1 Distant Nuclear Fusion 1. Introduction 2. ITER
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report: the New Nuclear Arms Race
The New Nuclear Arms Race The Outlook for Avoiding Catastrophe August 2020 By Akshai Vikram Akshai Vikram is the Roger L. Hale Fellow at Ploughshares Fund, where he focuses on U.S. nuclear policy. A native of Louisville, Kentucky, Akshai previously worked as an opposition researcher for the Democratic National Committee and a campaign staffer for the Kentucky Democratic Party. He has written on U.S. nuclear policy and U.S.-Iran relations for outlets such as Inkstick Media, The National Interest, Defense One, and the Quincy Institute’s Responsible Statecraft. Akshai holds an M.A. in International Economics and American Foreign Policy from the Johns Hopkins University SAIS as well as a B.A. in International Studies and Political Science from Johns Hopkins Baltimore. On a good day, he speaks Spanish, French, and Persian proficiently. Acknowledgements This report was made possible by the strong support I received from the entire Ploughshares Fund network throughout my fellowship. Ploughshares Fund alumni Will Saetren, Geoff Wilson, and Catherine Killough were extremely kind in offering early advice on the report. From the Washington, D.C. office, Mary Kaszynski and Zack Brown offered many helpful edits and suggestions, while Joe Cirincione, Michelle Dover, and John Carl Baker provided much- needed encouragement and support throughout the process. From the San Francisco office, Will Lowry, Derek Zender, and Delfin Vigil were The New Nuclear Arms Race instrumental in finalizing this report. I would like to thank each and every one of them for their help. I would especially like to thank Tom Collina. Tom reviewed numerous drafts of this report, never The Outlook for Avoiding running out of patience or constructive advice. -
OAK RIDGE NATIONAL LABORATORY Engineering Physics
oml ORNL-6868 OAK RIDGE NATIONAL LABORATORY Engineering Physics LOCK H * M D NJA Jt rim Or" and Mathematics Division ^ Progress Report for Period Ending December 31,1994 R. F. Sincovec, Director MANAGED BY LOCKHEED MARTIN ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY UCI*13673 {36 W5) This report has been reproduced directly from the ilabie copy. Available to DOE and DOE contractors from the Scientific and Techni- cal Information, P.O. Box 62, Oak Ridge, TN 37> s available from (615) 576-8401, FTS 626-8401. Available to the public from the National Teci rmation Service, U.S. Department of Commerce, 5285 Port Royal Rd.,; d, VA 22161. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com• pleteness, or usefulness of any information, apparatus, product, or process dis• closed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily consti• tute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ORNL-6868 Engineering Physics and Mathematics Division ENGINEERING PHYSICS AND MATHEMATICS DIVISION PROGRESS REPORT FOR PERIOD ENDING DECEMBER 31, 1994 R. -
Images of Nuclear Energy: Why People Feel the Way They Do Emotions and Ideas Are More Deeply Rooted Than Realized
SPECIAL REPORT Images of nuclear energy: Why people feel the way they do Emotions and ideas are more deeply rooted than realized by ^/ontroversy over nuclear energy, both bombs anxiety and anger. Even among pro-nuclear Spencer R. Weart and reactors, has been exceptionally durable and people, beneath the controlled language, there is violent, exciting more emotion and public a lot of anxiety, a lot of anger. And why not? protest than any other technology. A main reason After all, everyone has heard that nuclear is that during the 20th century, nuclear energy weapons can blow up the world — or maybe gradually became a condensed symbol for many deter those who would blow it up. With nuclear features of industrial and bureucratic authority reactors, too, everyone agrees they are immense- (especially the horrors of modern war). ly important. They will save us from the global Propagandists found nuclear energy a useful disasters of the Greenhouse Effect — or perhaps symbol because it had become associated with they will poison all our posterity. potent images: not only weapons, but also un- Most of us take for granted these intensely canny scientists with mysterious rays' and mutant emotional ideas; we suppose the ideas flow from monsters; technological Utopia or universal the nature of the bombs and reactors themselves. doom; and even spiritual degradation or rebirth. But I have come to feel uneasy about this over These images had archaic connections stretching the years doing historical research on nuclear back to alchemical visions of transmutation. energy. The fact is, emotions came first, and the Decades before fission was discovered, the im- powerful devices themselves came later. -
Article Thermonuclear Bomb 5 7 12
