Research Statements for the Second Young Geometric Group Theory Meeting at the Center for Mathematical Sciences, Technion, Haifa, Israel, February 2013

Total Page:16

File Type:pdf, Size:1020Kb

Research Statements for the Second Young Geometric Group Theory Meeting at the Center for Mathematical Sciences, Technion, Haifa, Israel, February 2013 Research Statements for the Second Young Geometric Group Theory Meeting at the Center for Mathematical Sciences, Technion, Haifa, Israel, February 2013 Edited by Tobias Hartnick, Sang Rae Lee, Vera Toni´c Contents Chapter 1. Combinatorial group theory, free groups, groups acting on trees 1 Chapter 2. Metric aspects of finitely-generated groups 5 Chapter 3. (Co-)Homological properties and finite properties of groups 13 Chapter 4. Analytic, ergodic and probabilistic methods in group theory 21 Chapter 5. Systolic and (relatively) Gromov-hyperbolic groups 29 Chapter 6. Surface groups, mapping class groups and Out(Fn) 37 Chapter 7. Three manifold groups, knots and braids 43 Chapter 8. Lattices in locally compact groups 47 Chapter 9. Buildings, Coxeter groups and Artin groups 51 Chapter 10. Groups acting on cubical complexes and spaces with walls 55 Chapter 11. Bounded cohomology, simplicial volume and quasimorphisms 65 Chapter 12. Locally-compact groups, diffeomorphism groups, other non-discrete groups 73 Chapter 13. Other aspects of geometric group theory: Algebraic geometry, Thompsons groups, tree manifolds 77 Alphabetical List of Contributors 81 v Abstract This booklet contains the research statements submitted by the participants of the Second Young Geometric Group Theory Meeting, grouped together by research ar- eas. We would like to thank the Center of Mathematical Sciences, the Israeli Science Foundation, European Research Council and the US National Science Foundation for financial support. Editors' Remark: We have grouped the research statements by subjects. In case of multiple subjects, we have decided on a primary subject, where the re- search statement is printed, and secondary subjects, where the research statement is merely linked to. A complete alphabetical list of contributors is given at the very end of this booklet. Received by the editor February 2, 2013. Key words and phrases. Geometric group theory. vi CHAPTER 1 Combinatorial group theory, free groups, groups acting on trees Ayala Byron My main research interest has to do with possible links between geometric group theory and logic. In his paper "Diophantine geometry over groups. I, Makanin- Razborov diagrams" Sela introduced Limit groups and used their JSJ-decomposition to study the structure of definable sets in the free group. Another important geo- metric tool developed in this work is the notion of a Hyperbolic Tower. A group G is a hyperbolic tower over H ≤ G if there is a sequence H ≤ G0 ≤ G1 ≤ ::: ≤ Gk = G such that: • G0 = H ∗F ∗S1 ∗:::∗Sp, where F is a free group (and can be trivial), p ≥ 0 and the Si 's are the fundamental groups of surfaces of Euler characteristic ≤ −2. • For each 1 ≤ j ≤ k, Gj has a non-trivial JSJ-decomposition, where one of the vertex groups is Gj−1, the rest are surface groups which are \attached" to Gj−1 in a way that follows certain conditions, and there is a retract rj : Gj ! Gj−1 under which the images of these surface groups are non-abelian. A first order formula in the language of groups (with constants in the free group on n generators, Fn) is a finite formula which uses variables, the basic logic symbols, elements of the free group as constants and quantifiers. A formula in which one of the variables is not quantified defines a subset of the free group - the set of elements which, when taken to be the value of the non-quantified variable, make the formula a true sentence in the free group. More generaly, a formula with k non-quantified k variables defines a subset of Fn . These are the definable sets in Fn: We hope to use these tools to study the possible algebraic structures of definable sets in Fn: Aglaia Myropolska Let G be a finitely-generated group and n ≥ rank(G). Consider Γn(G) to be the set of all generating systems (g1; :::; gn) of G. We define a structure of graphs on −1 Γn(G) by connecting (g1; :::; gn) to (g1; :::; gigj; :::; gn); i 6= j and (g1; :::; gi ; :::; gn). Γn usually is called the product replacement graph. The transformations above are called elementary Nielsen moves. They generate the automorphism group of the free group. Therefore, every connected component of Γn(G) is a Schreier graph of AutFn. 