Migrasjonsforstyrrelser Og Pontocerebellær Hypoplasi

Total Page:16

File Type:pdf, Size:1020Kb

Migrasjonsforstyrrelser Og Pontocerebellær Hypoplasi Migrasjonsforstyrrelser og pontocerebellær hypoplasi Genpanel, versjon v02 Panelet het tidligere 'Kortikale malformasjoner og pontocerebellær hypoplasi'. Tabellen er sortert på gennavn (HGNC gensymbol) Navn på gen er iht. HGNC Kolonnen >x10 viser andel av genet som vi forventer blir lest med tilfredstillende kvalitet flere enn 10 ganger under sekvensering Gen Transkript >10x Fenotype ACTB NM_001101.3 100% ?Dystonia, juvenile-onset OMIM Baraitser-Winter syndrome 1 OMIM ACTG1 NM_001614.3 100% Baraitser-Winter syndrome 2 OMIM AKT1 NM_005163.2 100% Cowden syndrome 6 OMIM Proteus syndrome, somatic OMIM AKT3 NM_005465.4 100% Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 2 OMIM AMPD2 NM_001257360.1 100% Pontocerebellar hypoplasia, type 9 OMIM ?Spastic paraplegia 63 OMIM AP1S2 NM_003916.4 91% Mental retardation, X-linked syndromic 5 OMIM ARFGEF2 NM_006420.2 100% Periventricular heterotopia with microcephaly OMIM ARX NM_139058.2 89% Epileptic encephalopathy, early infantile, 1 OMIM Proud syndrome OMIM Partington syndrome OMIM Mental retardation, X-linked 29 and others OMIM Lissencephaly, X-linked 2 OMIM Hydranencephaly with abnormal genitalia OMIM ASNS NM_133436.3 99% Asparagine synthetase deficiency OMIM ASPM NM_018136.4 100% Microcephaly 5, primary, autosomal recessive OMIM ASXL1 NM_015338.5 100% Bohring-Opitz syndrome OMIM ATP6V0A2 NM_012463.3 100% Cutis laxa, autosomal recessive, type IIA OMIM Wrinkly skin syndrome OMIM ATR NM_001184.3 99% Seckel syndrome 1 OMIM Gen Transkript >10x Fenotype B3GALNT2 NM_152490.4 100% Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 11 OMIM B3GNT1 NM_006876.2 100% Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 13 OMIM CASC5 NM_170589.4 99% Microcephaly 3, primary, autosomal recessive OMIM CASK NM_003688.3 100% Mental retardation, with or without nystagmus OMIM Mental retardation and microcephaly with pontine and cerebellar hypoplasia OMIM FG syndrome 4 OMIM CCDC22 NM_014008.4 99% Ritscher-Schinzel syndrome 2 OMIM CCND2 NM_001759.3 100% Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 3 OMIM CDK5 NM_004935.3 100% Lissencephaly 7 with cerebellar hypoplasia OMIM CDK5RAP2 NM_018249.5 100% Microcephaly 3, primary, autosomal recessive OMIM CENPJ NM_018451.4 100% Microcephaly 6, primary, autosomal recessive OMIM ?Seckel syndrome 4 OMIM CEP152 NM_014985.3 99% Seckel syndrome 5 OMIM Microcephaly 9, primary, autosomal recessive OMIM CHMP1A NM_002768.4 100% Pontocerebellar hypoplasia, type 8 OMIM CLP1 NM_006831.2 100% Pontocerebellar hypoplasia, type 10 OMIM CNTNAP2 NM_014141.5 100% Cortical dysplasia-focal epilepsy syndrome OMIM Pitt-Hopkins like syndrome 1 OMIM COL18A1 NM_130445.3 99% Knobloch syndrome, type 1 OMIM COL4A1 NM_001845.5 99% Porencephaly 1 OMIM Brain small vessel disease with or without ocular anomalies OMIM Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps OMIM COL4A2 NM_001846.2 100% Porencephaly 2 OMIM CRB2 NM_173689.6 100% Ventriculomegaly with cystic kidney disease OMIM CUL4B NM_003588.3 99% Mental retardation, X-linked, syndromic 15 (Cabezas type) OMIM Gen Transkript >10x Fenotype DAG1 NM_004393.5 100% Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 9 OMIM DCHS1 NM_003737.3 99% Van Maldergem syndrome 1 OMIM DCX NM_178153.2 100% Lissencephaly, X-linked OMIM Subcortical laminal heteropia, X-linked OMIM DEPDC5 NM_001242896.1 100% Epilepsy, familial focal, with variable foci OMIM DKC1 NM_001363.4 100% Dyskeratosis congenita, X-linked OMIM DNMT3A