Friends of Science, Calgary 16th May 2011

Human-induced global warming: Why I am sceptical

Ian Plimer

Earth and Environmental Sciences, The Emeritus Professor of Earth Sciences, The Constant cyclical climate change

Known Cycles Variable tectonic, PDO 143 million year galactic 100,000 years orbital 41,000 years orbital 23,000 years orbital 1,500 years solar 210 years solar 87 years solar 22 years solar 18.7 years lunar 11 years solar Climate change over time Is the speed and degree of modern climate change unprecedented?

6 4 ° C) 2 0 Today -2 -4 -6

Temperature ( Temperature -8 -10 -12 400 300 200 100 0 Time – Thousands of Years Before Present Sea levels

ª SL always changing (Neoproterozoic glaciation ±1500 m, Quaternary glaciation ±130 m)

ª 116,000-128,000 years bp SL +7m

ª 6,000 years bp SL in Indian/Pacific Oceans +2m

ª Atolls rise as SL rises

ª Many reasons for SL change Holocene Balding Bay, Great Barrier highstand Reef coast oyster beds Holocene highstand coral microatolls

Microatolls on dead reef flat Orpheus Island, central GBR Great Barrier Reef margin

Summary of Holocene local relative sea- level indicators Holocene glacio-isostatic rebound

Uplift rate 4-20 m/ky

Raised (+30 m) gravel beach ridges Bannenjar’ga, Porsanger Fjord, Norway (“Tapes Transgression”, 6,000-7,000 ybp) Regional isostasy & local relative sea-level since 6 ka

Clark, J.A. & Lingle, C.S. 1979 Predicted relative sea-level changes (18,000 Years B.P. to present) caused by late-glacial retreat of the Antarctic ice sheet. Quaternary Research 11, 279-298.

Cooling with increasing CO2 Temperature

Location, location, location….. Urban heat island effect

23.5 Tucson U of Arizona (32.2N, 111.0W) F) ° 22.0

20.0 Annual Mean Temperature ( Temperature

18.5 1880 1900 1920 1940 1960 1980 2000 2020 What is really measured?

0.8

0.7

0.6 ° C) ( 0.5

0.4 1996

- 0.3

0.2 1940 0.1

0 Temperature Trend per Decade Trend Temperature -0.1 10,000 100,000 1,000,000 10,000,000 Population of Country Reliability of surface measurements

The 28 years of high quality satellite data 1.0

° C) Global 0.5 0 -0.5 1.0 Northern Hemisphere 0.5 0 -0.5 1.0 Southern Hemisphere 0.5 0 Temperature Variation ( Variation Temperature -0.5 1980 1985 1990 1995 2000 2005 The Southern Hemisphere is the same temperature it was 28 years ago, The Northern Hemisphere has warmed slightly Models for atmospheric temperature

10 10 NASA/NSIPP GFDL

50 50

100 100

200 200 300 300 500 500 700 700 950 950 60°S 30°S EQ 30°N 60°N 60°S 30°S EQ 30°N 60°N

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 10 10 SNU NASA/GEOS5

50 50

100 100

200 200 300 300 500 500 700 700 950 950 60°S 30°S EQ 30°N 60°N 60°S 30°S EQ 30°N 60°N

Zonally-averaged distributions of predicted temperature change in °K at CO2 doubling (2xCO2-control), as a function of latitude and pressure level, for four general-circulation models (Lee et al., 2007) Radiosonde measurements

No “greenhouse warming” signature is observed in reality hPa Km 25 24

50 20

100 16

200 12 300 8 500 700 4 1000 75°N 45°N 30°N 15°N EQ 15°S 30°S 45°S 75°S

Source: HadAT2 radiosonde observations, from CCSP (2006), p116, fig. 5.7E

Smoothing of ice core CO2 data - why pre-industrial choice of 280ppm?

