Morse, Contracting, and Strongly Contracting Sets with Applications to Boundaries and Growth of Groups

Total Page:16

File Type:pdf, Size:1020Kb

Morse, Contracting, and Strongly Contracting Sets with Applications to Boundaries and Growth of Groups Morse, contracting, and strongly contracting sets with applications to boundaries and growth of groups Christopher H. Cashen, PhD Faculty of Mathematics University of Vienna 1090 Vienna,Austria E-mail address: [email protected] URL: http://www.mat.univie.ac.at/~cashen Key words and phrases. Morse, contracting, strongly contracting, graphical small cancellation, group action, boundary, growth tightness, cogrowth The author was supported by the Austrian Science Fund (FWF): P 30487-N35 during the writing of this thesis. Support for the individual papers can be found in the respective chapters. Abstract. We investigate several quantitative generalizations of the notion of quasiconvex subsets of (Gromov) hyperbolic spaces to arbitrary geodesic metric spaces. Some of these, such as the Morse property, strong contraction, and superlinear divergence, had been studied before in more specialized contexts, and some, such as contraction, we introduce for the first time. In general, we prove that quasiconvexity is the weakest of the properties, strong contraction is the strongest, and all of the others are equivalent. However, in hyperbolic spaces all are equivalent, and we prove that in CAT(0) spaces all except quasiconvexity are equivalent. Despite the fact that many of these properties are equivalent, they are useful for different purposes. For instance, it is easy to see that the Morse property is quasiisometry invariant, but the contraction property gives good control over the divagation behavior of geodesic rays with a common basepoint. We exploit this control to define a boundary for arbitrary finitely generated groups that shares some properties of the boundary of a hyperbolic group. Our boundary is a metrizable topological space that is invariant under quasiisometries of the group, and the group acts on it with simple dynamics. We investigate the geometry of infinitely presented graphical small cancellation groups. Such groups include the so-called ‘Gromov Monsters’, which were introduced as a source of counter-examples to the Baum-Connes conjecture. We give a local-to-global characterization of contracting geodesics in these groups, which we think of as defining ‘hyperbolic directions’. Our characterization depends on a beautiful interplay between combinatorial and geometric versions of negative curvature. The result shows that the geometry of these groups is reminiscent of the geometry of relatively hyperbolic groups in the sense that there are certain well-defined non-hyperbolic regions, and geodesics that avoid these regions behave like hyperbolic geodesics. However, the groups are in general not relatively hyperbolic. Armed with our understanding of geodesics in graphical small cancellation groups, we construct examples of the wide varieties of contraction behaviors that occur: we show that every degree of contraction can be achieved by a periodic geodesic in some finitely generated group, that there are groups in which every element has a strongly contracting axis even though the group is not hyperbolic, and that there are examples of finitely generated groups in which the existence of a strongly contracting axis for a given element depends on the choice of generating set for the group. Since the Morse property is invariant under quasiisometries, we can say that a subgroup of a finitely generated group is Morse (or equivalently, contracting, divergent,...) if it has this property as a subset in some/any Cayley graph of the group. However, we could also let the group act on some other geodesic metric space and ask which elements have a contracting/Morse/strongly contracting axis for that particular action. In particular, we explore actions that are not cocompact. To preserve a connection with the geometry of the group, we require the action to be metrically proper. We also introduce a condition known as ‘complementary growth gap’ that says that there is an orbit of the group in the space that, while metrically distorted, is not too badly distorted from a growth-theoretic point of view. Our condition generalizes the ‘parabolic growth gap’ condition for Kleinian groups, and includes additional examples such as the action of the mapping class group of a hyperbolic surface on its Teichmüller space. We prove growth and cogrowth results for the orbit pseudometric induced on the group by such an action under the hypothesis the group has one element that acts with a strongly contracting axis. Our results generalize results that were known for word metrics on hyperbolic groups to far more general situations. The generality of our results is even more striking considering that there are contemporaneous papers that achieve similar results only for actions on hyperbolic spaces. Contents Preface 5 I. Plan of the thesis5 II. Synopsis of the Publications5 III. Curriculum Vitae 11 Survey of the topic and the impacts of this thesis 15 1. Introduction 15 2. Preliminaries 17 3. The Morse property and related properties 17 4. Application: The geometry of graphical small cancellation groups 28 5. Generalizing hyperbolic boundaries 30 6. Stronger properties 33 7. Application: Growth of groups 35 8. Appendix 38 References 47 Paper A. Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction 51 1. Introduction 51 2. Preliminaries 55 3. Examples of contraction 56 4. The Morse property 58 5. Divergence 62 6. Robustness 66 7. Geodesic image theorem 67 8. Further applications 69 References 71 Paper B. Morse subsets of CAT(0) spaces are strongly contracting 73 References 75 Paper C. Negative curvature in graphical small cancellation groups 77 1. Introduction 77 2. Preliminaries 83 3. Classification of quadrangles 85 0 4. Contraction in Gr (1=6)–groups 95 5. Strongly contracting elements 103 6. Hyperbolically embedded subgroups 106 References 110 Paper D. Growth Tight Actions 113 0. Introduction 113 1. Preliminaries 118 2. Contraction and Constriction 120 3. Abundance of Strongly Contracting Elements 126 4. A Minimal Section 129 5. Embedding a Free Product Set 130 3 4 CONTENTS 6. Growth Gap 130 7. Growth of Conjugacy Classes 132 8. Actions on Relatively Hyperbolic Spaces 133 9. Rank 1 Actions on CAT(0) Spaces 137 10. Mapping Class Groups 138 11. Snowflake Groups 139 References 142 Paper E. Growth Tight Actions of Product Groups 147 1. Introduction 147 2. Preliminaries 149 3. Elements that are Strongly Contracting in each Coordinate 151 4. Elements without Long, Positive Projections 153 5. Proof of the Main Theorem 155 References 157 Paper F. Cogrowth for group actions with strongly contracting elements 159 1. Introduction 159 2. Preliminaries 161 3. Embedding a tree’s worth of copies of [c] 163 4. Questions 170 References 171 Paper G. Quasi-isometries need not induce homeomorphisms of contracting boundaries with the Gromov product topology 173 1. Introduction 173 2. The contracting boundary and Gromov product topology 173 3. Pathological Examples 175 References 176 Paper H. A metrizable topology on the contracting boundary of a group 177 1. Introduction 177 2. Preliminaries 179 3. Contraction 181 4. Contraction and Quasi-geodesics 184 5. The contracting boundary and the topology of fellow-travelling quasi-geodesics 189 6. Quasi-isometry invariance 193 7. Comparison to other topologies 198 8. Metrizability for group boundaries 204 9. Dynamics 206 10. Compactness 208 References 212 Preface I. Plan of the thesis This is a cumulative Habilitation thesis on the topic of generalizations of the geometric notions of convexity and hyperbolicity and their applications to the study of infinite discrete groups. The thesis includes eight papers on this topic. This Preface contains a brief Synopsis of each paper including its abstract, publication details, and a list of works that cite it, as well as a CV. The following chapter is a Survey of the research topic that gives an exposition of our results, places them into context, and demonstrates the impact of our research on its field. Each of the remaining eight chapters contains one of the papers. Each of the papers included in this thesis has undergone successful peer review and is either already published or accepted and in press. In all cases the version of the paper presented here is the final author version, post-refereeing, subjected to reformatting in a consistent style. The final version of record of each paper can be found at the listed address on the website of its publisher, and may have formatting and editorial changes. II. Synopsis of the Publications A. Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction, Goulnara N. Arzhantseva, Christopher H. Cashen, Dominik Gruber, and David Hume, Documenta Mathematica 22 (2017), 1193–1224. https://www.math.uni-bielefeld.de/documenta/vol-22/36.html We introduce and begin a systematic study of sublinearly contracting projections. We give two characterizations of Morse quasi-geodesics in an arbitrary geodesic metric space. One is that they are sublinearly contracting; the other is that they have completely superlinear divergence. We give a further characterization of sublinearly contracting projections in terms of projections of geodesic segments. The authors were equal partners in the conception, execution, and writing of this paper. Works citing PaperA. [1] Carolyn Abbott, Jason Behrstock, and Matthew Gentry Durham. Largest acylindrical actions and stability in hierarchically hyperbolic groups. preprint. 2017. arXiv: 1705. 06219v2. [2] Tarik Aougab, Matthew Gentry Durham, and Samuel J. Taylor. Pulling back stability with applications to Out(Fn) and relatively hyperbolic groups. J. Lond. Math. Soc. 96.3 (2017), pp. 565–583. [3] Arthur Bartels and Mladen Bestvina. The Farrell-Jones conjecture for mapping class groups. Invent. Math. 215.2 (2019), pp. 651–712. [4] Jonas Beyrer and Elia Fioravanti. Cross ratios and cubulations of hyperbolic groups. preprint. arXiv: 1810.08087. [5] Christopher H. Cashen. Morse subsets of CAT(0) spaces are strongly contracting. Geom. Dedicata (in press). [6] Matthew Cordes. A survey on Morse boundaries and stability. Beyond Hyperbolicity. London Mathematical Society Lecture Note Series.
