Taxonomy, Phylogeny and Resource Use of Glyptapanteles (Hymenoptera: Braconidae, Microgastrinae), Genus Highly Diversified in the Neotropics

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy, Phylogeny and Resource Use of Glyptapanteles (Hymenoptera: Braconidae, Microgastrinae), Genus Highly Diversified in the Neotropics TAXONOMY, PHYLOGENY AND RESOURCE USE OF GLYPTAPANTELES (HYMENOPTERA: BRACONIDAE, MICROGASTRINAE), GENUS HIGHLY DIVERSIFIED IN THE NEOTROPICS BY DIANA CAROLINA ARIAS PENNA DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor James B. Whitfield, Chair, Director of Research Professor May R. Berenbaum Professor Sydney A. Cameron Dr. Marianne Alleyne Dr. Kevin P. Johnson ABSTRACT Among hymenopteran parasitoid wasps, Ichneumonoidea is one of the superfamilies with the highest number of species and includes the highly diverse Microgastrinae subfamily. Microgastrinae wasps are very abundant and can be collected in many different terrestrial habitats. A considerable number of species have been used in successful biological pest control programs, making it one of the most important insect groups. Glyptapanteles is one of the larger genera within Microgastrinae, which was segregated after several attempts to subdivide the gigantic genus Apanteles Foerster 1862. To date, 122 species have been described worldwide, of which only six are Neotropical, despite unpublished evidence that this genus is one of the largest in the Neotropics. Glyptapanteles are diminutive parasitoid wasps, which are free-living as adults, but as immatures, they attack exclusively larvae of Lepidoptera as a food resource for their developing larvae. These parasitoid wasps play a preponderant role in regulating their lepidopteran host populations and in maintaining high biological diversity in terrestrial ecosystems. A reliable revision for the Neotropics has not yet been attempted and many Glyptapanteles species remain undescribed. The scarcity of both taxon sampling and biological information is no longer standard for some Neotropical groups of insects. In the case of Glyptapanteles, the increasing accumulation of information, during the last four decades, derives from two independent long-term rearing projects: the caterpillar and parasitoid inventory of the Área de Conservación en Guanacaste (ACG) in Northwestern Costa Rica and the project Caterpillars and Parasitoids of the Eastern Andes (CAPEA) in Ecuador. This massive microgastrine material is available in Dr. James Whitfield’s laboratory at the University of Illinois, Urbana-Champaign (UIUC) and was the fundamental for my research. Chapter 1 is focused on the first taxonomic revision of Neotropical Glyptapanteles species from Costa Rica and Ecuador. Here, I describe 137 new species, 78 from Costa Rica and 59 from Ecuador. The taxonomic revision includes an extensive morphological image library for each of the species described and consists of about 2,331 high-resolution images which were used to create 223 plates. The pictures were obtained by both scanning electron microscope (SEM) and Z-stacked images merging different focus positions. The reference collection for this study comprises a total of 16,663 specimens, of which 13,540 are preserved in 100% ethanol and 3,123 are point mounted. Most of the species described (91 spp.) are completely gregarious while 28 ii are exclusively solitary, nine species exhibited both solitary and gregarious lifestyles and the remaining nine species were collected by Malaise traps. Three different sets of data (morphology, host records and DNA barcoding) were integrated in order to generate accurate boundaries between species. In Chapter 2, the first Glyptapanteles phylogeny based on morphological and molecular data from fragments of four genes is presented. The genes include mitochondrial COI (cytochrome c oxidase subunit 1) and three nuclear genes: Alpha-spectrin; long-wavelength opsin (LW Rh) and wg (wingless). All the Costa