The TCEC17 Computer Chess Superfinal: a Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 12Th Top Chess Engine Championship
TCEC12: the 12th Top Chess Engine Championship Article Accepted Version Haworth, G. and Hernandez, N. (2019) TCEC12: the 12th Top Chess Engine Championship. ICGA Journal, 41 (1). pp. 24-30. ISSN 1389-6911 doi: https://doi.org/10.3233/ICG-190090 Available at http://centaur.reading.ac.uk/76985/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3233/ICG-190090 Publisher: The International Computer Games Association All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online TCEC12: the 12th Top Chess Engine Championship Guy Haworth and Nelson Hernandez1 Reading, UK and Maryland, USA After the successes of TCEC Season 11 (Haworth and Hernandez, 2018a; TCEC, 2018), the Top Chess Engine Championship moved straight on to Season 12, starting April 18th 2018 with the same divisional structure if somewhat evolved. Five divisions, each of eight engines, played two or more ‘DRR’ double round robin phases each, with promotions and relegations following. Classic tempi gradually lengthened and the Premier division’s top two engines played a 100-game match to determine the Grand Champion. The strategy for the selection of mandated openings was finessed from division to division. -
Development of Games for Users with Visual Impairment Czech Technical University in Prague Faculty of Electrical Engineering
Development of games for users with visual impairment Czech Technical University in Prague Faculty of Electrical Engineering Dina Chernova January 2017 Acknowledgement I would first like to thank Bc. Honza Had´aˇcekfor his valuable advice. I am also very grateful to my supervisor Ing. Daniel Nov´ak,Ph.D. and to all participants that were involved in testing of my application for their precious time. I must express my profound gratitude to my loved ones for their support and continuous encouragement throughout my years of study. This accomplishment would not have been possible without them. Thank you. 5 Declaration I declare that I have developed this thesis on my own and that I have stated all the information sources in accordance with the methodological guideline of adhering to ethical principles during the preparation of university theses. In Prague 09.01.2017 Author 6 Abstract This bachelor thesis deals with analysis and implementation of mobile application that allows visually impaired people to play chess on their smart phones. The application con- trol is performed using special gestures and text{to{speech engine as a sound accompanier. For human against computer game mode I have used currently the best game engine called Stockfish. The application is developed under Android mobile platform. Keywords: chess; visually impaired; Android; Bakal´aˇrsk´apr´acese zab´yv´aanal´yzoua implementac´ımobiln´ıaplikace, kter´aumoˇzˇnuje zrakovˇepostiˇzen´ymlidem hr´atˇsachy na sv´emsmartphonu. Ovl´ad´an´ıaplikace se prov´ad´ı pomoc´ıspeci´aln´ıch gest a text{to{speech enginu pro zvukov´edoprov´azen´ı.V reˇzimu ˇclovˇek versus poˇc´ıtaˇcjsem pouˇzilasouˇcasnˇenejlepˇs´ıhern´ıengine Stockfish. -
Game Changer
Matthew Sadler and Natasha Regan Game Changer AlphaZero’s Groundbreaking Chess Strategies and the Promise of AI New In Chess 2019 Contents Explanation of symbols 6 Foreword by Garry Kasparov �������������������������������������������������������������������������������� 7 Introduction by Demis Hassabis 11 Preface 16 Introduction ������������������������������������������������������������������������������������������������������������ 19 Part I AlphaZero’s history . 23 Chapter 1 A quick tour of computer chess competition 24 Chapter 2 ZeroZeroZero ������������������������������������������������������������������������������ 33 Chapter 3 Demis Hassabis, DeepMind and AI 54 Part II Inside the box . 67 Chapter 4 How AlphaZero thinks 68 Chapter 5 AlphaZero’s style – meeting in the middle 87 Part III Themes in AlphaZero’s play . 131 Chapter 6 Introduction to our selected AlphaZero themes 132 Chapter 7 Piece mobility: outposts 137 Chapter 8 Piece mobility: activity 168 Chapter 9 Attacking the king: the march of the rook’s pawn 208 Chapter 10 Attacking the king: colour complexes 235 Chapter 11 Attacking the king: sacrifices for time, space and damage 276 Chapter 12 Attacking the king: opposite-side castling 299 Chapter 13 Attacking the king: defence 321 Part IV AlphaZero’s -
(2021), 2814-2819 Research Article Can Chess Ever Be Solved Na
