Friction Welding for Cladding Applications: Processing, Microstructure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MTI Friction Welding Technology Brochure
Friction Welding Manufacturing Technology, Inc. All of us at MTI… would like to extend our thanks for your interest in our company. Manufacturing Technology, Inc. has been a leading manufacturer of inertia, direct drive and hybrid friction welders since 1976. We hope that the following pages will further spark your interest by detailing a number of our products, services and capabilities. We at MTI share a common goal…to help you solve your manufacturing problems in the most Table of Contents efficient way possible. Combining friction welding Introduction to Friction Welding 2 with custom designed automation, we have Advantages of MTI’s Process 3 demonstrated dramatic savings in labor and Inertia Friction Welding 4 material with no sacrifice to quality. Contact us Direct Drive & Hybrid Friction Welding 5 today to find out what we can do for you. Machine Monitors & Controllers 6 Safety Features 7 Flash Removal 7 MTI Welding Services 8 Weldable Combinations 9 Applications Aircraft/Aerospace 10 Oil Field Pieces 14 Military 16 Bimetallic & Special 20 Agricultural & Trucking 22 Automotive 28 General 38 Special Welders & Automated Machines 46 Machine Models & Capabilities 48 Friction Welding 4 What It Is Friction welding is a solid-state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanically induced rubbing motion and Information applied load. The resulting joint is of forged quality. Under normal conditions, the faying surfaces do not melt. Filler metal, flux and shielding gas are not required with this process. Dissimilar Materials Even metal combinations not normally considered compatible can be joined by friction welding, such as aluminum to steel, copper to aluminum, titanium to copper and nickel alloys to steel. -
Review on Different Hardening Models for Computation of Deep
S¯adhan¯a Vol. xx, No.x, xx xxxx, pp.xx–x c Indian Academy of Sciences DOI 12.3456/s78910-011-012-3 Review on Different Hardening Models for Computation of Deep Drawing Process Simulation A C S REDDY 1, C BHASKAR REDDY 2 and D V PALESWAR1 1 Department of Mechanical Engineering, Sreyas Institute of Engineering and Technology 2 Department of Mechanical Engineering, Srikalahsthi Institute of Engineering and Technology Abstract. we address herein various hardening models and their suitability in computational modelling of deep drawing process wherein magnesium alloy AZ31 as blank material. insight on all basic and advanced hardening models. The basic models as well as advanced models were illustrated in usefulness of them in metal forming. It is purely depends on the researcher to select the appropriate hardening model for extracting the real computational behavior resembling the true hardening property. MS received xxxx; revised xxxx; accepted xxxx Keywords. Strain hardening, Isotropic hardening, kinematic hardening, mixed hardening, deep drawing. 1 Introduction is of complex task in computational simulation of deep draw- ing and other processes had successfully implemented in the In practice, different metal forming processes such as deep last couple of decades. The finite Element Methods (FEM) is drawing, stamping, or bending operations are required in man- quite successful to simulate metal forming processes, but ac- ufacture of automotive parts, beverage or food cans, pan- curacy of the drawn parts depends upon the constitutive laws els of aerospace etc. In the last few decades the design of and their parameters identification. The development of ma- sheet metal manufacturing processes such as deep drawing terial models and their use in computational plasticity is of had been significantly influenced by modern tools, e.g. -
Friction Stir Welding of Aluminium Alloy AA5754 to Steel DX54
Aalto University School of Engineering Department of Engineering Design and Production Hao Wang Friction Stir Welding of Aluminium Al- loy AA5754 to Steel DX54: Lap Joints with Conventional and New Solu- tion Thesis submitted as a partial fulfilment of the requirements for the degree of Master of Science in Technology. Espoo, October 27, 2015 Supervisor: Prof. Pedro Vila¸ca Advisors: Tatiana Minav Ph.D. Aalto University School of Engineering ABSTRACT OF Department of Engineering Design and Production MASTER'S THESIS Author: Hao Wang Title: Friction Stir Welding of Aluminium Alloy AA5754 to Steel DX54: Lap Joints with Conventional and New Solution Date: October 27, 2015 Pages: 100 Major: Mechanical Engineering Code: IA3027 Supervisor: Professor Pedro Vila¸ca Advisors: Tatiana Minav Ph.D. The demand for joining of aluminum to steel is increasing in the automotive industry. There are solutions based on Friction Stir Welding (FSW) implemented to join these two dissimilar metals but these have not yet resulted in a reliable joint for the automotive industrial applications. The main reason is the brittle intermetallic compounds (IMCs) that are prone to form in the weld region. The objective of this thesis was to develop and test an innovative overlap joint concept, which may improve the quality of the FSW between aluminum alloy AA5754-H22 (2 mm) and steel DX54 (1.5 mm) for automotive applications. The innovative overlap joint concept consists of an interface with a wave shape produced on the steel side. The protrusion part of the shape will be directly processed by the tip of the probe with the intention of improving the mechanical resistance of the joint due to localized heat generation, extensive chemically active surfaces and extra mechanical interlocking. -