1 2 1. COMBINATORIAL GROUP THEORY We consider infinite finitely-generated groups and study the geometric behaviour of these graphs such as: - connectedness. It is equivalent to a classical question about transitivity of the action of Aut(Fn) on the set of generating systems of a given group. There are results on connectedness of, for instance, nilpotent groups [2] and finite solvable groups [1]. However the connectedness of Γn(S); n ≥ 3 for finite simple groups is still open (Wiegold conjecture). We study connectedness of basic examples of self-similar groups (such as Grigorchuk groups or the Gupta-Sidki group). − (non)amenability. As an analogue of 'non-amenability' in the world of finite graphs, fΓn(Gk)gn≥rank(Gk) is a family of expanders for a family of finite abelian groups fGkg [5]. Gambord and Pak [3] proved that the statement is true for the fam- ily fPSL(2; p)gp!1 [3]. As an example of infinite group we take free group. Then the Schreier graph becomes the Cayley graph of Aut(Fn) which is not amenable. It is not evident though if for any infinite finitely-generated group the corresponding Schreier graphs of Aut(Fn) are non-amenable [4]. References [1] M.J. Dunwoody, Nielsen transformations, in: Computation Problems in Ab- stract Algebra, Pergamon, Oxford, 1970, 45-46. [2] M.J.Evans, Presentations of groups, involving more generators than are neces- sary, Proc.London Math.Soc. (3) 67 (1993), n.1, 106-126. [3] A.Gamburd, I.Pak, Expansion of product replacement graphs, Combinatorica 26 (2006), n.4, 411-429. [4] R.I.Grigorchuk and V.V.Nekrashevych, Amenable actions of non-amenable groups, preprint. [5] A. Lubotzky, I. Pak, The product replacement algorithm and Kazhdan's prop- erty (T), Journal of the AMS 14 (2001), 347-363. Ori Parzanchevski My current research is the study of expansion properties in simplicial complexes. Using tools from topology and geometry, I study the extent to which phenomena from the theory of expander graphs have parallel in higher dimension. This include, for example, isoperimetric inequalities, quasi-randomness, the behavior of random walk, and geometric expansion a la Gromov. In addition, I have been studying word maps in groups. In particular, the Fourier expansion related with a word map, and the question whether words inducing identical distribution are automorphism-equivalent. Doron Puder The theme that connects all my lines of research are formal words (elements of free groups) and in particular primitive elements, that is words which belong to some free generating set. Associated with w 2 Fk and any group G is the word map w : G × ::: × G ! G defined on the direct product of k copies of G. For compact G, one can take the Haar measure on G × ::: × G (for finite groups this is simply the uniform distribution) and then push it forward via the word map w to obtain some measure on G: It is an easy observation that if w1 and w2 belong to the same orbit of the Aut (Fk)-action on Fk, then they induce the same measure on every compact group G. One question I'm considering is weather the converse also holds. Namely, given RIZOS SKLINOS 3 two words w1; w2 2 Fk from different Aut (Fk)-orbits, is it always possible to come up with a compact group on which they induce different measure? Together with a fellow student, O. Parzanchevski, we have answered this to the positive in the special case where w1 is primitive [1]. The proof relies heavily on new techniques with Stallings Core graphs. With further work, these results about primitive words have also some consequences regarding expansion properties of random graphs. Another question I'm interested in is the following: given a representation ρ : Fk ! GLn (C), to what extent do the character values of the primitive elements determine ρ? References [1] Doron Puder and Ori Parzancheski. Measure Preserving Words are Primitive. Submitted. Rizos Sklinos My research is focused on model theory and its interactions with geometric group theory. Much attention has been given to the subject after Sela [6] and Kharlampovich- Myasnikov [1] independently proved that non abelian free groups share the same common theory. Furthermore, Sela [5] proved, using geometric methods, that this common theory is stable. In joint work with Perin [4] we give an algebraic description of forking in standard models of the theory of free groups. So, our result is: two tuples of elements of a free group are independent over the empty set if and only if they belong to associated free factors, i.e. free factors whose bases together extend to a basis of the whole group. We also give a description of forking over standard models, and over \big" parameter sets, i.e. sets over which the free group under consideration is freely indecomposable. It remains open to generalize the description over arbitrary parameter sets. In a joint work with Louder and Perin [2], we use a geometric tool introduced by Sela (Hyperbolic Tower) to prove that there exists a (finitely generated) model of the theory of free groups, in which we can find two maximal independent sequences of realizations of the generic type of different cardinalities. In the same paper we prove that the free product of two homogeneous groups is not necessarily a homogeneous group, answering a question of Jaligot. Moreover, in a recent work with Perin, Pillay and Tent [3] we use the elimination of imaginaries in torsion-free hyperbolic groups (as proved by Sela) in order to show that any (non-cyclic) torsion-free hyperbolic group is definably simple.