Turkish Journal of Computer and Mathematics Education Vol.12 No.2 (2021), 2814-2819 Research Article Can Chess Ever Be Solved Naveen Kumar1, Bhayaa Sharma2 1,2Department of Mathematics, University Institute of Sciences, Chandigarh University, Gharuan, Mohali, Punjab-140413, India [email protected], [email protected] Article History: Received: 11 January 2021; Accepted: 27 February 2021; Published online: 5 April 2021 Abstract: Data Science and Artificial Intelligence have been all over the world lately,in almost every possible field be it finance,education,entertainment,healthcare,astronomy, astrology, and many more sports is no exception. With so much data, statistics, and analysis available in this particular field, when everything is being recorded it has become easier for team selectors, broadcasters, audience, sponsors, most importantly for players themselves to prepare against various opponents. Even the analysis has improved over the period of time with the evolvement of AI, not only analysis one can even predict the things with the insights available. This is not even restricted to this,nowadays players are trained in such a manner that they are capable of taking the most feasible and rational decisions in any given situation. Chess is one of those sports that depend on calculations, algorithms, analysis, decisions etc. Being said that whenever the analysis is involved, we have always improvised on the techniques. Algorithms are somethingwhich can be solved with the help of various software, does that imply that chess can be fully solved,in simple words does that mean that if both the players play the best moves respectively then the game must end in a draw or does that mean that white wins having the first move advantage. -
Download Source Engine for Pc Free Download Source Engine for Pc Free
download source engine for pc free Download source engine for pc free. Completing the CAPTCHA proves you are a human and gives you temporary access to the web property. What can I do to prevent this in the future? If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware. If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices. Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store. Cloudflare Ray ID: 67a0b2f3bed7f14e • Your IP : 188.246.226.140 • Performance & security by Cloudflare. Download source engine for pc free. Completing the CAPTCHA proves you are a human and gives you temporary access to the web property. What can I do to prevent this in the future? If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware. If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices. Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store. Cloudflare Ray ID: 67a0b2f3c99315dc • Your IP : 188.246.226.140 • Performance & security by Cloudflare. -
The SSDF Chess Engine Rating List, 2019-02
The SSDF Chess Engine Rating List, 2019-02 Article Accepted Version The SSDF report Sandin, L. and Haworth, G. (2019) The SSDF Chess Engine Rating List, 2019-02. ICGA Journal, 41 (2). 113. ISSN 1389- 6911 doi: https://doi.org/10.3233/ICG-190107 Available at http://centaur.reading.ac.uk/82675/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: https://doi.org/10.3233/ICG-190085 To link to this article DOI: http://dx.doi.org/10.3233/ICG-190107 Publisher: The International Computer Games Association All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online THE SSDF RATING LIST 2019-02-28 148673 games played by 377 computers Rating + - Games Won Oppo ------ --- --- ----- --- ---- 1 Stockfish 9 x64 1800X 3.6 GHz 3494 32 -30 642 74% 3308 2 Komodo 12.3 x64 1800X 3.6 GHz 3456 30 -28 640 68% 3321 3 Stockfish 9 x64 Q6600 2.4 GHz 3446 50 -48 200 57% 3396 4 Stockfish 8 x64 1800X 3.6 GHz 3432 26 -24 1059 77% 3217 5 Stockfish 8 x64 Q6600 2.4 GHz 3418 38 -35 440 72% 3251 6 Komodo 11.01 x64 1800X 3.6 GHz 3397 23 -22 1134 72% 3229 7 Deep Shredder 13 x64 1800X 3.6 GHz 3360 25 -24 830 66% 3246 8 Booot 6.3.1 x64 1800X 3.6 GHz 3352 29 -29 560 54% 3319 9 Komodo 9.1 -
The TCEC20 Computer Chess Superfinal: a Perspective
The TCEC20 Computer Chess Superfinal: a Perspective GM Matthew Sadler1 London, UK 1 THE TCEC20 PREMIER DIVISION Just like last year, Season 20 DivP gathered a host of familiar faces and once again, one of those faces had a facelift! The venerable KOMODO engine had been given an NNUE beauty boost and there was a feeling that KOMODO DRAGON might prove a threat to LEELA’s and STOCKFISH’s customary tickets to the Superfinal. There was also an updated STOOFVLEES to enjoy while ETHEREAL came storming back to DivP after a convincing victory in League 1. ROFCHADE just pipped NNUE-powered IGEL on tie- break for the second DivP spot. In the end, KOMODO turned out to have indeed received a significant boost from NNUE, pipping ALLIESTEIN for third place. However, both LEELA and STOCKFISH seemed to have made