Recommended publications
  • Quasi-Hyperbolic Planes in Relatively Hyperbolic Groups
    QUASI-HYPERBOLIC PLANES IN RELATIVELY HYPERBOLIC GROUPS JOHN M. MACKAY AND ALESSANDRO SISTO Abstract. We show that any group that is hyperbolic relative to virtually nilpotent subgroups, and does not admit peripheral splittings, contains a quasi-isometrically embedded copy of the hy- perbolic plane. In natural situations, the specific embeddings we find remain quasi-isometric embeddings when composed with the inclusion map from the Cayley graph to the coned-off graph, as well as when composed with the quotient map to \almost every" peripheral (Dehn) filling. We apply our theorem to study the same question for funda- mental groups of 3-manifolds. The key idea is to study quantitative geometric properties of the boundaries of relatively hyperbolic groups, such as linear connect- edness. In particular, we prove a new existence result for quasi-arcs that avoid obstacles. Contents 1. Introduction 2 1.1. Outline 5 1.2. Notation 5 1.3. Acknowledgements 5 2. Relatively hyperbolic groups and transversality 6 2.1. Basic definitions 6 2.2. Transversality and coned-off graphs 8 2.3. Stability under peripheral fillings 10 3. Separation of parabolic points and horoballs 12 3.1. Separation estimates 12 3.2. Embedded planes 15 3.3. The Bowditch space is visual 16 4. Boundaries of relatively hyperbolic groups 17 4.1. Doubling 19 4.2. Partial self-similarity 19 5. Linear Connectedness 21 Date: April 23, 2019. 2000 Mathematics Subject Classification. 20F65, 20F67, 51F99. Key words and phrases. Relatively hyperbolic group, quasi-isometric embedding, hyperbolic plane, quasi-arcs. The research of the first author was supported in part by EPSRC grants EP/K032208/1 and EP/P010245/1.
    [Show full text]
  • EMBEDDINGS of GROMOV HYPERBOLIC SPACES 1 Introduction
    GAFA, Geom. funct. anal. © Birkhiiuser Verlag, Basel 2000 Vol. 10 (2000) 266 - 306 1016-443X/00/020266-41 $ 1.50+0.20/0 I GAFA Geometric And Functional Analysis EMBEDDINGS OF GROMOV HYPERBOLIC SPACES M. BONK AND O. SCHRAMM Abstract It is shown that a Gromov hyperbolic geodesic metric space X with bounded growth at some scale is roughly quasi-isometric to a convex subset of hyperbolic space. If one is allowed to rescale the metric of X by some positive constant, then there is an embedding where distances are distorted by at most an additive constant. Another embedding theorem states that any 8-hyperbolic met­ ric space embeds isometrically into a complete geodesic 8-hyperbolic space. The relation of a Gromov hyperbolic space to its boundary is fur­ ther investigated. One of the applications is a characterization of the hyperbolic plane up to rough quasi-isometries. 1 Introduction The study of Gromov hyperbolic spaces has been largely motivated and dominated by questions about Gromov hyperbolic groups. This paper studies the geometry of Gromov hyperbolic spaces without reference to any group or group action. One of our main theorems is Embedding Theorem 1.1. Let X be a Gromov hyperbolic geodesic metric space with bounded growth at some scale. Then there exists an integer n such that X is roughly similar to a convex subset of hyperbolic n-space lHIn. The precise definitions appear in the body of the paper, but now we briefly discuss the meaning of the theorem. The condition of bounded growth at some scale is satisfied, for example, if X is a bounded valence graph, or a Riemannian manifold with bounded local geometry.