1812-2004 Northern Hemisphere, Chemical Measurement

from 1958 Mauna Loa CO2 5 year average Ice core Antarctica 450

400

(ppmv) 350 2 CO 300

270 1810 1850 1900 1950 1970 Year Doubling CO2 at 388ppm has no effect

The warming effect of atmospheric carbon dioxide

1.6 1.4

° C) 1.2 1.0 0.8 0.6 0.4 Temperature ( Temperature 0.2 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 Atmospheric carbon dioxide in ppm Water: Main & driver of CO2

100% 0.001% Man made Natural 80%

60%

40%

20% 0.117% 0.066% 0.047% 0.047% 0% Water CO2 Methane N2O Misc Vapour Gases Greenland ice sheet 5.4cm/yr increase*

Greenland ice sheet change in cm/yr d180 Site15 GISP2, Boltzman Strobel 1994 10per. Mov. Avg (d180 Site15 GISP2, Boltzman Strobel 1994) 80°N -30° -32° -34° -36° -38 75°N ° 20°W -40° -42° 80°W 1940 1945 1950 1955 1960 1965 1960 1975 1980 1985 Year 70°N

30°W -29.5 -30 65°N -30.5 -31 -31.5 -32 60°N 40 W -32.5 70°W 60°W 50°W ° 1000 800 600 400 200 100 Time – Years Before Present 30 20 15 10 5 0 -5 -10 -15 -20 -30 *Derived from 11 years of ERS-1/ERS-2 satellite altimeter data, 1992-2003 Is global warming melting the ice caps and reducing sea ice? NO!

1.0 Antarctic Sea Ice Trends 0.5 …. going up! 0

-0.5 0° 30°W 30°E -1.0 Antarctic 60°W 60°E Source: National Snow and Ice data Centre Peninsula -1.5 1978 1990 2000 2006 Year

Antarctic Land Ice Trends 90°W …. going up over most Amundsen of the continent! Sea 120°W Kamb 120°E Ice Stream 150°W Source: Vaughn, D.G., 2005. Science, 3008, 1877-1878. 2000 Km 180° 150°E Carbon reservoirs on Earth The carbon in the Earth’s lithosphere and atmosphere has come from degassing of CO2 from the Earth’s mantle. The amount of CO2 in air is minute compared to the other reservoirs. Without sediments, the partial pressure of air CO2 alone would be 40-60 atmospheres. Figure from O’Nions (1984) Atmospheric evolution

Evolution from reduced CO2-rich (>5%) to oxygenated. CO2 and volcanism

USGS

If each of the 1511 active land-volcanoes on Earth emits

5,000 t C-equivalent of CO2 each dayKyle et al. (2008) http://erebus.nmt.edu/geochemistry.php?page=Gas%20Chemistry => 7,5 Mt/day CO2/CO average

If 4X more CO2 is emitted from submarine volcanoes (30.0 Mt) 8,800 => 37,5 Mt total

This is approximately double the amount of CO2 derived from human burning of fossil fuels (<20 Mt/day).

Slide after Tom Segalstad, Oslo CO2 and volcanism A mantle melt may have up to 8 wt.%

CO2 at ~125 km depth. Surface lava can only hold 0.01-0.001 wt.% CO2 dissolved. CO The difference is degassed to the atmosphere. 2 www.volcanodiscovery.com

Oldoinyo Lengai, active carbonatite volcano, East Africa, North Tanzania

A strong correlation exists between emissions of CO2 at times of extensive volcanism and deposition of limestones during the last ~600 million years (Mikhail Budyko).

Slide after Tom Segalstad, Oslo Terrestrial felsic explosive volcanicity

ª Pathetic: Mt St Helens (1 km3) ª Weather changing: (Krakatoa 1883, Tambora 1815, Thira 1470 BC)

ª Gases: H2O, CO2, CH4, HCl, HF, SO2, H2S (e.g. White Island [NZ] 1150-4120 tpd CO2, 320-1200 tpd SO2) Terrestrial felsic volcanicity

Structurally-controlled volcanicity, gas vents and epithermal systems (Andes,Chile) Subglacial terrestrial volcanicity

Antarctica (felsic), Iceland (mafic) Submarine basaltic volcanicity Submarine basaltic volcanism Acid oceans: When the planet runs out of rocks, the oceans become acid

