Tar Spot Fungi from Thailand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opf)P Jsotanp
STUDIES ON FOLIICOLOUS FUNGI ASSOCIATED WITH SOME PLANTS DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF e iHasfter of $I|iIos;opf)p JSotanp (PLANT PATHOLOGY) BY J4thar J^ll ganU DEPARTMENT OF BOTANY ALIGARH MUSLIM UNIVERSITY ALIQARH (INDIA) 2010 s*\ %^ (^/jyr, .ii -^^fffti UnWei* 2 6 OCT k^^ ^ Dedictded To Prof. Mohd, Farooq Azam 91-0571-2700920 Extn-3303 M.Sc, Ph.D. (AUg.), FNSI Ph: 91-0571-2702016(0) 91-0571-2403503 (R) Professor of Botany 09358256574(M) (Plant Nematology) E-mail: [email protected](aHahoo.coin [email protected] Ex-Vice-President, Nematological Society of India. Department of Botany Aligarh Muslim University Aligarh-202002 (U.P.) India Date: z;. t> 2.AI0 Certificate This is to certify that the dissertation entitled """^Studies onfoUicolous fungi associated with some plants** submitted to the Department of Botany, Aligarh Muslim University, Aligarh in the partial fulfillment of the requirements for the award of the degree of Master of Philosophy (Plant pathology), is a bonafide work carried out by Mr. Athar Ali Ganie under my supervision. (Prof. Mohd Farooq Azam) Residence: 4/35, "AL-FAROOQ", Bargad House Connpound, Dodhpur, Civil Lines, Aligarh-202002 (U.P.) INDIA. ACKNOWLEDQEMEKT 'First I Sow in reverence to Jifmigfity JlLL.^Jf tfie omnipresent, whose Blessings provided me a [ot of energy and encouragement in accomplishing the tas^ Wo 600^ is ever written in soCitude and no research endeavour is carried out in solitude, I ma^ use of this precious opportunity to express my heartfelt gratitude andsincerest than^ to my learned teacher and supervisor ^rof. -
A Review of Bambusicolous Ascomycetes
DOI: 10.5772/intechopen.76463 ProvisionalChapter chapter 10 A Review of Bambusicolous Ascomycetes Dong-Qin Dai,Dong-Qin Dai, Li-Zhou TangLi-Zhou Tang and Hai-Bo WangHai-Bo Wang Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.76463 Abstract Bamboo with more than 1500 species is a giant grass and was distributed worldwide. Their culms and leaves are inhabited by abundant microfungi. A documentary investiga- tion points out that more than 1300 fungi including 150 basidiomycetes and 800 ascomy- cetous species with 240 hyphomycetous taxa and 110 coelomycetous taxa are associated with bamboo. Ascomycetes are the largest group with totally 1150 species. Families Xylariaceae and Hypocreaceae, which are most represented, have 74 species and 63 species in 18 and 14 genera, respectively, known from bamboo. The genus Phyllachora with a max- imum number of species (22) occurs on bamboo, followed by Nectria (21) and Hypoxylon (20). The most represented host genera Bambusa, Phyllostachys, and Sasa are associated by 268, 186, and 105 fungal species, respectively. The brief review of major morphology and phylogeny of bambusicolous ascomycetes is provided, as well as research prospects. Keywords: bamboo fungi, pathogens, morphology, phylogeny 1. Introduction Bamboo, as the largest member of the grass family Poaceae, plays an important role in local economies throughout the world. They are used in furniture and construction, or as food for human and animals like panda. Bamboo is even used in Chinese traditional medicine for treating infections and healing of wounds [1]. Bamboo species is distributed in diverse cli- mates, from cold mountain areas to hot tropical regions. -
Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A. -
View of Bitunicate Ascomycetes, and Transferred Helochora to Mesnieraceae
Fungal Diversity Two new genera in the Phyllachoraceae: Sphaerodothella to accommodate Sphaerodothis danthoniae, and Parberya gen. novo Ceridwen A. Pearce1 and Kevin D. Hyde2 IAustralian Tropical Mycology Research Centre, PO Box 312, Kuranda, 4872, Queensland, Australia; e-mail: [email protected] 2Centre for Research in Fungal Diversity, Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong Pearce, CA. and Hyde, K.D. (200 I). Two new genera in the Phyllachoraceae: Sphaerodothella to accommodate Sphaerodothis danthoniae, and Parberya gen. novoFungal Diversity 6: 83-97. Sphaerodothis danthoniae produces black tar spots on leaves and culms of Danthonia spp. It is redescribed and illustrated in a new genus Sphaerodothella. Sphaerodothella danthoniae differs from Sphaerodothis in having a peridium composed of hyaline to