another quantum leap forwards, dominating the field and ending joint first on 38/56, 5.5 points clear of KOMODO DRAGON! Both LEELA and STOCKFISH scored an astonishing 24 wins, with LEELA winning 24 of its 28 White games and STOCKFISH 22! Both winners lost 4 games, all as Black, with LEELA notably tripping up against bottom-marker ROFCHADE and STOCKFISH being beautifully squeezed by STOOFVLEES. The high winning percentage this time is explained by the new high-bias opening book designed for the Premier Division. I had slightly mixed feelings about it as LEELA and STOCKFISH winning virtually all their White games felt like going a bit too much the other way: you want them to have to work a bit harder for their Superfinal places! However, it was once again a very entertaining tournament with plenty of good games. -
Distributional Differences Between Human and Computer Play at Chess
Multidisciplinary Workshop on Advances in Preference Handling: Papers from the AAAI-14 Workshop Human and Computer Preferences at Chess Kenneth W. Regan Tamal Biswas Jason Zhou Department of CSE Department of CSE The Nichols School University at Buffalo University at Buffalo Buffalo, NY 14216 USA Amherst, NY 14260 USA Amherst, NY 14260 USA [email protected] [email protected] Abstract In our case the third parties are computer chess programs Distributional analysis of large data-sets of chess games analyzing the position and the played move, and the error played by humans and those played by computers shows the is the difference in analyzed value from its preferred move following differences in preferences and performance: when the two differ. We have run the computer analysis (1) The average error per move scales uniformly higher the to sufficient depth estimated to have strength at least equal more advantage is enjoyed by either side, with the effect to the top human players in our samples, depth significantly much sharper for humans than computers; greater than used in previous studies. We have replicated our (2) For almost any degree of advantage or disadvantage, a main human data set of 726,120 positions from tournaments human player has a significant 2–3% lower scoring expecta- played in 2010–2012 on each of four different programs: tion if it is his/her turn to move, than when the opponent is to Komodo 6, Stockfish DD (or 5), Houdini 4, and Rybka 3. move; the effect is nearly absent for computers. The first three finished 1-2-3 in the most recent Thoresen (3) Humans prefer to drive games into positions with fewer Chess Engine Competition, while Rybka 3 (to version 4.1) reasonable options and earlier resolutions, even when playing was the top program from 2008 to 2011. -
The TCEC19 Computer Chess Superfinal: a Perspective
The TCEC19 Computer Chess Superfinal: a Perspective GM Matthew Sadler1 London, UK 1 THE TCEC19 PREMIER DIVISION Season 19’s Premier Division was a gathering of the usual suspects but one participant was not quite what it seemed! STOCKFISH – mighty in Season 18 – had become STOCKFISH NNUE and there was great anticipation of what the added self-learning component to STOCKFISH’s evaluation would mean for STOCKFISH’s strength. In my own engine matches (on much weaker hardware and faster time controls) played from many types of positions, STOCKFISH NNUE had looked extremely impressive against ‘old-fashioned’ STOCKFISH CLASSICAL. Most surprising to me was that STOCKFISH NNUE defended even better than STOCKFISH CLASSICAL which is not a particular strength of self-learning systems. I just wondered whether at long time controls making STOCKFISH ‘think like an NN’ would blunt the destructive power that makes it so formidable. I also had high hopes for ALLIESTEIN which had performed so impressively in the end-of-season-18 bonus competitions. As it turned out, DivP also had a familiar outcome as STOCKFISH – after a slow start – and a resurgent LEELA forged ahead and dominated the race for the SuperFinal spots. LEELA kept pace for quite a while but a loss to STOCKFISH and a late STOCKFISH surge created a clear gap between first and second. ALLIESTEIN finished a disappointing third, playing solidly but without sparkle. STOOFVLEES did what only it can do, mixing fine games with mini-disasters! The relegation battle was intense with four engines – KOMODO, SCORPIONN, FIRE AND ETHEREAL - in constant danger. -
Algorithmic Progress in Six Domains
