South Carolina Birth Defects Program Resource Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1Q21.1 Duplication Syndrome and Epilepsy Case Report and Review
CLINICAL/SCIENTIFIC NOTES OPEN ACCESS 1q21.1 Duplication syndrome and epilepsy Case report and review Ioulia Gourari, MD, Romaine Schubert, MD, and Aparna Prasad, PhD Correspondence Dr. Gourari Neurol Genet 2018;4:e219. doi:10.1212/NXG.0000000000000219 [email protected] Copy number variants (CNVs) of 1q21.1 are increasingly being recognized due to the wide- spread use of genetic screening tests for the investigation of developmental disorders and epilepsy. These include microdeletion and microduplication syndromes, associated with a wide variety of pathology including autism spectrum disorders, attention-deficit disorder, learning disabilities, hypotonia, facial dysmorphisms, and schizophrenia. The 1q21.1 region is consid- ered to be genetically unstable because it contains one of the largest areas of identical dupli- cation sequences in the human genome. Epilepsy has been reported in the literature, particularly in microdeletion syndromes, but rarely in association with microduplication syn- dromes. We report a patient with epilepsy and autism spectrum disorder due to a distal 1q21.1 microduplication and review the available literature and genetic information. Case report We present a 10-year-old girl with a low-functioning autism spectrum disorder and focal motor epilepsy. On examination, she has hypertelorism, minimal communicative language skills, and severe macrocephaly (HC = 57 cm, 3.6 SD > 99%). Seizures started at 7 years of age and consisted of head deviation to the left, generalized stiffening, clonic activity of the mouth, and fluttering of the eyelids, lasting for 1–2 minutes. Multiple video EEG recordings showed a right temporal focus with a less active, independent left temporal focus. 3T MRI scan of the brain was normal. -
Megalencephaly and Macrocephaly
277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ► -
REVIEW ARTICLE Genetic Factors in Congenital Diaphragmatic Hernia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW ARTICLE Genetic Factors in Congenital Diaphragmatic Hernia A. M. Holder,* M. Klaassens,* D. Tibboel, A. de Klein, B. Lee, and D. A. Scott Congenital diaphragmatic hernia (CDH) is a relatively common birth defect associated with high mortality and morbidity. Although the exact etiology of most cases of CDH remains unknown, there is a growing body of evidence that genetic factors play an important role in the development of CDH. In this review, we examine key findings that are likely to form the basis for future research in this field. Specific topics include a short overview of normal and abnormal diaphragm development, a discussion of syndromic forms of CDH, a detailed review of chromosomal regions recurrently altered in CDH, a description of the retinoid hypothesis of CDH, and evidence of the roles of specific genes in the development of CDH. Congenital diaphragmatic hernia (CDH [MIM 142340, Overview of Normal and Abnormal Diaphragm 222400, 610187, and 306950]) is defined as a protrusion Development of abdominal viscera into the thorax through an abnormal opening or defect that is present at birth. In some cases, this protrusion is covered by a membranous sac. In con- The development of the human diaphragm occurs be- trast, diaphragmatic eventrations are extreme elevations, tween the 4th and 12th wk of gestation. Traditional views rather than protrusions, of part of the diaphragm that is of diaphragm development suggest that the diaphragm 9 often atrophic and abnormally thin. CDH is a relatively arises from four different structures. -
95 Birth Defects Exec Summ
Executive Summary In 1995, 865 cases of birth defects were detected among live born infants and fetuses of 20 or more weeks gestation delivered to mothers residing in Texas Public Health Regions 6 and 11 (Houston/Galveston region and Lower Rio Grande Valley). In this first full year of the Registry, surveillance was limited to approximately 23 major categories of birth defects, comprising 30 to 40 percent of all known structural malformations. Down syndrome, oral clefts, and spina bifida were the most common birth defects, although some major structural malformations were not yet monitored in 1995. Age Patterns: Both trisomy 21 (Down syndrome) and trisomy 18 (Edwards syndrome) demonstrated an age-specific rate pattern that was J-shaped, with the highest birth prevalence (“rates”) observed among mothers 35 years of age and older. Gastroschisis, a malformation of the abdominal wall, exhibited highest rates among the youngest mothers and decreased with each older age group. Racial/Ethnic Patterns: Anencephaly and spina bifida were lowest among African Americans; however, rates were similar in whites and Hispanics. Among the heart defects, relatively high rates of tetralogy of Fallot were observed among African Americans, although they exhibited relatively low rates of hypoplastic left heart. Cleft palate alone was more likely to occur among whites and Hispanics. Rates of trisomy 18 (Edwards syndrome) were highest among African Americans and whites. Gender Patterns: With regard to sex, higher rates were documented among females for anencephaly, and to a lesser extent, spina bifida. Females experienced two-fold higher rates of trisomy 18 (Edwards syndrome). Males had higher rates of cleft lip with or without cleft palate. -