brown, thin-walled, flattened fungal cells which merge with host cells, rather than a distinct stroma of melanised textura globosa, and pale brown ascospores which have a distinctive dark brown mucilaginous perisporium. Parberya is described for a new species of tar spot fungi, P. kosciuskoa, found on Danthonia pallid a from Mt. Kosciusko, Australia, and to accommodate Sphaerodothis arxii P.F. Cannon on Pentameris sp. Parberya are typical phyllachoraceous tar spot fungi on grasses, which have distinctive golden-brown ascospores omamented with short, blunt spines. The previously undescribed andromorph of Parberya arxii is also described. Keywords: Anthostomella danthoniae, Danthonia, foliicolous fungi, Poaceae, Sphaerodothis arxii, tar spots, taxonomy. Introduction The Phyllachoraceae are generally plant parasites, characterised by ascohymenial development with paraphyses, thin-walled asci, which may have an apical apparatus that does not stain blue in iodine, and ascospores which are often hyaline and one-celled (Cannon, 1991). -
Resolving the Polyphyletic Nature of Pyricularia (Pyriculariaceae)
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY ▪:1–36. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae) S. Klaubauf1,2, D. Tharreau3, E. Fournier4, J.Z. Groenewald1, P.W. Crous1,5,6*, R.P. de Vries1,2, and M.-H. Lebrun7* 1CBS-KNAW Fungal Biodiversity Centre, 3584 CT Utrecht, The Netherlands; 2Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands; 3UMR BGPI, CIRAD, Campus International de Baillarguet, F-34398 Montpellier, France; 4UMR BGPI, INRA, Campus International de Baillarguet, F-34398 Montpellier, France; 5Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; 6Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 7UR1290 INRA BIOGER-CPP, Campus AgroParisTech, F-78850 Thiverval-Grignon, France *Correspondence: P.W. Crous, [email protected]; M.-H. Lebrun, [email protected] Abstract: Species of Pyricularia (magnaporthe-like sexual morphs) are responsible for major diseases on grasses. Pyricularia oryzae (sexual morph Magnaporthe oryzae) is responsible for the major disease of rice called rice blast disease, and foliar diseases of wheat and millet, while Pyricularia grisea (sexual morph Magnaporthe grisea) is responsible for foliar diseases of Digitaria. Magnaporthe salvinii, M. poae and M. rhizophila produce asexual spores that differ from those of Pyricularia sensu stricto that has pyriform, 2-septate conidia produced on conidiophores with sympodial proliferation. Magnaporthe salvinii was recently allocated to Nakataea, while M. poae and M. rhizophila were placed in Magnaporthiopsis. To clarify the taxonomic relationships among species that are magnaporthe- or pyricularia-like in morphology, we analysed phylogenetic relationships among isolates representing a wide range of host plants by using partial DNA sequences of multiple genes such as LSU, ITS, RPB1, actin and calmodulin. -
Contribution to the Phylogeny and a New Species of Coccodiella (Phyllachorales)
Mycol Progress https://doi.org/10.1007/s11557-017-1353-6 ORIGINAL ARTICLE Contribution to the phylogeny and a new species of Coccodiella (Phyllachorales) M. Mardones1,2 & T. Trampe-Jaschik 1 & T. A. Hofmann3 & M. Piepenbring1 Received: 14 July 2017 /Revised: 17 October 2017 /Accepted: 23 October 2017 # German Mycological Society and Springer-Verlag GmbH Germany 2017 Abstract Coccodiella is a genus of plant-parasitic species in spot fungi with superficial or erumpent perithecia seem to be the family Phyllachoraceae (Phyllachorales, Ascomycota), restricted to the family Phyllachoraceae, independently of the i.e., tropical tar spot fungi. Members of the genus Coccodiella host plant. We also discuss the biodiversity and host-plant pat- are tropical in distribution and are host-specific, growing on terns of species of Coccodiella worldwide. plant species belonging to nine host plant families. Most of the known species occur on various genera and species of the Keywords Coccodiella calatheae . Phyllachoraceae . Plant Melastomataceae in tropical America. In this study, we describe parasites . Tar spot fungi . Phyllachora . Marantaceae . the new species C. calatheae from Panama, growing on Zingiberales Calathea crotalifera (Marantaceae). We obtained ITS, nrLSU, and nrSSU sequence data from this new species and from other freshly collected specimens of five species of Coccodiella on Introduction members of Melastomataceae from Ecuador and Panama. Phylogenetic analyses allowed us to confirm the placement of Hara (1911) introduced the genus Coccodiella for a plant- Coccodiella within Phyllachoraceae, as well as the monophyly parasitic species characterized by a stroma originating in the of the genus. The phylogeny of representative species within mesophyll, which then proliferates through the lower epider- the family Phyllachoraceae, including Coccodiella spp., mis, forming a sessile hypostroma attached to the host tissue. -
Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
(topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota. -
Aberystwyth University Factors Affecting the Local
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aberystwyth Research Portal Aberystwyth University Factors affecting the local distribution of Polystigma rubrum stromata on Prunus spinosa Roberts, Hattie Rose; Pidcock, Sara Elizabeth; Redhead, Sky C.; Richards, Emily; O’Shaughnessy, Kevin; Douglas, Brian; Griffith, Gareth Published in: Plant Ecology and Evolution DOI: 10.5091/plecevo.2018.1442 Publication date: 2018 Citation for published version (APA): Roberts, H. R., Pidcock, S. E., Redhead, S. C., Richards, E., O’Shaughnessy, K., Douglas, B., & Griffith, G. (2018). Factors affecting the local distribution of Polystigma rubrum stromata on Prunus spinosa. Plant Ecology and Evolution, 151(2), 278-283. https://doi.org/10.5091/plecevo.2018.1442 General rights Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. tel: +44 1970 62 2400 email: [email protected] Download date: 03. -
A Morpho-Molecular Re-Appraisal of Polystigma Fulvum and P. Rubrum (Polystigma, Polystigmataceae)
Phytotaxa 422 (3): 209–224 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.422.3.1 A morpho-molecular re-appraisal of Polystigma fulvum and P. rubrum (Polystigma, Polystigmataceae) DIGVIJAYINI BUNDHUN1,2, RAJESH JEEWON3, MONIKA C. DAYARATHNE1,4,5, TIMUR S. BULGAKOV6, ALEXANDER K. KHRAMTSOV7, JANITH V.S. ALUTHMUHANDIRAM8, DHANDEVI PEM1, CHAIWAT TO- ANUN2 & KEVIN D. HYDE1,4,5* 1 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2 Division of Plant Pathology, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 3 Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 4 World Agroforestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, China 5 Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Sci- ence, Kunming 650201, Yunnan, China 6 Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Rus- sia 7 Department of Botany, Belarusian State University, 4 Nezavisimosti Av., Minsk 220030, Belarus 8 Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Envi- ronment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China * Corresponding author: KEVIN D. HYDE, [email protected] Abstract Collections of eleven Prunus specimens infected with Polystigma species from Belarus and Russia yielded two existing taxa: Polystigma fulvum (sexual morph) and Polystigma rubrum (asexual morph). -
Managing Mycological Mysteries
Managing Mycological Mysteries (Systematics and the Identification of Fungi) NPDN meeting March 2016 Megan Romberg USDA APHIS PPQ PHP NIS APHIS APHIS NIS CPHST Beltsville Beltsville APHIS NIS (Mycology) APHIS CPHST Beltsville Beltsville (580) • Fungal Identification • Diagnostic assay • Samples received from development ports– Urgents = same day • Samples received from turnaround states • Samples received from • Final confirmation of new states ‐> Final confirmation to US (or state) pathogens of new to US (or new to for which specific state) fungi (morphology diagnostic assays exist and and sequence supported Phytophthora spp. identifications) tricorder est. # fungal species # species described # fungal taxa in GenBank Detection Identification Question answered: Question answered: Is a specific organism present or What organism is this? absent? Involves using a diagnostic test like a PCR Involves comparison of characters assay, ELISA, LAMP, CANARY, etc. observed to the those reported from the universe of possible organisms. • Names organisms Systematics • describes them Taxonomy • provides classifications for the organisms • investigates their evolutionary histories (phylogeny) • considers their environmental adaptations Nomenclature involves the rules about which names should be used for a given organism. Of the 287 genera of fungi identified by NIS between 2013 and 2015, 16% had no sequence representation in GenBank est. # fungal species # species described # fungal taxa in GenBank Systematics provides a framework to which an unknown can be compared. 1. Good sequences exist, good systematic framework exists, species ID possible both morphologically and molecularly. (Puccinia spp. on Alcea) 2. No sequences exist or very few/poor coverage, good taxonomic framework exists, species ID possible via morphology, (but phylogenetic placement unknown, may be a species complex) (Phyllachora maydis) 3. -