Rican material had associated COI, sequences generated partly by the collaborators in the Biodiversity Institute of Ontario, University of Guelph, Canada and partly by the Keck Center, UIUC. In contrast, COI sequences for Ecuador material and all nuclear genes were generated at UIUC. Phylogeny estimation included maximum likelihood and Bayesian inference. The most well supported phylogenetic reconstruction revealed two discrete clades, and although support was low at basal nodes, relationships at intermediate and terminal nodes were resolved with high support. The majority of the parasitoid samples are endowed with information about their herbivore hosts as well as host plants, providing information across three trophic levels. Mapping this information onto the phylogeny revealed patterns of niche conservatism in one of the clades. It was revealed that host preferences of Glyptapanteles are concentrated primarily in exposed feeding Macrolepidoptera, although ancestrally they explored Microlepidoptera. iii ACKNOWLEDGMENTS I would like to give sincere gratitude to my advisor Dr. James B. Whitfield for believing in me, giving me the opportunity to come from Colombia to the United States and permitting me to be part of his Microgastrinae lab family. I am really indebted to him for his continued support and encouragement. I hope we can continue our collaboration as colleagues. To Dr. Michael J. Sharkey (Kentucky University, USA), Dr. Thomas Pape (Natural History Museum of Denmark) and Dr. Marc A.A. Pollet (Institute for the Promotion of Innovation through Science and Technology (IWT-Vlaanderen), Belgium) for taking the time to write on behalf of my graduate school application. I appreciate your support. To Dr. Josephine J. Rodriguez for her encouragement and guidance during my first days at the UIUC, and valuable input on my draft proposal. This research project would not have been possible without the support of many people. To Dr. Daniel Janzen, Dr. Winifred Hallwachs, and Dr. Lee Dyer, who provided tons of specimens which are the backbone of my dissertation. To Dr. Alexander L. Wild and Jaqueline M. O’Connor for their guidance and training during my first steps in molecular skills. A special thanks to my colleague Andrew H. Debevec who enlightened me during my technical difficulties running phylogenetics programs. I would like to give very special thanks to Brielle Fischman and Dr. Felipe Soto-Adames for their prompt collaboration and valuable assistance with alignment of sequences critical for my molecular analysis. I am thankful to Yali Zhang for her assistance in preparing wasps for dry collection during the initial steps of this project. To Scott J. Robinson, and Catherine L. Wallace from the microscopy suite, imaging technology group, Beckman Institute for their help in taking SEM images. To Dr. Andrew Suarez for giving me access to his laboratory equipment and allowing me to take the digital images. A special thanks goes to Kyle Parks, Dr. Sydney Cameron and all her lab members: Michelle Duennes, John Maddux, Charles Deans and those who exited some time ago searching for new challenges, Haw Chuan Lim and Jeff Lozier for their advice and useful comments to my proposal. iv To my friends and colleagues Tolu, Marsha, Juma, Ling-Hsiu, Doris, Mami, Sindu, Tania, Nathalie and Rafa who were my companions. People, you made me feel at home. I thank you for the moments I spent with each of you. I am grateful to all of my family for their endless support. My mom, Amanda Penna, my sisters Tania Arias and Sofía Arias as well as my brother-in-law Thibaut Delsinne. One special and deepest thanks to my husband, Peter Marz, who accepted to be my travel companion in this long voyage, for his unconditional support, patience and taking care of me during the most critical stages of my research. Also, to my son Andrés, for bringing great joy and happiness to our lives. I would like to thank members of my dissertation committee, professors from the Entomology department and graduate students who contributed to my academic development, learning opportunities and life experience. v TABLE OF CONTENTS CHAPTER 1: A TAXONOMIC REVISION OF THE GLYPTAPANTELES SPECIES (HYMENOPTERA: BRACONIDAE, MICROGASTRINAE) WITH EMPHASIS UPON REARED MATERIAL FROM COSTA RICA AND ECUADOR……………………………… 1 Abstract …………………………………………………………………...