Work Hardening and Annealing of Copper
Work Hardening and Annealing of Copper Thomas Stoebe University of Washington Seattle, WA [email protected] Copyright Edmonds Community College 2007; Permission granted for use and reproduction for educational purposes only. Abstract: This experiment demonstrates the process of work hardening in a copper, that is, hardening the metal by deformation. If an appropriate furnace is available, it also demonstrates the softening process of annealing. Copper wire or tubing is quite soft in its initial state, allowing for a variety of uses where the tubing needs to be bent to a desired shape. Upon bending, the copper hardens due to work hardening (also called strain hardening). Enough bending will make it impossible to return it to its original shape. However, annealing at a high enough temperature causes new, strain-free material to form and the copper will return to its original soft condition. Objectives: Students will be able to Experience the process of work hardening Explain the effects of work hardening in metals Experience property changes affected by annealing MatEd core competencies addressed (most important in bold): 4A Demonstrate effective work with teams 7A Illustrate the general nature of metals 8B Apply mechanical testing processes to solid materials 16A Distinguish effects of processing on materials properties Key words: copper, work hardening, annealing, properties Type of Module: Demonstration with class participation or lab experiment Time required: 5 to 10 minutes for deformation and discussion 30 min. for annealing, 10 min for cooling 5 to 10 minutes for deformation of the annealed specimens Target Grade Levels: Grades 4 and up will appreciate the experiment as a demonstration. -
In-Situ Measurement and Numerical Simulation of Linear
IN-SITU MEASUREMENT AND NUMERICAL SIMULATION OF LINEAR FRICTION WELDING OF Ti-6Al-4V Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kaiwen Zhang Graduate Program in Welding Engineering The Ohio State University 2020 Dissertation Committee Dr. Wei Zhang, advisor Dr. David H. Phillips Dr. Avraham Benatar Dr. Vadim Utkin Copyrighted by Kaiwen Zhang 2020 1 Abstract Traditional fusion welding of advanced structural alloys typically involves several concerns associated with melting and solidification. For example, defects from molten metal solidification may act as crack initiation sites. Segregation of alloying elements during solidification may change weld metal’s local chemistry, making it prone to corrosion. Moreover, the high heat input required to generate the molten weld pool can introduce distortion on cooling. Linear friction welding (LFW) is a solid-state joining process which can produce high-integrity welds between either similar or dissimilar materials, while eliminating solidification defects and reducing distortion. Currently the linear friction welding process is most widely used in the aerospace industry for the fabrication of integrated compressor blades to disks (BLISKs) made of titanium alloys. In addition, there is an interest in applying LFW to manufacture low-cost titanium alloy hardware in other applications. In particular, LFW has been shown capable of producing net-shape titanium pre-forms, which could lead to significant cost reduction in machining and raw material usage. Applications of LFW beyond manufacturing of BLISKs are still limited as developing and quantifying robust processing parameters for high-quality joints can be costly and time consuming. -
Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds
materials Article Fatigue Behavior of Linear Friction Welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Dissimilar Welds Sidharth Rajan 1,2,* , Priti Wanjara 1 , Javad Gholipour 1 and Abu Syed Kabir 2 1 National Research Council Canada (NRC), Aerospace Research Center, 2107 Chemin de la Polytechnique, Campus de l’Université de Montréal, Montréal, QC H3T 1J4, Canada; [email protected] (P.W.); [email protected] (J.G.) 2 Mechanical and Aerospace Department, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] * Correspondence: [email protected] Abstract: The use of joints fabricated from dissimilar titanium alloys allows the design of structures with local properties tailored to different service requirements. To develop welded structures for aerospace applications, particularly under critical loading, an understanding of the fatigue behavior is crucial, but remains limited, especially for solid-state technologies such as linear friction welding (LFW). This paper presents the fatigue behavior of dissimilar titanium alloys, Ti–6Al–4V (Ti64) and Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242), joined by LFW with the aim of characterizing the stress versus number of cycles to failure (S-N) curves in both the low- and high-cycle fatigue regimes. Prior to fatigue testing, metallurgical characterization of the dissimilar alloy welds indicated softening in the heat-affected zone due to the retention of metastable β, and the typical practice of stress relief annealing (SRA) for alleviating the residual stresses was effective also in transforming the metastable β α β to equilibrated levels of + phases and recovering the hardness. -