MIRI MACHINE INTELLIGENCE RESEARCH INSTITUTE Algorithmic Progress in Six Domains Katja Grace MIRI Visiting Fellow Abstract We examine evidence of progress in six areas of algorithms research, with an eye to understanding likely algorithmic trajectories after the advent of artificial general intelli- gence. Many of these areas appear to experience fast improvement, though the data are often noisy. For tasks in these areas, gains from algorithmic progress have been roughly fifty to one hundred percent as large as those from hardware progress. Improvements tend to be incremental, forming a relatively smooth curve on the scale of years. Grace, Katja. 2013. Algorithmic Progress in Six Domains. Technical report 2013-3. Berkeley, CA: Machine Intelligence Research Institute. Last modified December 9, 2013. Contents 1 Introduction 1 2 Summary 2 3 A Few General Points 3 3.1 On Measures of Progress . 3 3.2 Inputs and Outputs . 3 3.3 On Selection . 4 4 Boolean Satisfiability (SAT) 5 4.1 SAT Solving Competition . 5 4.1.1 Industrial and Handcrafted SAT Instances . 6 Speedup Distribution . 6 Two-Year Improvements . 8 Difficulty and Progress . 9 4.1.2 Random SAT Instances . 11 Overall Picture . 11 Speedups for Individual Problem Types . 11 Two-Year Improvements . 11 Difficulty and Progress . 14 4.2 João Marques-Silva’s Records . 14 5 Game Playing 17 5.1 Chess . 17 5.1.1 The Effect of Hardware . 17 5.1.2 Computer Chess Ratings List (CCRL) . 18 5.1.3 Swedish Chess Computer Association (SSDF) Ratings . 19 Archived Versions . 19 Wikipedia Records . 20 SSDF via ChessBase 2003 . 20 5.1.4 Chess Engine Grand Tournament (CEGT) Records . -
Move Similarity Analysis in Chess Programs
Move similarity analysis in chess programs D. Dailey, A. Hair, M. Watkins Abstract In June 2011, the International Computer Games Association (ICGA) disqual- ified Vasik Rajlich and his Rybka chess program for plagiarism and breaking their rules on originality in their events from 2006-10. One primary basis for this came from a painstaking code comparison, using the source code of Fruit and the object code of Rybka, which found the selection of evaluation features in the programs to be almost the same, much more than expected by chance. In his brief defense, Rajlich indicated his opinion that move similarity testing was a superior method of detecting misappropriated entries. Later commentary by both Rajlich and his defenders reiterated the same, and indeed the ICGA Rules themselves specify move similarity as an example reason for why the tournament director would have warrant to request a source code examination. We report on data obtained from move-similarity testing. The principal dataset here consists of over 8000 positions and nearly 100 independent engines. We comment on such issues as: the robustness of the methods (upon modifying the experimental conditions), whether strong engines tend to play more similarly than weak ones, and the observed Fruit/Rybka move-similarity data. 1. History and background on derivative programs in computer chess Computer chess has seen a number of derivative programs over the years. One of the first was the incident in the 1989 World Microcomputer Chess Cham- pionship (WMCCC), in which Quickstep was disqualified due to the program being \a copy of the program Mephisto Almeria" in all important areas. -
Android Application Development All-In-One for Dummies Pdf, Epub, Ebook
ANDROID APPLICATION DEVELOPMENT ALL-IN-ONE FOR DUMMIES PDF, EPUB, EBOOK Barry Burd | 768 pages | 28 Aug 2015 | John Wiley & Sons Inc | 9781118973806 | English | New York, United States Android Application Development All-in-One For Dummies PDF Book A must-have pedagogical resource from an expert Java educator As a Linux-based operating system designed for mobile devices, the Android OS allows programs to run on all Android devices and appear free in the Android Market. Content Providers. Stockfish rated it it was amazing Mar 17, Have a card? Bibliografische Informationen. Manjunatha rated it really liked it Sep 26, In plain English, it quickly and easily shows you what goes into creating a program, how to put the pieces together, ways to deal with standard programming challenges, and so much more. Here's how to claim your place in the hot Android app market If you've ever considered developing apps for the incredibly popular Android OS, there is no time like now! The OverDrive Read format of this ebook has professional narration that plays while you read in your browser. Actions determine when and how the navigation occurs. Fortunately, you can easily see and analyze the. Are you new to programming and have decided that Java is your language of choice? New Quantity available: 1. Barry A. You'll learn the nuts and bolts of Android programming, how to take advantage of mobile devices, important finishing touches for your app, how to take it to market, and more. More Details As of December 21, all drones, regardless of purchase date, between 0.