    [Show full text]
  • 15 Nov 2008 3 Ust Nsmercsae N Atcs41 38 37 Lattices and Spaces Symmetric in References Subsets Graph Pants the 13
    THICK METRIC SPACES, RELATIVE HYPERBOLICITY, AND QUASI-ISOMETRIC RIGIDITY JASON BEHRSTOCK, CORNELIA DRUT¸U, AND LEE MOSHER Abstract. We study the geometry of nonrelatively hyperbolic groups. Gen- eralizing a result of Schwartz, any quasi-isometric image of a non-relatively hyperbolic space in a relatively hyperbolic space is contained in a bounded neighborhood of a single peripheral subgroup. This implies that a group be- ing relatively hyperbolic with nonrelatively hyperbolic peripheral subgroups is a quasi-isometry invariant. As an application, Artin groups are relatively hyperbolic if and only if freely decomposable. We also introduce a new quasi-isometry invariant of metric spaces called metrically thick, which is sufficient for a metric space to be nonhyperbolic rel- ative to any nontrivial collection of subsets. Thick finitely generated groups include: mapping class groups of most surfaces; outer automorphism groups of most free groups; certain Artin groups; and others. Nonuniform lattices in higher rank semisimple Lie groups are thick and hence nonrelatively hy- perbolic, in contrast with rank one which provided the motivating examples of relatively hyperbolic groups. Mapping class groups are the first examples of nonrelatively hyperbolic groups having cut points in any asymptotic cone, resolving several questions of Drutu and Sapir about the structure of relatively hyperbolic groups. Outside of group theory, Teichm¨uller spaces for surfaces of sufficiently large complexity are thick with respect to the Weil-Peterson metric, in contrast with Brock–Farb’s hyperbolicity result in low complexity. Contents 1. Introduction 2 2. Preliminaries 7 3. Unconstricted and constricted metric spaces 11 4. Non-relative hyperbolicity and quasi-isometric rigidity 13 5.
    [Show full text]
  • Groups Acting on Cat(0) Cube Complexes with Uniform Exponential Growth
    GROUPS ACTING ON CAT(0) CUBE COMPLEXES WITH UNIFORM EXPONENTIAL GROWTH RADHIKA GUPTA, KASIA JANKIEWICZ, AND THOMAS NG Abstract. We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth. 1. Introduction In this article, we continue the inquiry to determine which groups that act on CAT(0) cube complexes have uniform exponential growth. Let G be a group with finite generating set S and corresponding Cayley graph Cay(G; S) equipped with the word metric. Let B(n; S) be the ball of radius n in Cay(G; S). The exponential growth rate of G with respect to S is defined as w(G; S) := lim jB(n; S)j1=n: n!1 The exponential growth rate of G is defined as w(G) := inf fw(G; S) j S finite generating setg : We say a group G has exponential growth if w(G; S) > 1 for some (hence every) finite generating set S. A group G is said to have uniform exponential growth if w(G) > 1.
    [Show full text]
  • Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
    Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups.
    [Show full text]
  • Local Connectivity of Right-Angled Coxeter Group Boundaries
    LOCAL CONNECTIVITY OF RIGHT-ANGLED COXETER GROUP BOUNDARIES MICHAEL MIHALIK, KIM RUANE, AND STEVE TSCHANTZ Abstract. We provide conditions on the defining graph of a right- angled Coxeter group presentation that guarantees the boundary of any CAT (0) space on which the group acts geometrically will be locally connected. 0. Introduction This is an edited version of the published version of our paper. The changes are minor, but clean up the paper quite a bit: the proof of lemma 5.8 is reworded and a figure is added showing where (in the published version) some undefined vertices of the Cayley graph are locate, the proof of theorem 3.2 is simplified by using lemma 4.2 (allowing us to eliminate four lemmas that appeared near the end of section 1). In [BM],the authors ask whether all one-ended word hyperbolic groups have locally connected boundary. In that paper, they relate the existence of global cut points in the boundary to local connectivity of the boundary. In [Bo], Bowditch gives a correspondence between local cut points in the bound- ary and splittings of the group over one-ended subgroups. In [S], Swarup uses the work of Bowditch and others to prove that the boundary of such a group cannot contain a global cut point, thus proving these boundaries are locally connected. The situation is quite different in the setting of CAT (0) groups. If G is a one-ended group acting geometrically on a CAT (0) space X, then @X can indeed be non-locally connected. For example, consider the group G = F2 × Z where F2 denotes the non-abelian free group of rank 2, acting on X = T ×R where T is the tree of valence 4 (or the Cayley graph of F2 with the standard generating set).
