedicated to Michael Henderson, nuclear weapons wizard and mentor to this historian. vi Table of Contents . TITLE PAGE . ..lll ACKNOWLEDGMENTS . v . TABLE OF CONTENTS . VII ABSTRACT . x CHAPTER ONE . 1 INTRODUCTION AND LITERATURE REVIEW: WHY THE H-BOMB STILL MATTERS ............................................................................................ 1 1.1. LOS ALAMOS AND THE FISSION PROJECT HISTORIES.. ................................................................. .8 1.2. THERMONUCLEAR WEAPONS STUDIES ................................................................................... 10 1.3. POLITICAL HISTORY.. ........................................................................................................ 16 1.4. OFFICIAL AND TECHNICAL HISTORIES ................................................................................... 19 1.5. SOCIOLOGY.. ................................................................................................................... 23 1.6. PARTICIPANTS’ ACCOUNTS ................................................................................................. 24 1.7. CULTURAL HISTORIES ........................................................................................................ 3 1 1.8. A TECHNOLOGICAL SYSTEM OF WEAPONS RESEARCH AND DEVELOPMENT .................................... 3 1 1.9. GOAL OF THIS STUDY ........................................................................................................ 36 2.0. CHAPTER ORGANIZATION AND SUMMARIES.. .......................................................................... 40 CHAPTER TWO .................................................................................... 46 THE FISSION BOMB HAD TO COME FIRST ................................................ 46 2.1. THE MANHATTAN DISTRICT AS A TECHNOLOGICAL SYSTEM.. ..................................................... 50 2.2. CALCULATING ATOMIC DEVICES: A CRITICAL PROBLEM FOR LOS ALAMOS ................................... 55 2.3. GETTING THE JOB DONE ON TIME: MECHANIZATION OF FISSION CALCULATIONS ........................... 63 2.4. THE EMERGENCE OF LABOR-SAVING TECHNOLOGY.. ................................................................ 76 2.5. WARTIME MISSION: LOS ALAMOS ESTABLISHES AN APPROACH TO PROBLEM-SOLVING ..................... 79 2.6. FROM MED TO AEC ............................................................................................................ 83 2.7. NEW LIFE FOR OLD MODELS: ESTABLISHING LOS ALAMOS’S POSTWAR MISSION.. ........................... 94 CHAPTER THREE ................................................................................. 99 THE SUPER AND POSTWAR COMPUTING: MACHINES CAN CALCULATE, BUT CAN HUMANS“ ..................................................................................... 99 3.1. FERMI AND THE FUSION WEAPON: ORIGINS OF THE SUPER ....................................................... 101 3.2. NO SUPER FOR WARTIME LOS ALAMOS .................................................................................. 105 3.3. ENTER VON NEUMANN ..................................................................................................... 117 3.4. POSTWAR EXODUS, OTHER THERMONUCLEAR CREATURES ...................................................... .124 3.5. COMPUTERS OF THE FUTURE ............................................................................................... 129 3.6. TAMING AND MECHANIZING LARGE ANIMALS: HIPPO AND BABY HIPPO ..................................... .133 3.7. MONTE CARLO.. ............................................................................................................. .137 3.8. ADVANCED WEAPONS, OR A LARGE “BANG”?. ...................................................................... .138 3.9. WHAT DO MACHINES KNOW ANYWAY? RE-EVALUATING THE ENIAC CALCULATIONS.. ................ .143 4.0. A FAMILY OF WEAPONS ..................................................................................................... .150 4.1. GREENHOUSE ................................................................................................................ .156 vii 4.2. THE THERMONUCLEAR ZOO ............................................................................................... 158 4.3. ES GEHT UM DIE WURST ...................................................................................................