1 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin [email protected] New York, April 2012 2 Article Thermonuclear Reactor 1 26 13 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin C&R Co., [email protected] Abstract This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. ----------------------------------------------------------------------- Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine, nuclear space propulsion. Introduction It is common knowledge that thermonuclear bombs are extremely powerful but very expensive and difficult to produce as it requires a conventional nuclear bomb for ignition. In stark contrast, the Mini Thermonuclear Bomb is very inexpensive. Moreover, in contrast to conventional dangerous radioactive or neutron bombs which generates enormous power, the Mini Thermonuclear Bomb does not have gamma or neutron radiation which, in effect, makes it a ―clean‖ bomb having only the flash and shock wave of a conventional explosive but much more powerful (from 1 ton of TNT and more, for example 100 tons). -
Jihadists and Nuclear Weapons
VERSION: Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary Ackerman and Jeremy Tamsett, eds., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 193-238. c h a p t e r 8 Jihadists and Nuclear Weapons Charles P. Blair CONTENTS Introduction 193 Improvised Nuclear Devices (INDs) 195 Fissile Materials 198 Weapons-Grade Uranium and Plutonium 199 Likely IND Construction 203 External Procurement of Intact Nuclear Weapons 204 State Acquisition of an Intact Nuclear Weapon 204 Nuclear Black Market 212 Incidents of Jihadist Interest in Nuclear Weapons and Weapons-Grade Nuclear Materials 213 Al-Qa‘ida 213 Russia’s Chechen-Led Jihadists 214 Nuclear-Related Threats and Attacks in India and Pakistan 215 Overall Likelihood of Jihadists Obtaining Nuclear Capability 215 Notes 216 Appendix: Toward a Nuclear Weapon: Principles of Nuclear Energy 232 Discovery of Radioactive Materials 232 Divisibility of the Atom 232 Atomic Nucleus 233 Discovery of Neutrons: A Pathway to the Nucleus 233 Fission 234 Chain Reactions 235 Notes 236 INTRODUCTION On December 1, 2001, CIA Director George Tenet made a hastily planned, clandestine trip to Pakistan. Tenet arrived in Islamabad deeply shaken by the news that less than three months earlier—just weeks before the attacks of September 11, 2001—al-Qa‘ida and Taliban leaders had met with two former Pakistani nuclear weapon scientists in a joint quest to acquire nuclear weapons. Captured documents the scientists abandoned as 193 AU6964.indb 193 12/16/08 5:44:39 PM 194 Charles P. Blair they fled Kabul from advancing anti-Taliban forces were evidence, in the minds of top U.S. -
US Nuclear Weapons
U.S. NUCLEAR DETERRENCE POLICY Today's Strategic Environment: Increasingly Complex and Dangerous For decades, the United States led the world in efforts to reduce the role and number of nuclear weapons. Successive treaties enabled reductions in accountable strategic U.S. nuclear warheads, first to 6,000, and ultimately to 1,550. Thousands of shorter-range nuclear weapons not covered by any treaty were almost entirely eliminated from the U.S. nuclear arsenal. Overall, the U.S. nuclear weapons stockpile has drawn down by more than 85 percent from its Cold War high. Many hoped conditions had been set for even deeper reductions in global nuclear arsenals. Unfortunately, the United States and our allies now face a security environment with increased complexity and worsening strategic threats. Today’s central challenge to our security is the reemergence of long-term strategic competition with Russia and China. While the United States has focused on maintaining its existing nuclear systems, Russia and China have increased the role of nuclear weapons in their strategies and have been actively increasing the size and sophistication of their nuclear forces. Further, North Korea’s nuclear capabilities threaten our allies and homeland and add to an already complex strategic picture. Russia has been developing, testing, and fielding new systems for its nuclear triad over the past decade. This includes new road-mobile and silo-based ICBMs, ballistic missile submarines and missiles, bomber aircraft, and cruise missiles. Russia is also actively testing never-before-seen nuclear weapon capabilities, such as hypersonic glide vehicles, nuclear-powered cruise missiles, and nuclear-powered unmanned underwater vehicles. -
DOE-OC Green Book