Recommended publications
  • Groups Acting on Cat(0) Cube Complexes with Uniform Exponential Growth
    GROUPS ACTING ON CAT(0) CUBE COMPLEXES WITH UNIFORM EXPONENTIAL GROWTH RADHIKA GUPTA, KASIA JANKIEWICZ, AND THOMAS NG Abstract. We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth. 1. Introduction In this article, we continue the inquiry to determine which groups that act on CAT(0) cube complexes have uniform exponential growth. Let G be a group with finite generating set S and corresponding Cayley graph Cay(G; S) equipped with the word metric. Let B(n; S) be the ball of radius n in Cay(G; S). The exponential growth rate of G with respect to S is defined as w(G; S) := lim jB(n; S)j1=n: n!1 The exponential growth rate of G is defined as w(G) := inf fw(G; S) j S finite generating setg : We say a group G has exponential growth if w(G; S) > 1 for some (hence every) finite generating set S. A group G is said to have uniform exponential growth if w(G) > 1.
    [Show full text]
  • Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
    Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups.
    [Show full text]
  • Local Connectivity of Right-Angled Coxeter Group Boundaries
    LOCAL CONNECTIVITY OF RIGHT-ANGLED COXETER GROUP BOUNDARIES MICHAEL MIHALIK, KIM RUANE, AND STEVE TSCHANTZ Abstract. We provide conditions on the defining graph of a right- angled Coxeter group presentation that guarantees the boundary of any CAT (0) space on which the group acts geometrically will be locally connected. 0. Introduction This is an edited version of the published version of our paper. The changes are minor, but clean up the paper quite a bit: the proof of lemma 5.8 is reworded and a figure is added showing where (in the published version) some undefined vertices of the Cayley graph are locate, the proof of theorem 3.2 is simplified by using lemma 4.2 (allowing us to eliminate four lemmas that appeared near the end of section 1). In [BM],the authors ask whether all one-ended word hyperbolic groups have locally connected boundary. In that paper, they relate the existence of global cut points in the boundary to local connectivity of the boundary. In [Bo], Bowditch gives a correspondence between local cut points in the bound- ary and splittings of the group over one-ended subgroups. In [S], Swarup uses the work of Bowditch and others to prove that the boundary of such a group cannot contain a global cut point, thus proving these boundaries are locally connected. The situation is quite different in the setting of CAT (0) groups. If G is a one-ended group acting geometrically on a CAT (0) space X, then @X can indeed be non-locally connected. For example, consider the group G = F2 × Z where F2 denotes the non-abelian free group of rank 2, acting on X = T ×R where T is the tree of valence 4 (or the Cayley graph of F2 with the standard generating set).