Recommended publications
  • OAK RIDGE NATIONAL LABORATORY Engineering Physics
    oml ORNL-6868 OAK RIDGE NATIONAL LABORATORY Engineering Physics LOCK H * M D NJA Jt rim Or" and Mathematics Division ^ Progress Report for Period Ending December 31,1994 R. F. Sincovec, Director MANAGED BY LOCKHEED MARTIN ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY UCI*13673 {36 W5) This report has been reproduced directly from the ilabie copy. Available to DOE and DOE contractors from the Scientific and Techni- cal Information, P.O. Box 62, Oak Ridge, TN 37> s available from (615) 576-8401, FTS 626-8401. Available to the public from the National Teci rmation Service, U.S. Department of Commerce, 5285 Port Royal Rd.,; d, VA 22161. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com• pleteness, or usefulness of any information, apparatus, product, or process dis• closed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily consti• tute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL-6868 Engineering Physics and Mathematics Division ENGINEERING PHYSICS AND MATHEMATICS DIVISION PROGRESS REPORT FOR PERIOD ENDING DECEMBER 31, 1994 R.
    [Show full text]
  • The Younger Oppenheimer
    Vol 461|24 September 2009 BOOKS & ARTS The younger Oppenheimer Frank Oppenheimer founded the San Francisco Exploratorium: his charisma and passion for science education made him as influential, if not as famous, as his brother, explains Robert Crease. Something Incredibly Wonderful Happens: Frank Oppenheimer and the World He Made Up by K. C. Cole Houghton Mifflin Harcourt: 2009. 416 pp. $27 Alfred Russel Wallace wrote that Charles Darwin never lost “the restless curiosity of the child”. One could say the same of the experimental physicist and educator Frank Oppenheimer (1912–1985), younger brother of theoretical physicist J. Robert Oppenheimer, whose life has been far more documented. Like Robert, Frank was involved in leftist politics in ways that damaged his career; unlike Robert, Frank’s relentless enthusiasm allowed him to forge a dramatic comeback. His masterpiece was the San Francisco Exploratorium in Cali- fornia, through which he influenced the lives of countless people. K. C. Cole, a journalism professor at the University of Southern California in Los Angeles, is one of those people. In the early 1970s, the magazine Saturday Review assigned the fledgling writer — who says she had “no interest in science whatsoever” and thought an accelerator was a gas pedal — to cover Frank Oppenheimer brought a “rancher’s aesthetic” to the Exploratorium science museum. the Exploratorium. She was transformed by meeting Frank, who struck her as “a kind of years, relying on familiar sources of some- a neighbour telling her of how Frank once Yoda” and helped to launch her career as a times doubtful reliability. She does not explore became incensed by a cow’s refusal to enter a science writer.
    [Show full text]
  • Signal to Background
    signal to background Tevatron sets world record; the most productive age for research; numbers: Pierre Auger Observatory; bicycle networks; keeping computers cool; opera review: Doctor Atomic. 160 Collider Run II Peak Luminosity 140 (x1030 cm-2sec-1) 120 100 80 60 40 20 0 2 3 4 5 Jun 2002 Jun 2003 Jun 2004 Jun 2005 Dec 200 Dec 200 Dec 200 Dec 200 A bright machine to produce than protons, and date of publication of the top The Fermilab Tevatron achieved the Tevatron operates at a 25 theoretical papers from the a world-record peak lumi- much higher collision energy spires all-time top-cited list. nosity, or brightness, in colliding of 1960 GeV. The Tevatron Included are the 29 authors protons and antiprotons on record is tied to the startup of whose ages are in the database. October 4, 2005. The luminosity a new technique to cool anti- Some appear more than once Photo: Reidar Hahn, Fermilab of 141x1030 cm-2sec-1 is about proton beams, which makes as authors on multiple papers. four times the luminosity the beams more concentrated. Half the authors were 32 achieved three years ago, and Kurt Riesselmann or younger when they published more is expected to come. their famous papers. The chart To maximize the potential Don’t cite anybody shows that the most frequent for scientific discovery, accel- over 30? ages are 29 and 30. In fact, erator experts improve and A common assertion is that almost half the ages are con- tune their machines to produce the best work in physics is centrated around the window the largest number of colli- done by people who are under of 29-30.
    [Show full text]
  • A Selected Bibliography of Publications By, and About, J
    A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02].