SUBJECT AREA INDICATORS AND KEY WORD LIST FOR RESTRICTED DATA AND FORMERLY RESTRICTED DATA U.S. DEPARTMENT OF ENERGY AUGUST 2018 TABLE OF CONTENTS PURPOSE ....................................................................................................................................................... 1 BACKGROUND ............................................................................................................................................... 2 Where It All Began .................................................................................................................................... 2 DIFFERENCE BETWEEN RD/FRD and NATIONAL SECURITY INFORMATION (NSI) ......................................... 3 ACCESS TO RD AND FRD ................................................................................................................................ 4 Non-DoD Organizations: ........................................................................................................................... 4 DoD Organizations: ................................................................................................................................... 4 RECOGNIZING RD and FRD ............................................................................................................................ 5 Current Documents ................................................................................................................................... 5 Historical Documents ............................................................................................................................... -
Starpower: the US and the International Quest for Fusion Energy
Appendix B Other Approaches to Fusion The main body of this report has discussed magnetic The issues addressed by inertial confinement fusion confinement fusion, the approach to controlled fusion research in the United States concern the individual that the worldwide programs emphasize most heav- targets containing the fusion fuel; the input energy ily. However, two other approaches to fusion are also sources, called drivers, that heat and compress these being investigated. All three approaches are based on targets; and the mechanism by which energy from the the same fundamental physical process, in which the driver is delivered–or coupled–into the target. Due nuclei of light isotopes, typically deuterium and tri- to the close relationship between inertial confinement tium, release energy by fusing together to form heav- fusion target design and thermonuclear weapon de- ier isotopes. Some of the technical issues are similar sign, inertial confinement fusion research is funded among all the fusion approaches, such as mechanisms by the nuclear weapons activities portion of the De- for recovering energy and breeding tritium fuel. How- partment of Energy’s (DOE’s) budget. Inertial confine- ever, compared to magnetic confinement, the two ap- ment research is conducted largely at nuclear weap- proaches discussed below create the conditions nec- ons laboratories; its near-term goals are dedicated essary for fusion to occur in very different ways, and largely to military, rather than energy applications, and some substantially different science and technology a substantial portion of this research is classified. issues emerge in each case. There are two near-term military applications of in- ertial confinement fusion—one actual and one not yet Inertial Confinement Fusion1 realized. -
Nuclear Weapons 19671A
_NA_ru_R_Ev_o_L._319_9_JA_Nu_A_RY_1_9s6____ CQRRESPQNDENCE----------- 93 within the accuracy of the Babylonian observations. Sakharov's scientific legacy C. Leroy Ellenberger, no longer a con S1R-Erast B. Gliner is right to say that When asked about Sakharov's fate, vinced Velikovskian, has pointed out to Sakharov's contribution to science' should some Soviet officials (including Anatoly me that I might nevertheless have even be emphasized in the campaign to end his Alexandrov, president of the Academy of better cited the uniformity of Greenland exile and to save his life. However, Glin Sciences of the USSR) normally answer ice core Dye 3 as a way in which science er's statement that Sakharov "is not consi that Sakharov is restricted to Gorky be could actually demonstrate that Velikovs dered as a head of some scientific school cause he is in the possession of important ky's scenario did not happen. This 2,000- inside of the Soviet Union or abroad" is military secrets and that this exile is made metre sample is continuous and datable not entirely correct. Sakharov's pioneer in strict observance of Soviet laws. Neith for the past 10,000 years and shows no ing work on the problem of a controlled er reason is correct. Sakharov was exiled dust or acid layers that would signal the thermonuclear reaction, which began the to Gorky on the basis of an "individual" sort of universal catastrophe predicted by well known tokamak project, was the decree signed by the late President Leonid Velikovsky. main reason for his election as a full mem Brezhnev in 1980 as a reprisal for Sakhar OwEN GINGERICH ber of the Academy of Sciences of the ov's protest over the Soviet invasion of Harvard-Smithsonian Center for USSR in 1953, together with his co-author Afghanistan. -
R:\TEMP\Bobbi\RDD-8 3-16-04 Reprint.Wpd