Redisposition of Species from the Guignardia Sexual State of Phyllosticta Wulandari NF1, 2*, Bhat DJ3, and To-Anun C1*
Plant Pathology & Quarantine 4 (1): 45–85 (2014) ISSN 2229-2217 www.ppqjournal.org Article PPQ Copyright © 2014 Online Edition Doi 10.5943/ppq/4/1/6 Redisposition of species from the Guignardia sexual state of Phyllosticta Wulandari NF1, 2*, Bhat DJ3, and To-anun C1* 1Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand. 2Microbiology Division, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong Science Centre, Cibinong, Indonesia. 3Formerly, Department of Botany, Goa University, Goa-403 206, India Wulandari NF, Bhat DJ and To-anun C. 2014 – Redisposition of species from the Guignardia sexual state of Phyllosticta. Plant Pathology & Quarantine 4(1), 45-85, Doi 10.5943/ppq/4/1/6. Abstract Several species named in the genus “Guignardia” have been transferred to other genera before the commencement of this study. Two families and genera to which species are transferred are Botryosphaeriaceae (Botryosphaeria, Vestergrenia, Neodeightonia) and Hyphonectriaceae (Hyponectria). In this paper, new combinations reported include Botryosphaeria cocöes (Petch) Wulandari, comb. nov., Vestergrenia atropurpurea (Chardón) Wulandari, comb. nov., V. dinochloae (Rehm) Wulandari, comb. nov., V. tetrazygiae (Stevens) Wulandari, comb. nov., while six taxa are synonymized with known species of Phyllosticta, viz. Phyllosticta effusa (Rehm) Sacc.[(= Botryosphaeria obtusae (Schw.) Shoemaker], Phyllosticta sophorae Kantshaveli [= Botryosphaeria ribis Grossenbacher & Duggar], Phyllosticta haydenii (Berk. & M.A. Kurtis) Arx & E. Müller [= Botryosphaeria zeae (Stout) von Arx & E. Müller], Phyllosticta justiciae F. Stevens [= Vestergrenia justiciae (F. Stevens) Petr.], Phyllosticta manokwaria K.D. Hyde [= Neodeightonia palmicola J.K Liu, R. Phookamsak & K. D. Hyde] and Phyllosticta rhamnii Reusser [= Hyponectria cf. -
Monilochaetes and Allied Genera of the Glomerellales, and a Reconsideration of Families in the Microascales
available online at www.studiesinmycology.org StudieS in Mycology 68: 163–191. 2011. doi:10.3114/sim.2011.68.07 Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales M. Réblová1*, W. Gams2 and K.A. Seifert3 1Department of Taxonomy, Institute of Botany of the Academy of Sciences, CZ – 252 43 Průhonice, Czech Republic; 2Molenweg 15, 3743CK Baarn, The Netherlands; 3Biodiversity (Mycology and Botany), Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada *Correspondence: Martina Réblová, [email protected] Abstract: We examined the phylogenetic relationships of two species that mimic Chaetosphaeria in teleomorph and anamorph morphologies, Chaetosphaeria tulasneorum with a Cylindrotrichum anamorph and Australiasca queenslandica with a Dischloridium anamorph. Four data sets were analysed: a) the internal transcribed spacer region including ITS1, 5.8S rDNA and ITS2 (ITS), b) nc28S (ncLSU) rDNA, c) nc18S (ncSSU) rDNA, and d) a combined data set of ncLSU-ncSSU-RPB2 (ribosomal polymerase B2). The traditional placement of Ch. tulasneorum in the Microascales based on ncLSU sequences is unsupported and Australiasca does not belong to the Chaetosphaeriaceae. Both holomorph species are nested within the Glomerellales. A new genus, Reticulascus, is introduced for Ch. tulasneorum with associated Cylindrotrichum anamorph; another species of Reticulascus and its anamorph in Cylindrotrichum are described as new. The taxonomic structure of the Glomerellales is clarified and the name is validly published. As delimited here, it includes three families, the Glomerellaceae and the newly described Australiascaceae and Reticulascaceae. Based on ITS and ncLSU rDNA sequence analyses, we confirm the synonymy of the anamorph generaDischloridium with Monilochaetes.