    [Show full text]
  • Capitalism and Morality ______
    Capitalism and Morality _________________________ THE TEMPORAL DIMENSION OF TECHNOLOGY AND THE MOVING PICTURE OF THE GOOD Richard P. Mullin Professor Emeritus Wheeling Jesuit University Appeared in Wheeling Jesuit University’s Cardinal Perspectives Spring 1996 Picture of the Good One of the most urgent tasks of philosophy is to understand how ethical, social, and technological goods can be integrated in the midst of rapid change. The problem is to a large extent caused by moral myopia and tunnel vision.1 It is hard to get a clear focus when the viewer and the picture are moving so rapidly and irregularly. Technical advance and social change have a reciprocal relationship. This spawns a myriad of ethical problems which are distinctive to a technologically advancing society. Many of the social and ethical problems which involve technology result from the fact that technology does not advance evenly. When the technical aspect of social change combines with non-technical facets of life such as morality, legality, and politics, the unevenness becomes more pronounced and more troublesome. The Temporal Dimension Ethics must take account of the temporal dimension, i.e., the dimension of change. As the world and our interpretation of it change more and more rapidly, the past fades quickly out of sight while the future rushes on us ready-or-not. Past decisions were made without much of the information now available to us and within world-views which we can recapture only with great difficulty. The decisions which we make today will affect a future of which we are largely ignorant in ways at which we can only guess.
    [Show full text]
  • Article Thermonuclear Bomb 5 7 12
    1 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin [email protected] New York, April 2012 2 Article Thermonuclear Reactor 1 26 13 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin C&R Co., [email protected] Abstract This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. ----------------------------------------------------------------------- Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine, nuclear space propulsion. Introduction It is common knowledge that thermonuclear bombs are extremely powerful but very expensive and difficult to produce as it requires a conventional nuclear bomb for ignition. In stark contrast, the Mini Thermonuclear Bomb is very inexpensive. Moreover, in contrast to conventional dangerous radioactive or neutron bombs which generates enormous power, the Mini Thermonuclear Bomb does not have gamma or neutron radiation which, in effect, makes it a ―clean‖ bomb having only the flash and shock wave of a conventional explosive but much more powerful (from 1 ton of TNT and more, for example 100 tons).
    [Show full text]
  • THE MEETING Meridel Rubenstein 1995
    THE MEETING Meridel Rubenstein 1995 Palladium prints, steel, single-channel video Video assistance by Steina Video run time 4:00 minutes Tia Collection The Meeting consists of twenty portraits of people from San Ildefonso Pueblo and Manhattan Project physicists—who met at the home of Edith Warner during the making of the first atomic bomb—and twenty photographs of carefully selected objects of significance to each group. In this grouping are people from San Ildefonso Pueblo and the objects they selected from the collections of the Museum of Indian Arts and Culture to represent their culture. 1A ROSE HUGHES 2A TALL-NECKED JAR 3A BLUE CORN 4A SLEIGH BELLS 5A FLORENCE NARANJO Rose Hughes holding a photograph of WITH AVANYU One of the most accomplished and (Museum of Indian Arts and Culture) Married to Louis Naranjo; her father, Tony Peña, who organized (plumed serpent) made by Julian and recognized of the San Ildefonso Sleigh bells are commonly used in granddaughter of Ignacio and Susana the building of Edith Warner’s second Maria Martinez, ca. 1930 (Museum of potters. Like many women from the ceremonial dances to attract rain. Aguilar; daughter of Joe Aguilar, who house. Hughes worked at Edith Indian Arts and Culture) Edith Warner pueblos, she worked as a maid for the Tilano Montoya returned with bells like helped Edith Warner remodel the Warner’s with Florence Naranjo one was shown a pot like this one in 1922 Oppenheimers. these from Europe, where he went on tearoom. Edith called her Florencita. summer. She recalls that Edith once on her first visit to San Ildefonso, in the tour with a group of Pueblo dancers.