NM_175629.2 99% Tatton-Brown-Rahman syndrome OMIM DYNC1H1 NM_001376.4 100% Mental retardation, autosomal dominant 13 OMIM EMG1 NM_006331.7 100% Bowen-Conradi syndrome OMIM EML1 NM_004434.2 100% Subcortical band heterotopia, atypical PubMed EPG5 NM_020964.2 99% Vici syndrome OMIM ERCC1 NM_202001.2 100% Cerebrooculofacioskeletal syndrome 4 OMIM ERCC5 NM_000123.3 100% Xeroderma pigmentosum, group G/Cockayne syndrome OMIM Xeroderma pigmentosum, group G OMIM Cerebrooculofacioskeletal syndrome 3 OMIM ERCC6 NM_000124.3 100% De Sanctis-Cacchione syndrome OMIM Cockayne syndrome, type B OMIM Cerebrooculofacioskeletal syndrome 1 OMIM ERMARD NM_018341.2 100% ?Periventricular nodular heterotopia 6 OMIM EXOSC3 NM_016042.3 99% Pontocerebellar hypoplasia, type 1B OMIM EXOSC8 NM_181503.2 100% Pontocerebellar hypoplasia, type 1C OMIM EZH2 NM_004456.4 100% Weaver syndrome OMIM FAT4 NM_024582.4 100% Van Maldergem syndrome 2 OMIM Gen Transkript >10x Fenotype FKRP NM_024301.4 100% Muscular dystrophy-dystroglycanopathy (congenital with or without mental retardation), type B, 5 OMIM Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 5 OMIM FKTN NM_001079802.1 100% Muscular dystrophy-dystroglycanopathy (congenital without mental retardation), type B, 4 OMIM Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 OMIM FLNA NM_001456.3 100% FG syndrome 2 OMIM Heterotopia, periventricular, ED variant OMIM Heterotopia, periventricular OMIM Otopalatodigital syndrome, type II OMIM FLVCR2 NM_017791.2 100% Proliferative vasculopathy and hydraencephaly-hydrocephaly syndrome OMIM GFAP NM_002055.4 100% Alexander disease OMIM GMPPB NM_021971.2 100% Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 14 OMIM Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 14 OMIM GPR56 NM_005682.6 100% Polymicrogyria, bilateral perisylvian OMIM Polymicrogyria, bilateral frontoparietal OMIM GPSM2 NM_013296.4 100% Chudley-McCullough syndrome OMIM HEPACAM NM_152722.4 97% Megalencephalic leukoencephalopathy with subcortical cysts 2B, remitting, with or without mental retardation OMIM Megalencephalic leukoencephalopathy with subcortical cysts 2A OMIM IER3IP1 NM_016097.4 99% Microcephaly, epilepsy, and diabetes syndrome OMIM ISPD NM_001101426.3 100% Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 OMIM JAM3 NM_032801.4 100% Hemorrhagic destruction of the brain, subependymal calcification, and cataracts OMIM KATNB1 NM_005886.2 100% Lissencephaly 6, with microcephaly OMIM KIAA0196 NM_014846.3 100% Ritscher-Schinzel syndrome 1 OMIM KIAA1279 NM_015634.3 100% Goldberg-Shprintzen megacolon syndrome OMIM KIF11 NM_004523.3 99% Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation OMIM Gen Transkript >10x Fenotype KIF2A NM_001098511.2 100% Cortical dysplasia, complex, with other brain malformations 3 OMIM KIF5C NM_004522.2 100% Cortical dysplasia, complex, with other brain malformations 2 OMIM KPTN NM_007059.3 100% Mental retardation, autosomal recessive 41 OMIM L1CAM NM_000425.4 99% Hydrocephalus with congenital idiopathic intestinal pseudoobstruction OMIM Hydrocephalus due to aqueductal stenosis OMIM CRASH syndrome OMIM Corpus callosum, partial agenesis of OMIM MASA syndrome OMIM Hydrocephalus with Hirschsprung disease OMIM LAMA2 NM_000426.3 100% Muscular dystrophy, congenital, due to partial LAMA2 deficiency OMIM Muscular dystrophy, congenital merosin-deficient OMIM LAMB1 NM_002291.2 100% Lissencephaly 5 OMIM LAMC3 NM_006059.3 100% Cortical malformations, occipital OMIM LARGE NM_004737.4 100% Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 6 OMIM Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 6 OMIM MCPH1 