……..……………1 Introduction……………………………………………………………………..……………. 2 Materials and Methods……………………………………………………..…………..….…. 6 Results…………………………………………..……………………………………………12 Acknowledgments……………….……..…………….……..…………….………….……. 516 References……………….……..…………….……..…………….……………….………. 518 CHAPTER 2: MOLECULAR PHYLOGENY OF GLYPTAPANTELES (HYMENOPTERA: BRACONIDAE, MICROGASTRINAE) AND HERBIVORE HOST USE IN A SPECIES-RICH NEOTROPICAL GROUP OF PARASITOID WASPS ……………………………………… 529 Abstract …………….……………….…………………………………..……………….…529 Introduction……………….……………….…………………………………..……………529 Materials and Methods ……………….……………………………………….…..….…… 534 Results………….……………………………………………………..………………..….. 541 Conclusions ……………………………………………………..….…………….……..… 550 Acknowledgments ……………………………………………………..………………..… 552 References ………………………………...………………..…..…………….…………… 553 APPENDIX A: MATERIAL EXAMINED …………………………………………..……… 561 APPENDIX B: FIGURES……………………………………………………………..……… 562 APPENDIX C: HOLOTYPES …………………………………………………...…………… 563 APPENDIX D: PARASITOIDS, HERBIVORES AND PLANT HOSTS …………..………. 564 vi APPENDIX E: CYTOCHROME OXIDASE I, (COI) FROM COSTA RICA AND ECUADOR …………………………………………………………………………………………………. 565 APPENDIX F: MORPHOLOGICAL CHARACTER LIST OF GLYPTAPANTELES ………. 566 APPENDIX G: GLYPTAPANTELES DNA EXTRACTION …………………..…………….. 567 APPENDIX H: MOLECULAR DATASETS…………………………………………..……. 568 vii CHAPTER 1 A Taxonomic Revision of
Recommended publications
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Butterflies and Moths of Gwinnett County, Georgia, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Bunga Rampai Tembakau Madura Yang Berjudul “Peningkatan Produksi Dan Mutu Tembakau Madura Melalui Inovasi Teknologi Dan Dukungan Kebijakan”
    PENINGKATAN PRODUKSI DAN MUTU TEMBAKAU MADURA MELALUI INOVASI TEKNOLOGI DAN DUKUNGAN KEBIJAKAN i ii PENINGKATAN PRODUKSI DAN MUTU TEMBAKAU MADURA MELALUI INOVASI TEKNOLOGI DAN DUKUNGAN KEBIJAKAN Penyunting Djajadi Bambang Heliyanto Titiek Yulianti Emy Sulistyowati Subiyakto Mohammad Cholid Joko Hartono Nur Richana iii IAARD PRESS Peningkatan Produksi Dan Mutu Tembakau Madura Melalui Inovasi Teknologi Dan Dukungan Kebijakan @2018 IAARD PRESS Edisi 1 : 2018 Hak cipta dilindungi Undang-undang @IAARD PRESS Katalog dalam terbitan (KDT) BALAI PENELITIAN TANAMAN PEMANIS DAN SERAT: Peningkatan Produksi dan Mutu Tembakau Madura Melalui Inovasi Teknologi dan Dukungan Kebijakan/ Djajadi… [dkk.].-Jakarta : IAARD Press, 2018. xxvii, 353 hlm.; 21 cm. ISBN: 978-602-344-239-3 633.71 1. Balittas 2. Tembakau Madura 3. Produksi 4. Mutu I. Judul II. Djajadi Penulis : Aprilia Ridhawati; Djajadi; Elda Nurnasari; Fadjry Djufry; Fatkhur Rochman; Heri Prabowo; Joko Hartono; Kristiana Sri Wijayanti; Lia Verona; Nunik Eka Diana; Nur Asbani; Roni Syaputra; Ruly Hamida; Sesanti Basuki; Sri Adi Kadarsih; Sri Yulaikah; Subiyakto; Sulis Nur Hidayati; Suminar Dyah Nugraheni; Supriyadi; Supriyono; Suwarso; Teger Basuki; Yoga Angangga Yogi Penyunting Djajadi Bambang Heliyanto Titiek Yulianti Emy Sulistyowati Subiyakto Mohammad Cholid Joko Hartono Nur Richana Perancang Cover dan Penata Letak : Tim Kreatif IAARD PRESS Penerbit IAARD PRESS Badan Penelitian dan Pengembangan Pertanian Jl, Ragunan No 29, Pasar Minggu, Jakarta 12540 Email: [email protected] iv Anggota IKAPI No: 445/DKI/2012 v PENGANTAR uji syukur kami panjatkan ke hadirat Allah Tuhan Yang Maha Esa atas semua limpahan rahmat dan karunia-Nya Psehingga buku mengenai Tembakau Madura yang berjudul ”Peningkatan Produksi dan Mutu Tembakau Madura Melalui Inovasi Teknologi dan Dukungan Kebijakan” dapat diterbitkan.