2+ - 3+ + 2Ca + 2HCO3 + KAl2AlSi3O10(OH)2 + 4H2O = 3Al + K + 6SiO2 + 12H2O + 2KAlSi3O8 + 2H + H2O = Al2Si2O5(OH)4 + 2K+ + 4SiO2 + + 2NaAlSi3O8 + 2H + H2O = Al2Si2O5(OH)4 + 2K + 4SiO2 + 2+ CaAl2Si2O8 + 2H + H2O = Al2Si2O5(OH)4 + Ca + 3+ + KAl2AlSi3O10(OH)2 + 3Si(OH)4 + 10H = 3Al + K + 6SiO2 + 12H2O

CO2 + CaSiO3 = CaCO3 + SiO2

CO2 + FeSiO3 = FeCO3 + SiO2

CO2 + MgSiO3 = MgCO3 + SiO2

In the oceans, - 2- CO2 exists as dissolved gas (1%), HCO3 (93%) and CO3 (8%) Ocean pH is 7.9 to 8.2 Rainwater pH is 5.6 Submarine basaltic volcanicity

Extension, continental fragmentation, basalts and degassing Terrestrial felsic explosive volcanicity

Gas-driven explosions Terrestrial felsic explosive volcanicity

CO2-driven explosions (Tahkt-e-Sulieman, Iran) Terrestrial felsic explosive supervolcanoes

ª Toba: 74,000 bp (2,900 km3)

ª Yellowstone: 2.1, 1.3, 0.64 Ma (1,000-5,000 km3)

ª Taupo: Many recent (5,000-10,000 km3) Terrestrial basalt supervolcanoes

ª 106 km3 lava in <1 Ma

ª Huge H2S and SO2 emissions, temporary surficial ocean acidity and life loss

ª Roza Flow, Columbia River Basalt

>1000 km3 lava

>10,000 Mt SO2 aerosols Terrestrial basalt supervolcanoes

ª Large provinces, sites of juvenile CO2 degassing Submarine basaltic supervolcanoes

ª Not monitored, earthquake swarms and El Niño

ª Particle and 3He plumes

ª No aerosols

ª CO2 (gas) and CO2(liq) dissolves (cool high pressure bottom water) Submarine basaltic volcanicity ª Lava, hot springs, gas vents

ª 64,000 km mid ocean ridges (10,000 km3 water for cooling per annum; buffers seawater)

ª Seamounts (>3,477,403* million > 0.1 km high), off axis volcanoes (cf 800 terrestrial felsic volcanoes)

ª Slow spreading (Gakkel Ridge basalts; >13.5% CO2; explosive [1999])

ª No monitoring; gas measurements from 20 basaltic volcanoes, total emissions calculated at 0.08% of annual human emissions

ª Upwelling thousands of years later

*Hiller & Watts (2007) Terrestrial CO2-rich springs, sinters, vents Terrestrial CO2-rich springs, sinters, vents

6 13 Milos (Greece): CO2 exhalations (2.5 x 10 tpa, δ C = -1.0 to +1.0) Terrestrial warm springs and travertine Submarine basaltic volcanoes

Vent CO2 (gas and liquid) exhalation Hydrothermal fluids Hot spring precipitates

Epithermal carbonate replacement and laminated crack- seal carbonate veins (Acupan, Philippines) Continental evaporites? Degassing

MOLTEN ROCKS (liquid, solid, gas): Degassing of molten rocks (2-15% gases in solution) Carbonate lava

MOLTEN ROCKS (liquid, solid, gas): Carbonatites Basalt CO2 degassing MOLTEN ROCKS (liquid, solid, gas): Extension settings such as rifts (basalts, twice temperature of

felsic melts, higher gas solubility, main gas CO2), mainly unseen) Volcanicity, CO2 and carbonate precipitation Warm CO2-bearing earthquake fluids

EARTHQUAKES

Warm water and gas CO2, CH4, He etc emissions) CO2-bearing springs

MOUNTAIN BUILDING: Thermal springs (bicarbonate), gas

vents (CO2) Decarbonation from mountain building MOUNTAIN BUILDING: Dewatering, degassing,

precipitation of carbonate, CO2- and bicarbonate- bearing springs Atmospheric CO2 residence time

The effective lifetime for CO2 in the atmosphere can be determined using radioactive, radiogenic and stable isotopes.