NM_024596.3 100% Microcephaly 1, primary, autosomal recessive OMIM MED12 NM_005120.2 99% Opitz-Kaveggia syndrome OMIM Ohdo syndrome, X-linked OMIM Lujan-Fryns syndrome OMIM MLC1 NM_015166.3 100% Megalencephalic leukoencephalopathy with subcortical cysts OMIM MTOR NM_004958.3 100% Smith-Kingsmore syndrome OMIM MYCN NM_005378.5 100% Feingold syndrome OMIM NBN NM_002485.4 100% Nijmegen breakage syndrome OMIM NDE1 NM_001143979.1 100% Lissencephaly 4 (with microcephaly) OMIM ?Microhydranencephaly OMIM NFIX NM_002501.3 100% Marshall-Smith syndrome OMIM Sotos syndrome 2 OMIM Gen Transkript >10x Fenotype NSD1 NM_022455.4 100% Sotos syndrome 1 OMIM NSDHL NM_015922.2 100% CK syndrome OMIM CHILD syndrome OMIM OCLN NM_002538.3 96% Band-like calcification with simplified gyration and polymicrogyria OMIM OFD1 NM_003611.2 95% Simpson-Golabi-Behmel syndrome, type 2 OMIM Orofaciodigital syndrome I OMIM Joubert syndrome 10 OMIM OPHN1 NM_002547.2 100% Mental retardation, X-linked, with cerebellar hypoplasia and distinctive facial appearance OMIM PAFAH1B1 NM_000430.3 98% Lissencephaly 1 OMIM Subcortical laminar heterotopia OMIM PCNT NM_006031.5 99% Microcephalic osteodysplastic primordial dwarfism, type II OMIM PIK3CA NM_006218.2 100% Megalencephaly-capillary malformation-polymicrogyria syndrome, somatic OMIM Cowden syndrome 5 OMIM PIK3R2 NM_005027.3 95% Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 1 OMIM PLK4 NM_014264.4 100% Microcephaly and chorioretinopathy, autosomal recessive, 2 OMIM PNKP NM_007254.3 100% Microcephaly, seizures, and developmental delay OMIM Ataxia-oculomotor apraxia 4 OMIM POMGNT1 NM_017739.3 100% Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 3 OMIM Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 3 OMIM POMGNT2 NM_032806.5 100% Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies, type A, 8 OMIM POMK NM_032237.4 100% Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 12 OMIM POMT1 NM_007171.3
Recommended publications
  • Approach to Brain Malformations
    Approach to Brain Malformations A General Imaging Approach to Brain CSF spaces. This is the basis for development of the Dandy- Malformations Walker malformation; it requires abnormal development of the cerebellum itself and of the overlying leptomeninges. Whenever an infant or child is referred for imaging because of Looking at the midline image also gives an idea of the relative either seizures or delayed development, the possibility of a head size through assessment of the craniofacial ratio. In the brain malformation should be carefully investigated. If the normal neonate, the ratio of the cranial vault to the face on child appears dysmorphic in any way (low-set ears, abnormal midline images is 5:1 or 6:1. By 2 years, it should be 2.5:1, and facies, hypotelorism), the likelihood of an underlying brain by 10 years, it should be about 1.5:1. malformation is even higher, but a normal appearance is no guarantee of a normal brain. In all such cases, imaging should After looking at the midline, evaluate the brain from outside be geared toward showing a structural abnormality. The to inside. Start with the cerebral cortex. Is the thickness imaging sequences should maximize contrast between gray normal (2-3 mm)? If it is too thick, think of pachygyria or matter and white matter, have high spatial resolution, and be polymicrogyria. Is the cortical white matter junction smooth or acquired as volumetric data whenever possible so that images irregular? If it is irregular, think of polymicrogyria or Brain: Pathology-Based Diagnoses can be reformatted in any plane or as a surface rendering.