Rotational Friction Welding Flyer
ROTATIONAL FRICTION WELDING MANUFACTURINGMANUFACTURING TECHNOLOGY,TECHNOLOGY, INC MTI is a world leader in designing and manufacturing friction welders, and offers a full line of all three TOP TEN ADVANTAGES: main types of Rotational Friction Welding machines — . 1 The machine-controlled process Inertia, Direct Drive, and Hybrid. eliminates human error—weld quality is independent of operator skill. 2 Dissimilar metals can be joined— even some considered incompatible WHAT IS ROTATIONAL FRICTION WELDING? or unweldable. Rotational Friction Welding is a solid-state joining process that produces coalescence . 3 Consumables are not required— in metals, or non-metals using the heat developed between two surfaces by a no flux, filler material, or shielding combination of mechanically-induced rotational rubbing motion and applied load. gases are needed. Under normal conditions, the fraying surfaces do not melt. 4 Only creates a narrow heat-affected zone, which results in more uniform There are three basic types of Rotational Friction Welding: Inertia Welding, Direct properties throughout the part, higher joint efficiencies, and stronger welds. Drive Welding, and Hybrid. Other variations include: Radial, Orbital, Linear or Reciprocating Welding and Friction Stir Welding. 5 The 100% bond of the contact area creates joints of forged quality. WHY ROTATIONAL FRICTION WELDING? . 6 Reduces raw material and machining costs when replacing forgings. Rotational Friction Welding does not compromise the integrity of the parent materials during welding – resulting in stronger welds, more uniform part properties, and . 7 Environmentally friendly, producing higher joint efficiencies. Even materials and geometries deemed unweldable are able to no smoke, fumes, or slag. be joined using Rotational Friction Welding. -
The Use of Friction Welding for Corrosion Control in the Offshore Oil and Gas Industry Proserv UK To: Icorr, Aberdeen Branch 27.01.2015
The Use of Friction Welding for Corrosion Control in the Offshore Oil and Gas Industry Proserv UK To: Icorr, Aberdeen Branch 27.01.2015 Dave Gibson - Technical Authority, Friction Welding [email protected] Our Evolution What We Do: Life of Field Services Business Division What We Offer Solutions & Services • BOP Services Drilling Control Products and services • Drilling Control Systems Assurance & Performance Systems (DCS) focussed on operational • After-market & Lifecycle Management assurance Production Equipment Products and services • Flow Assurance & Sampling Solutions Systems (PES) focussed on production • Production Control & Safety Solutions optimisation • Asset Performance & Operational Integrity Products, services and • Subsea Marginal Field Development Subsea Production system design focused on • Subsea Brownfield Extension, Upgrade & Optimisation Systems (SPS) production enhancement • Obsolescence Management • Subsea Life of Field Services & Support • Subsea Infrastructure, Repair & Maintenance Products and services • Emergency Pipeline Repair Marine Technology focused on intervention and • Diverless Intervention Services (MTS) remediation to assure asset • Wellhead Abandonment & Decommissioning integrity • Friction Welding Summary 1. Why use Friction Welding Chosen for Corrosion Control ? 2. The Portable Friction Welding Process 3. Fatigue Strength of Friction Welds 4. Subsea Friction Welding Tooling 5. Subsea applications of Friction Welding for Cathodic Protection 6. Topside friction welding tooling 7. Topside applications of Friction welding for corrosion control 8. Corrosion Sensor Attachment Why is Friction Welding Chosen for Corrosion Control? Subsea • Welded, low electrical resistance, low maintenance connection • Suitable for large flat surfaces where clamps can’t be used (e.g. FPSO hulls, large diameter jacket legs and wind farm piles) • Better fatigue strength than arc welds in the “as welded” condition • When used with an ROV lower vessel costs and rapid installation. -
Beam Welding