    [Show full text]
  • Groups Acting on CAT (0) Cube Complexes with Uniform Exponential
    GROUPS ACTING ON CAT(0) CUBE COMPLEXES WITH UNIFORM EXPONENTIAL GROWTH RADHIKA GUPTA, KASIA JANKIEWICZ, AND THOMAS NG Abstract. We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth. 1. Introduction In this article, we continue the inquiry to determine which groups that act on CAT(0) cube complexes have uniform exponential growth. Let G be a group with finite generating set S and corresponding Cayley graph Cay(G; S) equipped with the word metric. Let B(n; S) be the ball of radius n in Cay(G; S). The exponential growth rate of G with respect to S is defined as w(G; S) := lim jB(n; S)j1=n: n!1 The exponential growth rate of G is defined as w(G) := inf fw(G; S) j S finite generating setg : We say a group G has exponential growth if w(G; S) > 1 for some (hence every) finite generating set S. A group G is said to have uniform exponential growth if w(G) > 1.
    [Show full text]
  • Uniform Exponential Growth of Non-Positively Curved Groups
    Uniform exponential growth of non-positively curved groups A Dissertation Submitted to the Temple University Graduate Board in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Thomas Ng May, 2020 Dissertation Examining Committee: David Futer, Advisory Chair, Mathematics Matthew Stover, Mathematics Samuel Taylor, Mathematics Tarik Aougab, Haverford College, Mathematics and Statistics iii c by Thomas Ng May, 2020 All Rights Reserved iv ABSTRACT Uniform exponential growth of non-positively curved groups Thomas Ng DOCTOR OF PHILOSOPHY Temple University, May, 2020 Professor David Futer, Chair The ping-pong lemma was introduced by Klein in the late 1800s to show that certain subgroups of isometries of hyperbolic 3-space are free and remains one of very few tools that certify when a pair of group elements generate a free subgroup or semigroup. Quantitatively applying the ping-pong lemma to more general group actions on metric spaces requires a blend of understanding the large-scale global geometry of the underlying space with local combinatorial and dynamical behavior of the action. In the 1980s, Gromov publish a sequence of seminal works introducing several metric notions of non-positive curvature in group theory where he asked which finitely generated groups have uniform exponential growth. We give an overview of various developments of non- positive curvature in group theory and past results related to building free semigroups in the setting of non-positive curvature. We highlight joint work with Radhika Gupta and Kasia Jankiewicz and with Carolyn Abbott and v Davide Spriano that extends these tools and techniques to show several groups with that act on cube complexes and many hierarchically hyperbolic groups have uniform exponential growth.
    [Show full text]
  • Limit Roots of Lorentzian Coxeter Systems
    UNIVERSITY OF CALIFORNIA Santa Barbara Limit Roots of Lorentzian Coxeter Systems A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Arts in Mathematics by Nicolas R. Brody Committee in Charge: Professor Jon McCammond, Chair Professor Darren Long Professor Stephen Bigelow June 2016 The Thesis of Nicolas R. Brody is approved: Professor Darren Long Professor Stephen Bigelow Professor Jon McCammond, Committee Chairperson May 2016 Limit Roots of Lorentzian Coxeter Systems Copyright c 2016 by Nicolas R. Brody iii Acknowledgements My time at UC Santa Barbara has been inundated with wonderful friends, teachers, mentors, and mathematicians. I am especially indebted to Jon McCammond, Jordan Schettler, and Maribel Cachadia. A very special thanks to Jean-Phillippe Labb for sharing his code which was used to produce Figures 7.1, 7.3, and 7.4. This thesis is dedicated to my three roommates: Viki, Luna, and Layla. I hope we can all be roommates again soon. iv Abstract Limit Roots of Lorentzian Coxeter Systems Nicolas R. Brody A reflection in a real vector space equipped with a positive definite symmetric bilinear form is any automorphism that sends some nonzero vector v to its negative and pointwise fixes its orthogonal complement, and a finite reflection group is a group generated by such transformations that acts properly on the sphere of unit vectors. We note two important classes of groups which occur as finite reflection groups: for a 2-dimensional vector space, we recover precisely the finite dihedral groups as reflection groups, and permuting basis vectors in an n-dimensional vector space gives a way of viewing a symmetric group as a reflection group.