Genetic Testing Options
GENETIC TESTING OPTIONS Most babies are born free of birth defects. Of those who are affected, the more common types are Trisomy defects, such as Down syndrome, and Open Neural Tube defects such as Spina Bifida. Testing is optional. Some people want genetic testing done as early as possible, to reassure them that their baby is normal, or to provide a diagnosis early enough in the pregnancy so that all options remain open. Others, who would not change their pregnancy plans in the event of a birth defect, seek to know whether the baby is normal or affected, and if there is a birth defect, to use the remainder of the pregnancy to educate themselves and prepare for a family member with special needs. It is also helpful for your doctor to be prepared for all eventualities. Still others prefer not to undergo any genetic testing. Our goal is to educate you about the options so that you can make a fully informed decision, as well as to support your decision. SCREENING TESTS A screening test is NOT the same as a diagnostic test. The screening process is basically a customized statistical risk assessment, to determine your personal risk. A positive screening test is NOT a diagnosis of a birth defect. It provides information that guides decisions about diagnostic testing. First Look Test (typically scheduled between 12wks-13wks 3days) The First Look Test is offered at Emerson Hospital MFM by Brigham & Women’s perinatologists and at Brigham & Women’s Hospital. It is a non-invasive test that assesses whether you are at increased risk of having a baby with Down syndrome or Trisomy 18. -
Profile of Disorders of Sexual Differentiation in the Northeast
The Egyptian Journal of Medical Human Genetics (2012) 13, 197–205 Ain Shams University The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net www.sciencedirect.com ORIGINAL ARTICLE Profile of disorders of sexual differentiation in the Northeast region of Cairo, Egypt Rabah M. Shawky a,*, Sahar M. Nour El-Din b a Pediatrics Department, Ain-Shams University, Egypt b Medical Genetics Center, Ain-Shams University, Egypt Received 26 September 2011; accepted 19 January 2012 Available online 27 April 2012 KEYWORDS Abstract This retrospective study has been conducted to determine the frequency, types, clinical Sex differentiation; presentation and associated genomic errors in patients with sex differentiation errors and their Intersex; relatives. The present study comprised of 908 index patients with sex differentiation errors who were Ambiguous genitalia; registered at the Medical Genetics Center (ASUMGC), Ain Shams University. Out of 28,736 Gonads; patients attending the center and 660,280 patients attending the Pediatrics clinic during the interval Genital surgery of 1966–2009. Our results showed that, the frequency among all patients attending the Pediatrics Hospital was 0.14%. Disorders of sex chromosome (Klinefelter syndrome and Turner syndrome) were the commonest, followed by mullerian dysgenesis. The commonest age of presentation was adolescence (>15–18 years) (36.56%), followed by patients aged 18 years or more (24.88%). In our study, 32.26% presented with primary female infertility, 27.86% adolescent girls presented with primary amenorrhea, 16.29% presented with male infertility, 10.35% presented with ambiguous gen- italia at birth or soon afterward, 6.60% were females who presented with delayed 2ry sexual charac- ters and short stature, 3.96% of our cases were boys who presented with microtestes and delayed 2ry sexual development and 2.75% presented with hirsutism. -
Prenatal Diagnosis by FISH of a 22Ql 1 Deletion in Two Families J Med Genet: First Published As 10.1136/Jmg.35.2.165 on 1 February 1998