OFFICIAL USE ONLY RESTRICTED DATA DECLASSIFICATION DECISIONS 1946 TO THE PRESENT (RDD-8) January 1, 2002 U.S. Department of Energy Office of Health, Safety and Security Office of Classification Contains information which may be exempt from public release under the Freedom of Information Act (5 U.S.C. 552), exemption number(s) 2. Approval by the Department of Energy prior to public release is required. Reviewed by: Richard J. Lyons Date: 3/20/2002 NOTICE This document provides historical perspective on the sequence of declassification actions performed by the Department of Energy and its predecessor agencies. It is meant to convey the amount and types of information declassified over the years. Although the language of the original declassification authorities is cited verbatim as much as possible to preserve the historical intent of the declassification, THIS DOCUMENT IS NOT TO BE USED AS THE BASIS FOR DECLASSIFYING DOCUMENTS AND MATERIALS without specific authorization from the Director, Information Classification and Control Policy. Classification guides designed for that specific purpose must be used. OFFICIAL USE ONLY OFFICIAL USE ONLY This page intentionally left blank OFFICIAL USE ONLY OFFICIAL USE ONLY FOREWORD This document supersedes Restricted Data Declassification Decisions - 1946 To The Present (RDD-7), January 1, 2001. This is the eighth edition of a document first published in June 1994. This latest edition includes editorial corrections to RDD-7, all declassification actions that have been made since the January 1, 2001, publication date of RDD-7 and any additional declassification actions which were subsequently discovered or confirmed. Note that the terms “declassification” or “declassification action,” as used in this document, refer to changes in classification policy which result in a specific fact or concept that was classified in the past being now unclassified. -
Dangerous Thermonuclear Quest: the Potential of Explosive Fusion Research for the Development of Pure Fusion Weapons
Dangerous Thermonuclear Quest: The Potential of Explosive Fusion Research for the Development of Pure Fusion Weapons Arjun Makhijani, Ph.D. Hisham Zerriffi July 1998 Minor editing revisions made in 2003. Table of Contents Preface i Summary and Recommendations v Summary of Findings vi Recommendations vii Chapter 1: Varieties of Nuclear Weapons 1 A. Historical Background 1 B. Converting Matter into Energy 4 C. Fission energy 5 D. Fusion energy 8 E. Fission-fusion weapons 16 Chapter 2: Inertial Confinement Fusion Basics 19 A. Deposition of driver energy 24 B. Driver requirements 25 C. Fuel pellet compression 27 D. Thermonuclear ignition 29 Chapter 3: Various ECF Schemes 31 A. Laser Drivers 32 B. Ion Beam Drivers 34 1. Heavy Ion Beams 35 a. Induction Accelerators 36 b. Radio-Frequency Accelerators 36 2. Light Ion Beams 37 C. Z-pinch 39 D. Chemical Explosives 40 E. Advanced materials manufacturing 42 1. Nanotechnology 42 2. Metallic Hydrogen 45 Chapter 4: The Prospects for Pure Fusion Weapons 47 A. Requirements for pure fusion weapons 47 B. Overall assessment of non-fission-triggered nuclear weapons 48 1. Ignition 48 2. Drivers 53 C. Overall technical prognosis for non-fission triggered nuclear weapons 54 D. Fusion power and fusion weapons - comparative requirements 56 Chapter 5: Nuclear Disarmament and Non-Proliferation Issues Related to Explosive Confinement Fusion 59 A. The Science Based Stockpile Stewardship Program 62 1. Reliability 62 a. Reliability definition 63 b. Future reliability problems 64 c. Relevance of NIF to reliability of the current stockpile 65 2. The US laser fusion program as a weapons development program 65 3. -
Nuclear Weapons Databook
Nuclear Weapons Databook . The Amount of Plutonium ..and Highly-Enri.chedUranium Needed . for ..' . Pure Fission Nuclear Weapons by .Thomas B. Cochran and· Christopher E.Paine Revised 13 April 1995 ____ Natural Resources Defense Council, Inc. _ 1350 New York Avenue, NW, Suite 300 Washington, D.C. 20005· . Tele: 202-783·7800 .FAX: 202·783·5917 The Amount of Plutonium and Highly-Enriched Uranium Needed for Pure Fission Nuclear Weapons Thomas B. Cochran and Christopher E. Paine Revised 13 April 1995 Natural Resources Defense Council. Inc. 1350 New York Avenue, NW Washington, DC 20005 Tele: 202-783-7800 FAX: 202-783-5917 NRDC's work on nonproliferation issues is supported by grants from the W. Alton Jones Foundation, the Carnegie Corporation of New York, the Prospect Hill Foundation, the Rockefeller Brothers Fund, and the John D. and Catherine T. MacArthur Foundation. III. The Amount of Fissile Material Required to Make a Pure Fission Weapon ' . 5 IV. U.S. Government Requirements 6 Approximate Fissile Material Requirements for Pure Fission Nuclear Weapons. NRDC News Reiease, "Nuclear Explosives Can Be Constructed With Far Less Material Than Currently Acknowledged by the International Atomic Energy Agency," 22 August 1994. Letter to IAEA Director General Hans Blix from T. B. Cochran and C. E. Paine, NRDC, 18 August 1994. "A Smuggling Boom Brings Calls for Tighter Nuclear Safeguards," New York Times, 21 August 1994, p. 1. "IAEA Says Its Plutonium Threshold For Making Nuclear Bombs Is Too High," The Wall Street journal, 23 August 1994, p. A4. Letter to T. B. Cochran and C. E. Paine, NRDC, from IAEA Deputy Director General B.