    [Show full text]
  • Boundary of CAT(0) Groups with Right Angles
    Boundary of CAT(0) Groups With Right Angles A dissertation submitted by Yulan Qing In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics TUFTS UNIVERSITY August 2013 c Copyright 2013 by Yulan Qing Adviser: Kim Ruane This dissertation is dedicated to my mom, who would have been very proud. i Abstract In [CK00], Croke and Kleiner present a torus complex whose universal cover has a non- locally connected visual boundary. They show that changing the intersection angle of the gluing loops in the middle torus changes the topological type of the visual boundary. In this thesis we study the effect on the topology of the boundary if the angle is fixed at π{2 but the lengths of the π1-generating loops are changed. In particular, we investigate the topology of the set of geodesic rays with infinite itineraries. We identify specific infinite-itinerary geodesics whose corresponding subsets of the visual boundary change their topological type under the length change in the space. This is a constructive and explicit proof of a result contained in Croke and Kleiner's more general theorem in [CK02]. The construction and view point of this proof is crucial to proving the next result about Tits boundary: we show that the Tits boundaries of Croke Kleiner spaces are homeomorphic under lengths variation. Whether this is true for the general set of CAT p0q 2-complexes is still open. We also study the invariant subsets of the set of geodesic rays with infinite itineraries. In the next chapter, we consider the geometry of actions of right-angled Coxeter groups on the Croke-Kleiner space.
    [Show full text]
  • QUASIFLATS in HIERARCHICALLY HYPERBOLIC SPACES Contents
    QUASIFLATS IN HIERARCHICALLY HYPERBOLIC SPACES JASON BEHRSTOCK, MARK F HAGEN, AND ALESSANDRO SISTO Abstract. The rank of a hierarchically hyperbolic space is the maximal number of un- bounded factors of standard product regions; this coincides with the maximal dimension of a quasiflat for hierarchically hyperbolic groups. Several noteworthy examples for which the rank coincides with familiar quantities include: the dimension of maximal Dehn twist flats for mapping class groups, the maximal rank of a free abelian subgroup for right-angled Coxeter groups and right-angled Artin groups (in the latter this can also be observed as the clique number of the defining graph), and, for the Weil{Petersson metric the rank is the integer part of half the complex dimension of Teichm¨ullerspace. We prove that, in a hierarchically hyperbolic space, any quasiflat of dimension equal to the rank lies within finite distance of a union of standard orthants (under a very mild condition on the HHS satisfied by all natural examples). This resolves outstanding conjectures when applied to a number of different groups and spaces. In the case of the mapping class group we verify a conjecture of Farb, for Teichm¨ullerspace we answer a question of Brock, and in the context of CAT(0) cubical groups our result proves a folk conjecture, novel special cases of the cubical case include right-angled Coxeter groups, and others. An important ingredient in the proof, which we expect will have other applications, is our proof that the hull of any finite set in an HHS is quasi-isometric to a cube complex of dimension equal to the rank (if the HHS is a CAT(0) cube complex, the rank can be lower than the dimension of the space).
    [Show full text]
  • The Topology, Geometry, and Dynamics of Free Groups
    The topology, geometry, and dynamics of free groups (containing most of): Part I: Outer space, fold paths, and the Nielsen/Whitehead problems Lee Mosher January 10, 2020 arXiv:2001.02776v1 [math.GR] 8 Jan 2020 Contents I Outer space, fold paths, and the Nielsen/Whitehead problems 9 1 Marked graphs and outer space: Topological and geometric structures for free groups 11 1.1 Free groups and free bases . 11 1.2 Graphs . 14 1.2.1 Graphs, trees, and their paths. 14 1.2.2 Trees are contractible . 22 1.2.3 Roses. 24 1.2.4 Notational conventions for the free group Fn............. 25 1.3 The Nielsen/Whitehead problems: free bases. 25 1.3.1 Statements of the central problems. 26 1.3.2 Negative tests, using abelianization. 27 1.3.3 Positive tests, using Nielsen transformations. 28 1.3.4 Topological versions of the central problems, using roses. 29 1.4 Marked graphs . 31 1.4.1 Core graphs and their ranks. 32 1.4.2 Based marked graphs. 34 1.4.3 Based marked graphs and Aut(Fn). 35 1.4.4 The Nielsen-Whitehead problems: Based marked graphs. 36 1.4.5 Marked graphs. 37 1.4.6 Marked graphs and Out(Fn). ..................... 38 1.4.7 Equivalence of marked graphs . 40 1.4.8 Applications: Conjugacy classes in free groups and circuits in marked graphs . 42 1.5 Finite subgroups of Out(Fn): Applying marked graphs . 44 1.5.1 Automorphism groups of finite graphs . 45 1.5.2 Automorphisms act faithfully on homology .