I Med Genet 1998;35:165-168 165 Prenatal diagnosis by FISH of a 22ql 1 deletion in two families J Med Genet: first published as 10.1136/jmg.35.2.165 on 1 February 1998. Downloaded from Marie-France Portnoi, Nicole Joye, Marie Gonzales, Suzanne Demczuk, Laurent Fermont, Gilles Gaillard, Guy Bercau, Genevieve Morlier, Jean-Louis Taillemite Abstract balanced translocation t(I 1;22)(q23;ql 1) was We report on prenatal diagnosis by FISH shown in the father's karyotype; in the second of a sporadic 22qll deletion associated case trisomy X was associated with a 22ql 1 with DiGeorge syndrome (DGS) in two deletion in the fetus. fetuses after an obstetric ultrasonographic examination detected cardiac anomalies, Materials and methods an interrupted aortic arch in case 1 and KARYOTYPING AND FISH tetralogy of Fallot in case 2. The parents Fetal blood samples were obtained for karyo- decided to terminate the pregnancies. At type analysis and FISH. Cells were harvested necropsy, fetal examination showed char- from cultures of phytohaemagglutinin stimu- acteristic facial dysmorphism associated lated lymphocytes and spread onto slides for with congenital malformations, confirm- the production of G banded or R banded chro- ing full DGS in both fetuses. In addition to mosomes. the 22ql 1 deletion, trisomy X was found in FISH of metaphase chromosomes using dig- the second fetus and a reciprocal balanced oxigenin labelled cosmid probes D22S75 translocation t(l 1 ;22) (q23;ql 1) was found (N25, ONCOR) from the DGS chromosome in the clinically normal father of case 1. region was carried out basically according to These findings highlight the importance Pinkel et al.' This probe was premixed with a of performing traditional cytogenetic control cosmid (D22S39) in 22q13.3 facilitat- analysis and FISH in pregnancies with a ing chromosome identification. -
Y Chromosome CNV Attribute to the Normal
ical C lin as Zhang et al., J Clin Case Rep 2018, 8:6 C e f R o l e DOI: 10.4172/2165-7920.10001125 a p n o r r t u s o J Journal of Clinical Case Reports ISSN: 2165-7920 Case Report Open Access Y Chromosome CNV Attribute to the Normal Female Phenotype of a 46XX/46XY Chimerism: A Case Report Zhang H1, Gao L1, Zhao P1, Liu C1, Li W1,2, Hong M1, Zhong X1, Chen D1, Dai Y1*, Wang J1,3* and Zou C1,3* 1Department of Medicine, Clinical Medical Research Center, the Second Clinical Medical School of Jinan University, Shenzhen People’s Hospital, P.R.China 2Department of Medicine, Clinical Medical Research Center, The Second Clinical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, P.R.China 3Department of Medicine, The Second Clinical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, P.R.China Abstract Background: Down’s syndrome (DS) is caused by abnormal chromosome 21, which is the highest incidence of birth defect disease all the world. The phenomenon of 46XX/46XY chimeras was reported very rarely. In many cases, they were diagnosed at birth, because of the presence of ambiguous external genitalia. A case of the phenomenon of 46XX/46XY chimeras has been described in this report. Case presentation: A 23-year-old woman at 19 weeks of gestation was transferred to our hospital due to fetal chromosomal abnormalities of antenatal diagnosis. There was no abnormality of appearance through past medical history and ultrasonic examination, and hormonal levels also were normal. -
Endosomal Trafficking Defects Alter Neural Progenitor Proliferation And
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.254037; this version posted August 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Endosomal trafficking defects alter neural progenitor proliferation 3 and cause microcephaly 4 5 Jacopo A. Carpentieri1, Amandine Di Cicco1, David Andreau1, Laurence Del Maestro2, Fatima 6 El Marjou1, Laure Coquand1, Jean-Baptiste Brault1, Nadia Bahi-Buisson3, Alexandre D. 7 Baffet1,4,# 8 9 1- Institut Curie, PSL Research University, CNRS UMR144, 75005 Paris, France 10 2- Centre Épigénétique et destin cellulaire, Université Paris Diderot, CNRS UMR 7216, 75013 Paris, 11 France 12 3- INSERM U1163, Institut Imagine, Necker Hospital, 75015 Paris, France 13 4- Institut national de la santé et de la recherche médicale (Inserm) 14 # Corresponding author: [email protected] 15 16 Abstract 17 Primary microcephaly and megalencephaly are severe brain malformations defined by reduced 18 and increased brain size, respectively. Whether these two pathologies arise from related alterations at 19 the molecular level is unclear. Microcephaly has been largely associated with centrosomal defects, 20 leading to cell death. Here, we investigated the consequences of WDR81 loss of function, which cause 21 severe microcephaly in patients. We show that WDR81 regulates endosomal trafficking of EGFR, 22 and that loss of function leads to reduced MAP kinase pathway activation. Mouse radial glial 23 progenitor cells knocked-out for WDR81 display reduced proliferation rates, leading to reduced brain 24 size. -
22Q12 and 22Q13 Duplications