Estimates made using many different methods show effective lifetimes for atmospheric CO2 of only c. 5 - 7 years.

Slide after Tom Segalstad, Oslo Carbonaceous rocks

CARBONACEOUS SEDIMENTS: Natural sequestration Carbonate sediments 2,750 Ma 1820 Ma Corella Formation 1750 Ma Esperanza Formation 1640 Ma Cryogenian detritus Flinders Ranges 800-600 Ma

If [CO2] high, then dolomite CaMg(CO3)2 Great Barrier Reef, 400 Ma Napier Range Guilin 360 Ma Southern Victoria 50Ma Late Tertiary: Oxygen isotopes: ocean proxy for ocean surface temperature

Marine isotope Stages 1-11

Thousands of years

16O 18O

16O 18O Shark Bay, WA Coral reefs

Soils silicate + H2O + CO2 = hydrous silicate + carbonate Where does CO2 go to?

OCEANS: Especially polar and deep water

CO2 (g) <=> CO2 (aq)

CO2 (aq) + H2O <=> H2CO3 (aq) + - H2CO3 (aq) <=> H (aq) + HCO3 (aq) - + 2- HCO3 (aq) <=> H (aq) + CO3 (aq) 2- 2+ CO3 (aq) + Ca (aq) <=> CaCO3 (s)

Net reaction: 2+ + CO2 (g) + H2O + Ca (aq) <=> CaCO3 (s) + 2 H (aq) CONTEXT: CO2 – levels through time

280 ppm (or even 390 or 560 ppm) indicates

CO2 starvation compared with the geological past Temperature and time

Figure from Bryant (1997) Is the magnitude of late 20th C temperature change unusual?

The last 6 million years – ODP Site 677, North Atlantic Ocean

ICEHOUSE

WARM

100 C

COLD Is the speed and degree of modern climate change unprecedented (Vostok ice core; Salamatin et al. 1998; Petit et al. 2001) Temperature proxy

H2O(vap) buffer to maximum and minimum temperature 4

° C) 2 0 -2 -4 -6 280 CO 2 Temperature ( Temperature 260 -8 (ppmv) 240 220 1.5 200 1.0 0.5

Dust (ppm) 0 0 50 100 150 200 250 300 350 400 Thousands of Years Ago In ice cores, changes in DOES CO2 LEAD OR LAG TEMPERATURE CHANGE? T precede changes in CO2 by ~800-2000 yrs.

CO2 does NOT force temperature at the G/I scale

DOME C 1 mm ICE CORE ANTARCTICA

10 ka 20 ka Is the 20th Century temperature outside natural variability?

20 15 10 5 0 -5 ° C per 100 Years -10

Years BC and AD Cold snaps, rates of climate change Is the magnitude of late 20th C temperature change unusual?

The last 5,000 years – Greenland Ice Core

BC | AD

Egyptian (Menes) Little 1st Unified Ice Kingdom Age Warm Period WARM

10 C

COLD

Egyptian Old Kingdom Minoan Roman Mediaeval Late-20th C (5&6 dynasties) Warm Period Warm Period Warm Period Warm Period Warm Period

Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S.J., Jouzel J., Comparison of oxygen isotope records from the GISP and GRIP Greenland ice cores. Nature 366, 1993, pp. 552-554.

Slide after A. Illarionov, Powerpoint presentation, December 2004. What does the history of the planet tell us?

ª Earth always changes

ª Climate change is normal

ª Climate change occurred well before humans were on Earth

ª The rate of climate change today is no different from thousands, millions or billions of years ago

ª >80% time, Earth has been warmer and wetter than at present

ª Ice is rare

ª Just because change occurs in our lifetime does not mean that we humans are driving the change The gas of life

ª CO2 gas of life, increase beneficial

ª Part of massive natural cycle (mantle-atmosphere- oceans-organisms-sediments)

ª Atmospheric CO2 short temporary stock, marine reservoir 50x larger governs atmospheric CO2

ª Heat stored in oceans and thermostat effect of clouds

ª Carbon isotopes show <4% atmospheric CO2 anthropogenic, small effect compared to total

ª To argue that human emissions of CO2 drive climate change is non-scientific political activism akin to