    [Show full text]
  • 1Q21.1 Duplication Syndrome and Epilepsy Case Report and Review
    CLINICAL/SCIENTIFIC NOTES OPEN ACCESS 1q21.1 Duplication syndrome and epilepsy Case report and review Ioulia Gourari, MD, Romaine Schubert, MD, and Aparna Prasad, PhD Correspondence Dr. Gourari Neurol Genet 2018;4:e219. doi:10.1212/NXG.0000000000000219 [email protected] Copy number variants (CNVs) of 1q21.1 are increasingly being recognized due to the wide- spread use of genetic screening tests for the investigation of developmental disorders and epilepsy. These include microdeletion and microduplication syndromes, associated with a wide variety of pathology including autism spectrum disorders, attention-deficit disorder, learning disabilities, hypotonia, facial dysmorphisms, and schizophrenia. The 1q21.1 region is consid- ered to be genetically unstable because it contains one of the largest areas of identical dupli- cation sequences in the human genome. Epilepsy has been reported in the literature, particularly in microdeletion syndromes, but rarely in association with microduplication syn- dromes. We report a patient with epilepsy and autism spectrum disorder due to a distal 1q21.1 microduplication and review the available literature and genetic information. Case report We present a 10-year-old girl with a low-functioning autism spectrum disorder and focal motor epilepsy. On examination, she has hypertelorism, minimal communicative language skills, and severe macrocephaly (HC = 57 cm, 3.6 SD > 99%). Seizures started at 7 years of age and consisted of head deviation to the left, generalized stiffening, clonic activity of the mouth, and fluttering of the eyelids, lasting for 1–2 minutes. Multiple video EEG recordings showed a right temporal focus with a less active, independent left temporal focus. 3T MRI scan of the brain was normal.
    [Show full text]
  • Megalencephaly and Macrocephaly
    277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ►
    [Show full text]
  • Congenital Disorders of Glycosylation from a Neurological Perspective
    brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations
    [Show full text]
  • Polymicrogyria (PMG) ‘Many–Small–Folds’
    Polymicrogyria Dr Andrew Fry Clinical Senior Lecturer in Medical Genetics Institute of Medical Genetics, Cardiff [email protected] Polymicrogyria (PMG) ‘Many–small–folds’ • PMG is heterogeneous – in aetiology and phenotype • A disorder of post-migrational cortical organisation. PMG often appears thick on MRI with blurring of the grey-white matter boundary Normal PMG On MRI PMG looks thick but the cortex is actually thin – with folded, fused gyri Courtesy of Dr Jeff Golden, Pen State Unv, Philadelphia PMG is often confused with pachygyria (lissencephaly) Thick cortex (10 – 20mm) Axial MRI 4 cortical layers Lissencephaly Polymicrogyria Cerebrum Classical lissencephaly is due Many small gyri – often to under-migration. fused together. Axial MRI image at 7T showing morphological aspects of PMG. Guerrini & Dobyns Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014 Jul; 13(7): 710–726. PMG - aetiology Pregnancy history • Intrauterine hypoxic/ischemic brain injury (e.g. death of twin) • Intrauterine infection (e.g. CMV, Zika virus) TORCH, CMV PCR, [+deafness & cerebral calcification] CT scan • Metabolic (e.g. Zellweger syndrome, glycine encephalopathy) VLCFA, metabolic Ix • Genetic: Family history Familial recurrence (XL, AD, AR) Chromosomal abnormalities (e.g. 1p36 del, 22q11.2 del) Syndromic (e.g. Aicardi syndrome, Kabuki syndrome) Examin - Monogenic (e.g. TUBB2B, TUBA1A, GPR56) Array ation CGH Gene test/Panel/WES/WGS A cohort of 121 PMG patients Aim: To explore the natural history of PMG and identify new genes. Recruited: • 99 unrelated patients • 22 patients from 10 families 87% White British, 53% male ~92% sporadic cases (NB. ascertainment bias) Sporadic PMG • Array CGH, single gene and gene panel testing - then a subset (n=57) had trio-WES.