22q12 and 22q13 duplications rarechromo.org Duplications of 22q12 and 22q13 A duplication of 22q12 and/or 22q13 is a very rare genetic condition in which the cells of the body have a small but variable amount of extra genetic material from one of the body’s 46 chromosomes – chromosome 22. For healthy development, chromosomes should contain just the right amount of genetic material (DNA) – not too much and not too little. Like most other chromosome disorders, having an extra part of chromosome 22 may increase the risk of birth defects, developmental delay and intellectual disability. However, there is individual variation. Background on Chromosomes Chromosomes are structures which contain our DNA and are found in almost every cell of the body. Every chromosome contains thousands of genes which may be thought of as individual instruction booklets (or recipes) that contain all the genetic information telling the body how to develop, grow and function. Chromosomes (and genes) usually come in pairs with one member of each chromosome pair being inherited from each parent. Most cells of the human body have a total of 46 (23 pairs of) chromosomes. The egg and the sperm cells, however have 23 unpaired chromosomes, so that when the egg and sperm join together at conception, the chromosomes pair up and the number is restored to 46. Of these 46 chromosomes, two are the sex chromosomes that determine gender. Females have two X chromosomes and males have one X chromosome and one Y chromosome. The remaining 44 chromosomes are grouped in 22 pairs, numbered 1 to 22 approximately from the largest to the smallest. -
Guide to Aneuploidy Screening Options
On behalf of BIDMC Prenatal Genetics and Maternal-Fetal Medicine BIDMC Prenatal Genetics Guide to Aneuploidy Screening Options While most pregnancies are healthy, there is a small chance in any pregnancy for there to be a genetic condition or birth defect. A chromosome abnormality is one type of genetic condition. This type of condition is not usually inherited, but can happen for the first time in any fetus, just by chance. A chromosome is a package of genes or instructions. We have 46 chromosomes in each of our cells, 23 that come from the egg and 23 that come from the sperm. When an egg or sperm has an extra or missing chromosome the resulting fetus is said to have a chromosome abnormality. The most common chromosome abnormality is Down syndrome (extra chromosome #21). Some chromosome abnormalities are more severe and some are less severe than Down syndrome. Chromosome abnormalities happen more often as the pregnant patient gets older. Your provider can tell you the chance for a chromosome abnormality in your pregnancy based on your age, and will also offer you “screening tests.” These are non-invasive tests that can better predict the chance for a fetus to have a chromosomal abnormality. These tests are entirely optional. Also available are invasive tests, like amniocentesis, that can tell for sure if a fetus has a chromosome abnormality and can detect a wider range of more rare chromosome abnormalities, but pose a small risk for miscarriage. The decision about which test to have performed, if any, can be difficult and confusing. -
Gene Mutation Leads to Poorly Understood Birth Defects 10 May 2016
Gene mutation leads to poorly understood birth defects 10 May 2016 base is defective, it can cause serious birth defects that are frequently lethal." The new research pinpoints how three proteins work together to form a base that allows cilia to carry critical cell-to-cell communications. Wallingford and his colleagues discovered that, much the way that cellphone towers provide a base for the antennas that assist with communication, these proteins together construct a base that anchors the cilia. Disturbances in the little-known group of proteins, which the researchers called CPLANE, led to disturbed cell communication and observable ciliopathy in mouse models. The team also asked human geneticists to screen for the Cilia. Credit: John Wallingford genes among their patients with similar birth defects and found that mutations in the same genes resulted in ciliopathies in humans. Scientists have identified genetic mutations that Wallingford points out that the research is appear to be a key culprit behind a suite of birth important, given that ciliopathies are more defects called ciliopathies, which affect an widespread than most people realize. Polycystic estimated 1 in 1,000 births. In a paper published kidney disease, for example, which causes the online this week in Nature Genetics, a team of abnormal growth of cysts on kidneys, is a disorder researchers led by The University of Texas at arising from defective cilia and afflicts about Austin's John Wallingford reveals that these 600,000 people in the U.S. mutations prevent certain proteins from working together to smooth the way for cells to "If you lump ciliopathies, the prevalence is high, communicate with one another.