    [Show full text]
  • Energy Research & Social Science
    Energy Research & Social Science 70 (2020) 101617 Contents lists available at ScienceDirect Energy Research & Social Science journal homepage: www.elsevier.com/locate/erss Review Sociotechnical agendas: Reviewing future directions for energy and climate T research ⁎ Benjamin K. Sovacoola, , David J. Hessb, Sulfikar Amirc, Frank W. Geelsd, Richard Hirshe, Leandro Rodriguez Medinaf, Clark Millerg, Carla Alvial Palavicinoh, Roopali Phadkei, Marianne Ryghaugj, Johan Schoth, Antti Silvastj, Jennie Stephensk, Andy Stirlingl, Bruno Turnheimm, Erik van der Vleutenn, Harro van Lenteo, Steven Yearleyp a University of Sussex, United Kingdom and Aarhus University, Denmark b Vanderbilt University, United States c Nanyang Technological University, Singapore d The University of Manchester, United Kingdom e Virginia Polytechnic Institute and State University, United States f Universidad de las Americas Puebla, Mexico g Arizona State University, United States h Universiteit Utrecht, Netherlands i Macalester College, United States j Norwegian University of Science and Technology, Norway k Northeastern University, United States l University of Sussex, United Kingdom m Laboratoire Interdisciplinaire Sciences Innovations Sociétés, France n Eindhoven University of Technology, Netherlands o Universiteit Maastricht, Netherlands p The University of Edinburgh, United Kingdom ARTICLE INFO ABSTRACT Keywords: The field of science and technology studies (STS) has introduced and developed a “sociotechnical” perspective Science and technology studies that has been taken up by many disciplines and areas of inquiry. The aims and objectives of this study are Sociotechnical systems threefold: to interrogate which sociotechnical concepts or tools from STS are useful at better understanding Science technology and society energy-related social science, to reflect on prominent themes and topics within those approaches, and to identify Sociology of scientific knowledge current research gaps and directions for the future.
    [Show full text]
  • Science & Technology Studies
    ALEXANDRA HOFMÄNNER SCIENCE & TECHNOLOGY STUDIES ELSEWHERE A Postcolonial Programme SCIENCE & TECHNOLOGY STUDIES In April 2017, scientists took to the streets in a historically unprecedented Global March for Science. The event was seen as symbolic of a crisis in the relationship of science and society. This book considers the Global March ELSEWHERE for Science from a postcolonial perspective to inquire into the toolkit that the academic field of Science & Technology Studies (STS) has to offer. It HOFMÄNNER ALEXANDRA argues that new concepts and analytical approaches are necessary to in- A POSTCOLONIAL vestigate current global dynamics in science, technology and society, so as to deliver insights that the recent expansion of STS scholars beyond PROGRAMME Western Europe and North America alone is unlikely to provide. The book presents a Programme in Science Studies Elsewhere (SSE) to demonstrate the urgent need to carry postcolonial issues right into the centre of STS’s intellectual programme. Hofmänner possesses a potent antidote for the field’s inability to see science and technology outside of European or North American experiences. Rayvon Fouché, Professor and Director, American Studies, Purdue University, USA A compelling case for revisiting some of the traditional assumptions in the field of STS. Prof. Dr. Sabine Maasen, Director of the Munich Center for Technology in Society Alexandra Hofmänner is assistant professor in Science & Technology ELSEWHERE STUDIES TECHNOLOGY & SCIENCE Studies ( ST S) at the University of Basel, Switzerland. She received a PhD at the Swiss Federal Institute of Technology ( ETH Zürich ) and has carried out extensive research in Switzerland and South Africa. www.schwabeverlag.de Alexandra Hofmänner Science & Technology Studies Elsewhere A Postcolonial Programme Schwabe Verlag Published with the support of the Swiss National Science Foundation and the Freiwillige Akademische Gesellschaft.
    [Show full text]
  • A Secrecy Primer
    A Secrecy Primer As more countries acquire the scientific knowledge to build nuclear weapons, the U.S. response should not be heightened secrecy but a renewed commitment to strengthening political safeguards. David Hafemeister Secrecy is in the air. Last July, the Los Alamos National Laboratory, still recovering from the Wen Ho Lee “Chinese espionage” controversy, shut down classified work for 10 weeks after two computer disks containing sensitive material were reported missing. Some 12,000 personnel remained idle during a lengthy investigation that in the end revealed the two computer disks hadn't even existed–bar codes for the disks had been created and inventoried, but never used. Alternatively, anyone with a credit card and a casual interest in the secrets of bomb-making could have visited Amazon.com and purchased for $34.95 (plus shipping) The Los Alamos Primer: The First Lectures on How to Build an Atomic Bomb. The curious history of the Los Alamos Primer–a history in which I played a very small part–in itself offers a worthwhile primer on the evolving nature of secrecy in the nuclear age and on the need to develop political instruments to cope with the inevitable dissemination of knowledge and technology. In April 1943, Robert Serber, a protegé of J. Robert Oppenheimer, gave a series of five lectures on atomic physics to the new hires at Los Alamos. “The object,” declared the young physicist, “is to produce a practical military weapon in the form of a bomb in which the energy is released by a fast neutrino chain reaction in one or more of the materials known to show nuclear fission.” Topics ranged from fast neutron reactions to the probability of predetonation.