EAA Aluminium Automotive Manual – Joining 4. Beam welding Contents: 4. Beam welding 4.0 Introduction 4.1 Laser beam welding 4.1.1 Laser sources 4.1.1.1 CO2 lasers 4.1.1.2 Solid state lasers 4.1.2 Laser beam welding processes 4.1.2.1 Heat conduction welding 4.1.2.2 Deep penetration welding 4.1.2.3 Twin laser welding 4.1.2.4 Remote laser welding 4.1.2.5 Laser welding of tubes, profiles and tailored blanks 4.1.2.6 Laser deposit welding 4.1.3 Laser welding defects 4.1.4 Joint configurations 4.1.5 Addition of filler wire 4.1.6 Shielding gases for laser welding 4.1.7 Characteristics of laser welding of aluminium alloys 4.2 Electron beam welding 4.2.1 Vacuum electron beam welding 4.2.2 Non-vacuum electron beam welding 4.2.3 Electron beam welding of aluminium alloys Version 2015 ©European Aluminium Association ([email protected]) 1 4.0 Introduction This chapter provides a technical overview of the unique features of the beam welding processes: - Laser Beam Welding (LBW) and - Electron Beam Welding (EBW) including several examples of automotive aluminium applications. Apart from welding, both process techniques are also used for cutting and for surface treatment of aluminium products. Electron beam welding results in very deep, narrow penetration at high welding speeds. It is usually carried out in a vacuum chamber, but also non-vacuum welding machines are used. The low overall heat input of electron beam welding enables to achieve the highest as-welded strength levels in aluminium alloys. -
MSL Engineering Limited Platinum Blue House 1St Floor, 18 the Avenue Egham, Surrey, TW20 9AB
SMR Final Report 121404 Purpose of Issue Rev Date of Issue Author Agreed Approved Issued for information 0 Aug 2004 SM Issued for internal comment 1 November 2004 AFD DJM JB Issued as Final Report 2 December 2004 AFD DJM JB This Final report has been reviewed and approved by the Mineral Management Service. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This study was funded by the Mineral Management Service, U.S. Department of the Interior, Washington, D.C., under Contract Number 1435-01-04-CT-35320 ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES Project #502 DOC REF C357R001 Rev 1 NOV 2004 MSL Engineering Limited Platinum Blue House 1st Floor, 18 The Avenue Egham, Surrey, TW20 9AB Tel: +44 (0)1784 439194 Fax: +44 (0)1784 439198 E-mail: [email protected] C357R001Rev 2, December 2004 MMS Project #502 NUMBER DETAILS OF REVISION 0 Issued for information, August 2004 1 Issued for comment, November 2004. Extensive revisions throughout, including restructuring of report. 2 Issued as Final Report, December 2004. Conversion table added, Figure showing clamp details to avoid added, and general editorial revisions. C357R001Rev 2, December 2004 MMS Project #502 Assessment of Repair Techniques for Ageing or Damaged Structures By Dr. Adrian F Dier MSL Services Corporation Final Project Report: ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES MMS Project Number 502 November 2004 C357R001Rev 2, December 2004 i This Final report has been reviewed a nd approved by the Mineral Management Service. -
Friction Stir Processing of Aluminum Alloys
University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2004 FRICTION STIR PROCESSING OF ALUMINUM ALLOYS RAJESWARI R. ITHARAJU University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation ITHARAJU, RAJESWARI R., "FRICTION STIR PROCESSING OF ALUMINUM ALLOYS" (2004). University of Kentucky Master's Theses. 322. https://uknowledge.uky.edu/gradschool_theses/322 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS FRICTION STIR PROCESSING OF ALUMINUM ALLOYS Friction stir processing (FSP) is one of the new and promising thermomechanical processing techniques that alters the microstructural and mechanical properties of the material in single pass to achieve maximum performance with low production cost in less time using a simple and inexpensive tool. Preliminary studies of different FS processed alloys report the processed zone to contain fine grained, homogeneous and equiaxed microstructure. Several studies have been conducted to optimize the process and relate various process parameters like rotational and translational speeds to resulting microstructure. But there is only a little data reported on the effect of the process parameters on the forces generated during processing, and the resulting microstructure of aluminum alloys especially AA5052 which is a potential superplastic alloy. In the present work, sheets of aluminum alloys were friction stir processed under various combinations of rotational and translational speeds. -
Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming
Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- (2000) - 15th International Specialty Conference Formed Steel Structures on Cold-Formed Steel Structures Oct 19th, 12:00 AM Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming P. A. Sloof R. M. Schuster Follow this and additional works at: https://scholarsmine.mst.edu/isccss Part of the Structural Engineering Commons Recommended Citation Sloof, P. A. and Schuster, R. M., "Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming" (2000). International Specialty Conference on Cold-Formed Steel Structures. 4. https://scholarsmine.mst.edu/isccss/15iccfss/15iccfss-session9/4 This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. Fifteenth International Specialty Conference on Cold-Formed Steel Structures St. Louis, Missouri U.S.A., October 19-20, 2000 Yield Strength Increase of Cold Formed Sections Due to Cold Work of Forming P. A. Sioor, P.Eng. and R.M. Schuster2, P.Eng. Abstract The design approach for predicting the increase in yield strength due to cold work of fonning in the AISI 1996 Specification for the Design of Cold-Fonned Steel Structural members is different from the approach used by the CSA Standard, CSA SI36-94, Cold Fonned Steel Structural Members.