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Chiari Type II Malformation: Past, Present, and Future
    Neurosurg Focus 16 (2):Article 5, 2004, Click here to return to Table of Contents Chiari Type II malformation: past, present, and future KEVIN L. STEVENSON, M.D. Children’s Healthcare of Atlanta, Atlanta, Georgia Object. The Chiari Type II malformation (CM II) is a unique hindbrain herniation found only in patients with myelomeningocele and is the leading cause of death in these individuals younger than 2 years of age. Several theories exist as to its embryological evolution and recently new theories are emerging as to its treatment and possible preven- tion. A thorough understanding of the embryology, anatomy, symptomatology, and surgical treatment is necessary to care optimally for children with myelomeningocele and prevent significant morbidity and mortality. Methods. A review of the literature was used to summarize the clinically pertinent features of the CM II, with par- ticular attention to pitfalls in diagnosis and surgical treatment. Conclusions. Any child with CM II can present as a neurosurgical emergency. Expeditious and knowledgeable eval- uation and prompt surgical decompression of the hindbrain can prevent serious morbidity and mortality in the patient with myelomeningocele, especially those younger than 2 years old. Symptomatic CM II in the older child often pre- sents with more subtle findings but rarely in acute crisis. Understanding of CM II continues to change as innovative techniques are applied to this challenging patient population. KEY WORDS • Chiari Type II malformation • myelomeningocele • pediatric The CM II is uniquely associated with myelomeningo- four distinct forms of the malformation, including the cele and is found only in this population. Originally de- Type II malformation that he found exclusively in patients scribed by Hans Chiari in 1891, symptomatic CM II ac- with myelomeningocele.
    [Show full text]
  • TARGETED GENE PANELS and REFERENCE SEQUENCE (Refseq) TRANSCRIPTS by PHENOTYPE
    ROYAL DEVON & EXETER NHS FOUNDATION TRUST Department of Molecular Genetics TARGETED GENE PANELS AND REFERENCE SEQUENCE (RefSeq) TRANSCRIPTS BY PHENOTYPE Table of Contents (Click to select) Alagille Syndrome 2 Chondrodysplasia punctata 2 Combined Pituitary Hormone Deficiency 2 Congenital Generalised Lipodystrophy 2 Congenital Hypothyroidism 2 Early-onset Diabetes and Autoimmunity 3 Endocrine Neoplasia Syndromes 3 Familial Glucocorticoid Deficiency 3 Familial Hyperparathyroidism 3 Familial Hypocalciuric Hypercalcaemia 3 Familial Hyperparathyroidism/hypercalcaemia 4 Familial Hypoparathyroidism 4 Familial Partial Lipodystrophy 4 Familial Porencephaly and HANAC syndrome 4 Familial Tumoral Calcinosis 4 Feingold syndrome 4 Gastrointestinal atresia 5 Generalised Arterial Calcification in Infancy 5 Holoprosencephaly 5 Hyperinsulinism 5 Hypophosphatemic Rickets 6 Isolated Growth Hormone Deficiency 6 Kabuki syndrome 6 Kallmann syndrome 6 Mandibulofacial Dysostosis with Microcephaly 6 Moebius syndrome 6 Monogenic Diabetes of the Young (MODY) 7 Multiple Exostosis 7 Neonatal Diabetes 8 Phaeochromocytoma/Paraganglioma 9 Pontocerebellar Hypoplasia 9 Primary pigmented nodular adrenocortical disease 9 Pseudohypoaldosteronism 9 Spondylocostal Dysostosis 9 Visceral heterotaxy 10 Page 1 of 10 ROYAL DEVON & EXETER NHS FOUNDATION TRUST Department of Molecular Genetics Alagille Syndrome Transcript(s) JAG1 NM_000214 NOTCH2 NM_024408 Chondrodysplasia punctata Transcript(s) AGPS NM_003659 ARSE NM_000047 EBP NM_006579 GNPAT NM_014236 PEX7 NM_000288 Combined Pituitary
    [Show full text]
  • WES Gene Package Multiple Congenital Anomalie.Xlsx
    Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar,
    [Show full text]
  • Auditory Processing Disorders in Twins with Perisylvian Polymicrogyria
    Arq Neuropsiquiatr 2009;67(2-B):499-501 Clinical / Scientific note AUDITORY PROCESSING DISORDERS IN TWINS WITH PERISYLVIAN POLYMICROGYRIA Mirela Boscariol1, Vera Lúcia Garcia2, Catarina A. Guimarães3, Simone R.V. Hage4, Maria Augusta Montenegro5, Fernando Cendes6, Marilisa M. Guerreiro7 Bilateral perisylvian polymicrogyria is a malformation tigation was performed in a 2.0 T scanner (Elscint Prestige) with of cortical development due to abnormal late neuronal posterior multiplanar reconstruction and curvilinear reformat- migration or abnormal cortical organization around the ting in 3D magnetic resonance imaging (MRI). sylvian fissure1. The language assessment considered the following aspects: The severity of the clinical