    [Show full text]
  • Groups Acting on CAT (0) Cube Complexes with Uniform Exponential
    GROUPS ACTING ON CAT(0) CUBE COMPLEXES WITH UNIFORM EXPONENTIAL GROWTH RADHIKA GUPTA, KASIA JANKIEWICZ, AND THOMAS NG Abstract. We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth. 1. Introduction In this article, we continue the inquiry to determine which groups that act on CAT(0) cube complexes have uniform exponential growth. Let G be a group with finite generating set S and corresponding Cayley graph Cay(G; S) equipped with the word metric. Let B(n; S) be the ball of radius n in Cay(G; S). The exponential growth rate of G with respect to S is defined as w(G; S) := lim jB(n; S)j1=n: n!1 The exponential growth rate of G is defined as w(G) := inf fw(G; S) j S finite generating setg : We say a group G has exponential growth if w(G; S) > 1 for some (hence every) finite generating set S. A group G is said to have uniform exponential growth if w(G) > 1.
    [Show full text]
  • Introduction to Hyperbolic Metric Spaces
    Introduction to Hyperbolic Metric Spaces Adriana-Stefania Ciupeanu University of Manitoba Department of Mathematics November 3, 2017 A. Ciupeanu (UofM) Introduction to Hyperbolic Metric Spaces November 3, 2017 1 / 36 Introduction Introduction Geometric group theory is relatively new, and became a clearly identifiable branch of mathematics in the 1990s due to Mikhail Gromov. Hyperbolicity is a centre theme and continues to drive current research in the field. Geometric group theory is bases on the principle that if a group acts as symmetries of some geometric object, then we can use geometry to understand the group. A. Ciupeanu (UofM) Introduction to Hyperbolic Metric Spaces November 3, 2017 2 / 36 Introduction Introduction Gromov’s notion of hyperbolic spaces and hyperbolic groups have been studied extensively since that time. Many well-known groups, such as mapping class groups and fundamental groups of surfaces with cusps, do not meet Gromov’s criteria, but nonetheless display some hyperbolic behaviour. In recent years, there has been interest in capturing and using this hyperbolic behaviour wherever and however it occurs. A. Ciupeanu (UofM) Introduction to Hyperbolic Metric Spaces November 3, 2017 3 / 36 Introduction If Euclidean geometry describes objects in a flat world or a plane, and spherical geometry describes objects on the sphere, what world does hyperbolic geometry describe? Hyperbolic geometry takes place on a curved two dimensional surface called hyperbolic space. The essential properties of the hyperbolic plane are abstracted to obtain the notion of a hyperbolic metric space, which is due to Gromov. A. Ciupeanu (UofM) Introduction to Hyperbolic Metric Spaces November 3, 2017 4 / 36 Introduction Hyperbolic geometry is a non-Euclidean geometry, where the parallel postulate of Euclidean geometry is replaced with: For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R.
    [Show full text]
  • Uniform Exponential Growth of Non-Positively Curved Groups
    Uniform exponential growth of non-positively curved groups A Dissertation Submitted to the Temple University Graduate Board in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Thomas Ng May, 2020 Dissertation Examining Committee: David Futer, Advisory Chair, Mathematics Matthew Stover, Mathematics Samuel Taylor, Mathematics Tarik Aougab, Haverford College, Mathematics and Statistics iii c by Thomas Ng May, 2020 All Rights Reserved iv ABSTRACT Uniform exponential growth of non-positively curved groups Thomas Ng DOCTOR OF PHILOSOPHY Temple University, May, 2020 Professor David Futer, Chair The ping-pong lemma was introduced by Klein in the late 1800s to show that certain subgroups of isometries of hyperbolic 3-space are free and remains one of very few tools that certify when a pair of group elements generate a free subgroup or semigroup. Quantitatively applying the ping-pong lemma to more general group actions on metric spaces requires a blend of understanding the large-scale global geometry of the underlying space with local combinatorial and dynamical behavior of the action. In the 1980s, Gromov publish a sequence of seminal works introducing several metric notions of non-positive curvature in group theory where he asked which finitely generated groups have uniform exponential growth. We give an overview of various developments of non- positive curvature in group theory and past results related to building free semigroups in the setting of non-positive curvature. We highlight joint work with Radhika Gupta and Kasia Jankiewicz and with Carolyn Abbott and v Davide Spriano that extends these tools and techniques to show several groups with that act on cube complexes and many hierarchically hyperbolic groups have uniform exponential growth.