    [Show full text]
  • Nuclear Weapons Databook
    Nuclear Weapons Databook Volume I11 U.S. Nuclear Warhead Facility Profiles Nuclear Weapons Databook Volume I11 U.S. Nuclear Warhead Facility Profiles Thomas B. Cochran, William M. Arkin, Robert S. Morris, and Milton M. Hoenig A book by the Natural Resources Defense Council, Inc. BALUNGER PUBLISHING COMPANY Cambridge, Massachusetts A Subsidiary of Harper & Row, Publishers, Inc. Copyright a 1987 by the Natural Resources Defense Council, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by any means, electronic, mechanical, photocopy, recording or otherwise, without the prior written consent of the publisher. International Standard Book Number: 0-88730-126-6 (CL) 0-88730-146-0 (PB) Library of Congress Catalog Card Number: 82-24376 Printed in the United States of America Library of Congress CataloGng-iii-PublicationData U.S. nuclear warhead facility profiles. (Nuclear weapons databook ;v. 3) "A book by the Natural Resources Defense Council, Inc." Includes bibliographical references and index. 1. Nuclear weapons-United States. 2. Munitions-United States. I. Cochran, Thomas B. 11. Natural Resources Defense Council. 111. Title: US nuclear warhead facility profiles. IV. Title: United States nuclear warhead facility profiles. V. Series: Cochran, Thomas B. Nuclear weapons databook ;v. 3. U264.C6 1984 vol. 3 355.8'25119'0973 87-14552 [U264] ISBN 0-88410-172-X (v. 1) ISBN 0-88410-173-8 (pbk. : v. 1) ISBN 0-88730-124-X (v. 2) ISBN 0-88730-125-8 (pbk. : v. 2) ISBN 0-88730-126-6 (v. 3) ISBN 0-88730-146-0 (pbk.
    [Show full text]
  • Nuclear Fallout and Intelligence As Secrets, Problems, and Limitations on the Arms Race, 1940-1964
    © Copyright 2016 Michael R. Lehman NUISANCE TO NEMESIS: NUCLEAR FALLOUT AND INTELLIGENCE AS SECRETS, PROBLEMS, AND LIMITATIONS ON THE ARMS RACE, 1940-1964 BY MICHAEL R. LEHMAN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Doctoral Committee: Professor Lillian Hoddeson, Chair Professor Kristin Hoganson, Co-Chair Professor Michael Weissman Professor Robert Jacobs, Hiroshima City University Abstract Fallout sampling and other nuclear intelligence techniques were the most important sources of United States strategic intelligence in the early Cold War. Operated as the Atomic Energy Detection System by a covert Air Force unit known as AFOAT-1, the AEDS detected emissions and analyzed fallout from Soviet nuclear tests, as well as provided quantitative intelligence on the size of the Russian nuclear stockpile. Virtually unknown because the only greater Cold War secret than nuclear weapons was intelligence gathered about them, data on the Soviet threat produced by AFOAT-1 was an extraordinary influence on early National Intelligence Estimates, the rapid growth of the Strategic Air Command, and strategic war plans. Official guidance beginning with the first nuclear test in 1945 otherwise suggested fallout was an insignificant effect of nuclear weapons. Following AFOAT-1’s detection of Soviet testing in fall 1949 and against the cautions raised about the problematic nature of higher yield weapons by the General Advisory Committee, the Atomic Energy Commission’s top scientific advisers, President Harry Truman ordered the AEC to quickly build these extraordinarily powerful weapons, testing the first in secrecy in November 1952.
    [Show full text]