manifestations correlates phonological, morphosyntactic, semantic and pragmatic produc- with the extent of the lesion. Therefore, the term diffuse tion. Standard and non-standard speech protocols were used: polymicrogyria is applied when the cortical malforma- sample of free speech; ABFW – Children Language Test with tion spreads around the entire sylvian fissure, and restrict- phonological and vocabulary tests3. Reading/writing evaluation ed polymicrogyria is applied when polymicrogyria occurs included: sample of free writing, Phonologic Skill Test4, School only in the posterior part of the parietal region. The re- Performance Test5, non-words reading and writing, oral speed stricted form is also called bilateral posterior parietal reading, and text understanding. polymicrogyria and appears to be associated with a genet- The peripheral audiological capability was assessed with au- ic predisposition and soft clinical features (such as speech diometry, speech reception thresholds and acoustic impedance delay and dysarthria) when compared to the diffuse form tests. An acoustic cabin was used with an AC-30 audiometer (In- of polymicrogyria.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE Et Al
    US 20160281 166A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE et al. (43) Pub. Date: Sep. 29, 2016 (54) METHODS AND SYSTEMIS FOR SCREENING Publication Classification DISEASES IN SUBJECTS (51) Int. Cl. (71) Applicant: PARABASE GENOMICS, INC., CI2O I/68 (2006.01) Boston, MA (US) C40B 30/02 (2006.01) (72) Inventors: Arindam BHATTACHARJEE, G06F 9/22 (2006.01) Andover, MA (US); Tanya (52) U.S. Cl. SOKOLSKY, Cambridge, MA (US); CPC ............. CI2O 1/6883 (2013.01); G06F 19/22 Edwin NAYLOR, Mt. Pleasant, SC (2013.01); C40B 30/02 (2013.01); C12O (US); Richard B. PARAD, Newton, 2600/156 (2013.01); C12O 2600/158 MA (US); Evan MAUCELI, (2013.01) Roslindale, MA (US) (21) Appl. No.: 15/078,579 (57) ABSTRACT (22) Filed: Mar. 23, 2016 Related U.S. Application Data The present disclosure provides systems, devices, and meth (60) Provisional application No. 62/136,836, filed on Mar. ods for a fast-turnaround, minimally invasive, and/or cost 23, 2015, provisional application No. 62/137,745, effective assay for Screening diseases, such as genetic dis filed on Mar. 24, 2015. orders and/or pathogens, in Subjects. Patent Application Publication Sep. 29, 2016 Sheet 1 of 23 US 2016/0281166 A1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S{}}\\93? sau36 Patent Application Publication Sep. 29, 2016 Sheet 2 of 23 US 2016/0281166 A1 &**** ? ???zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz??º & %&&zzzzzzzzzzzzzzzzzzzzzzz &Sssssssssssssssssssssssssssssssssssssssssssssssssssssssss & s s sS ------------------------------ Patent Application Publication Sep. 29, 2016 Sheet 3 of 23 US 2016/0281166 A1 23 25 20 FG, 2. Patent Application Publication Sep. 29, 2016 Sheet 4 of 23 US 2016/0281166 A1 : S Patent Application Publication Sep.
    [Show full text]
  • Blueprint Genetics Comprehensive Skeletal Dysplasias and Disorders
    Comprehensive Skeletal Dysplasias and Disorders Panel Test code: MA3301 Is a 251 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of disorders involving the skeletal system. About Comprehensive Skeletal Dysplasias and Disorders This panel covers a broad spectrum of skeletal disorders including common and rare skeletal dysplasias (eg. achondroplasia, COL2A1 related dysplasias, diastrophic dysplasia, various types of spondylo-metaphyseal dysplasias), various ciliopathies with skeletal involvement (eg. short rib-polydactylies, asphyxiating thoracic dysplasia dysplasias and Ellis-van Creveld syndrome), various subtypes of osteogenesis imperfecta, campomelic dysplasia, slender bone dysplasias, dysplasias with multiple joint dislocations, chondrodysplasia punctata group of disorders, neonatal osteosclerotic dysplasias, osteopetrosis and related disorders, abnormal mineralization group of disorders (eg hypopohosphatasia), osteolysis group of disorders, disorders with disorganized development of skeletal components, overgrowth syndromes with skeletal involvement, craniosynostosis syndromes, dysostoses with predominant craniofacial involvement, dysostoses with predominant vertebral involvement, patellar dysostoses, brachydactylies, some disorders with limb hypoplasia-reduction defects, ectrodactyly with and without other manifestations, polydactyly-syndactyly-triphalangism group of disorders, and disorders with defects in joint formation and synostoses. Availability 4 weeks Gene Set Description
    [Show full text]