    [Show full text]
  • Cannon-Thurston Maps for Trees of Hyperbolic Metric Spaces
    CANNON-THURSTON MAPS FOR TREES OF HYPERBOLIC METRIC SPACES MAHAN MITRA Abstract. Let (X,d) be a tree (T) of hyperbolic metric spaces satisfying the quasi-isometrically embedded condition. Let v be a vertex of T . Let (Xv, dv) denote the hyperbolic metric space corresponding to v. Then i : Xv → X extends continuously to a map ˆi : Xv → X. This generalizes and gives a new proof of a Theorem of Cannon and Thurston. The techniques are used to give a differentc proofb of a result of Minsky: Thurston’s ending lamination conjecture for certain Kleinian groups. Applications to graphs of hyperbolic groups and local connectivity of limit sets of Kleinian groups are also given. 1. Introduction Let G be a hyperbolic group in the sense of Gromov [13]. Let H be a hyperbolic subgroup of G. We choose a finite symmetric generating set for H and extend it to a finite symmetric generating set for G. Let ΓH and ΓG denote the Cayley graphs of H, G respectively with respect to these generating sets. By adjoining the Gromov boundaries ∂ΓH and ∂ΓG to ΓH and ΓG, one obtains their compactifications ΓH and ΓG respectively. We’d like to understand the extrinsic geometry of H indG. Sinced the objects of study here come under the purview of coarse geometry, asymptotic or ‘large-scale’ information is of crucial importance. That is to say, one would like to know what happens ‘at infinity’. We put this in the more general context of a hyperbolic group H acting freely and properly discontinuously by isometries on a proper hyperbolic metric space X.
    [Show full text]
  • Limit Roots of Lorentzian Coxeter Systems
    UNIVERSITY OF CALIFORNIA Santa Barbara Limit Roots of Lorentzian Coxeter Systems A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Arts in Mathematics by Nicolas R. Brody Committee in Charge: Professor Jon McCammond, Chair Professor Darren Long Professor Stephen Bigelow June 2016 The Thesis of Nicolas R. Brody is approved: Professor Darren Long Professor Stephen Bigelow Professor Jon McCammond, Committee Chairperson May 2016 Limit Roots of Lorentzian Coxeter Systems Copyright c 2016 by Nicolas R. Brody iii Acknowledgements My time at UC Santa Barbara has been inundated with wonderful friends, teachers, mentors, and mathematicians. I am especially indebted to Jon McCammond, Jordan Schettler, and Maribel Cachadia. A very special thanks to Jean-Phillippe Labb for sharing his code which was used to produce Figures 7.1, 7.3, and 7.4. This thesis is dedicated to my three roommates: Viki, Luna, and Layla. I hope we can all be roommates again soon. iv Abstract Limit Roots of Lorentzian Coxeter Systems Nicolas R. Brody A reflection in a real vector space equipped with a positive definite symmetric bilinear form is any automorphism that sends some nonzero vector v to its negative and pointwise fixes its orthogonal complement, and a finite reflection group is a group generated by such transformations that acts properly on the sphere of unit vectors. We note two important classes of groups which occur as finite reflection groups: for a 2-dimensional vector space, we recover precisely the finite dihedral groups as reflection groups, and permuting basis vectors in an n-dimensional vector space gives a way of viewing a symmetric group as a reflection group.
    [Show full text]
  • Boundary of CAT(0) Groups with Right Angles
    Boundary of CAT(0) Groups With Right Angles A dissertation submitted by Yulan Qing In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics TUFTS UNIVERSITY August 2013 c Copyright 2013 by Yulan Qing Adviser: Kim Ruane This dissertation is dedicated to my mom, who would have been very proud. i Abstract In [CK00], Croke and Kleiner present a torus complex whose universal cover has a non- locally connected visual boundary. They show that changing the intersection angle of the gluing loops in the middle torus changes the topological type of the visual boundary. In this thesis we study the effect on the topology of the boundary if the angle is fixed at π{2 but the lengths of the π1-generating loops are changed. In particular, we investigate the topology of the set of geodesic rays with infinite itineraries. We identify specific infinite-itinerary geodesics whose corresponding subsets of the visual boundary change their topological type under the length change in the space. This is a constructive and explicit proof of a result contained in Croke and Kleiner's more general theorem in [CK02]. The construction and view point of this proof is crucial to proving the next result about Tits boundary: we show that the Tits boundaries of Croke Kleiner spaces are homeomorphic under lengths variation. Whether this is true for the general set of CAT p0q 2-complexes is still open. We also study the invariant subsets of the set of geodesic rays with infinite itineraries. In the next chapter, we consider the geometry of actions of right-angled Coxeter groups on the Croke-Kleiner space.
    [Show full text]