    [Show full text]
  • Morse, Contracting, and Strongly Contracting Sets with Applications to Boundaries and Growth of Groups
    Morse, contracting, and strongly contracting sets with applications to boundaries and growth of groups Christopher H. Cashen, PhD Faculty of Mathematics University of Vienna 1090 Vienna,Austria E-mail address: [email protected] URL: http://www.mat.univie.ac.at/~cashen Key words and phrases. Morse, contracting, strongly contracting, graphical small cancellation, group action, boundary, growth tightness, cogrowth The author was supported by the Austrian Science Fund (FWF): P 30487-N35 during the writing of this thesis. Support for the individual papers can be found in the respective chapters. Abstract. We investigate several quantitative generalizations of the notion of quasiconvex subsets of (Gromov) hyperbolic spaces to arbitrary geodesic metric spaces. Some of these, such as the Morse property, strong contraction, and superlinear divergence, had been studied before in more specialized contexts, and some, such as contraction, we introduce for the first time. In general, we prove that quasiconvexity is the weakest of the properties, strong contraction is the strongest, and all of the others are equivalent. However, in hyperbolic spaces all are equivalent, and we prove that in CAT(0) spaces all except quasiconvexity are equivalent. Despite the fact that many of these properties are equivalent, they are useful for different purposes. For instance, it is easy to see that the Morse property is quasiisometry invariant, but the contraction property gives good control over the divagation behavior of geodesic rays with a common basepoint. We exploit this control to define a boundary for arbitrary finitely generated groups that shares some properties of the boundary of a hyperbolic group.
    [Show full text]
  • Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
    Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of certain structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form | Matrix groups.
    [Show full text]
  • RESEARCH STATEMENT My Research Is in Geometric Group
    RESEARCH STATEMENT KASIA JANKIEWICZ My research is in geometric group theory. This is the study of the interplay of the algebraic properties of infinite finitely generated groups and the topology and geometry of spaces that the groups act on. In my work I use combinatorial and probabilistic techniques, tools from the algebraic topology, theory of computation, hyperbolic geometry, study of mapping class groups and the dynamics of the automorphisms of free groups. My research has connections with the study of 3- and 4-manifolds, which provide examples and tools. My work also has applications to these fields. I additionally study groups arising via algebraic constructions. Here are the main themes of my research, which are discussed in more details in the next three sections of this document. Artin groups. They generalize braid groups, and include free groups and free abelian groups. Artin groups are closely related to Coxeter groups and arise as fundamental groups of quotients of complexified hyperplane arrangement. They were introduced by Tits in the 60s. Spherical Artin groups became famous due to work of Bieskorn, Saito and Deligne in the 70s. Despite simple presentations, general Artin groups are poorly understood. Artin groups can be studied via their actions on CAT(0) spaces, following Davis, Charney and Salvetti. Combinatorial techniques, such as Garside methods, can also be utilized in understanding Artin groups. Right-angled Artin groups are a particularly nice family of Artin groups, and play an important role in the theory of special cube complexes. Non-positive curvature. In the late 80s, in a foundational paper for geometric group theory, Gromov introduced two notions of \curvature" for metric spaces.
    [Show full text]