    [Show full text]
  • 117 La Familia Combretaceae En La Cuenca Del Río Balsas
    Núm.19, pp.117-153, ISSN 1405-2768; México, 2005 LA FAMILIA COMBRETACEAE EN LA CUENCA DEL RÍO BALSAS, MÉXICO Erika Margarita Pagaza Calderón Rafael Fernández Nava Laboratorio de Fanerógamas, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, IPN Apartado Postal 17-564, México, DF, CP 11410, MÉXICO RESUMEN Dentro del área de estudio se reconoce la existencia de cinco géneros con ocho En el presente trabajo se realizó una revisión especies de la familia Combretaceae: Bucida taxonómica de la familia Combretaceae para wiginsiana, Combretum argenteum, C. el área de la cuenca del río Balsas; se decandrum, C. fruticosum, C. laxum, incluyen descripciones y claves Conocarpus erecta, Laguncularia racemosa, dicotómicas para la identificación de los y Terminalia catappa. El género Bucida es géneros y las especies que se distribuyen reportado por primera vez para el área de dentro de la zona de estudio. estudio. El proyecto se desarrolló mediante la ABSTRACT revisión de más de 200 ejemplares de los herbarios de las siguientes instituciones: In this paper we present a taxonomic Escuela Nacional de Ciencias Biológicas revision of the family Combretaceae for the (ENCB), Instituto de Biología de la UNAM Balsas River basin, Mexico. The study area (MEXU), Facultad de Ciencias de la UNAM covers part of 8 states of our country (State (FCME), Universidad Autónoma de of Mexico, Guerrero, Jalisco, Michoacan, Chapingo, Sección de Posgrado (CHAP); Morelos, Oaxaca, Puebla and Tlaxcala). Instituto Nacional de Investigaciones Forestales (INIF), Universidad Autónoma The present work includes descriptions and del Estado de Morelos (HUMO) y la dichotomous keys for identifying genera Universidad Autónoma Metropolitana and species distribuited on this area.
    [Show full text]
  • The Mcguire Center for Lepidoptera and Biodiversity
    Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens.
    [Show full text]
  • A Revolutionary Protocol to Describe Understudied Hyperdiverse Taxa
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Deutsche Entomologische Zeitschrift (Berliner Entomologische Zeitschrift und Deutsche Entomologische Zeitschrift in Vereinigung) Jahr/Year: 2019 Band/Volume: NF_66 Autor(en)/Author(s): Meierotto Sarah, Sharkey Michael J., Janzen Daniel H., Hallwachs Winnie, Hebert Paul D. N., Chapman Eric G., Smith M. Alex Artikel/Article: A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment 119-145 ©https://dez.pensoft.net/;Licence: CC BY 4.0 Dtsch. Entomol. Z. 66 (2) 2019, 119–145 | DOI 10.3897/dez.66.34683 A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment Sarah Meierotto1, Michael J. Sharkey1, Daniel H. Janzen2, Winnie Hallwachs2, Paul D. N. Hebert3, Eric G. Chapman1, M. Alex Smith4 1 Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA 2 Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA 3 Centre for Biodiversity Genomics, Guelph, ON, N1G 2W1, Canada 4 Department of Integrative Biology, University of Guelph, Guelph, Canada http://zoobank.org/FDA33662-0595-4AC1-B9BA-9F2C1311D114 Corresponding author: Sarah Meierotto ([email protected]); Michael J. Sharkey ([email protected]) Academic editor: D. Zimmermann ♦ Received 21 March 2019 ♦ Accepted 2 July 2019 ♦ Published 25 July 2019 Abstract Here we elucidate and justify a DNA barcode approach to insect species description that can be applied to name tens of thousands of species of Ichneumonoidea and many other species-rich taxa. Each description consists of a lateral habitus image of the specimen, a COI barcode diagnosis, and the holotype specimen information required by the International Code of Zoological Nomenclature.
    [Show full text]
  • Extreme Diversity of Tropical Parasitoid Wasps Exposed by Iterative Integration of Natural History, DNA Barcoding, Morphology, and Collections
    Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections M. Alex Smith*†, Josephine J. Rodriguez‡, James B. Whitfield‡, Andrew R. Deans§, Daniel H. Janzen†¶, Winnie Hallwachs¶, and Paul D. N. Hebert* *The Biodiversity Institute of Ontario, University of Guelph, Guelph Ontario, N1G 2W1 Canada; ‡Department of Entomology, 320 Morrill Hall, University of Illinois, 505 S. Goodwin Avenue, Urbana, IL 61801; §Department of Entomology, North Carolina State University, Campus Box 7613, 2301 Gardner Hall, Raleigh, NC 27695-7613; and ¶Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018 Contributed by Daniel H. Janzen, May 31, 2008 (sent for review April 18, 2008) We DNA barcoded 2,597 parasitoid wasps belonging to 6 microgas- A detailed recognition of species in parasitoid communities is trine braconid genera reared from parapatric tropical dry forest, cloud necessary because of the pivotal role parasitoids play in food web forest, and rain forest in Area de Conservacio´ n Guanacaste (ACG) in structure and dynamics. While generalizations about the effects of northwestern Costa Rica and combined these data with records of parasitoids on community diversity are complex (7), a common- caterpillar hosts and morphological analyses. We asked whether place predictor of the impact of a parasitoid species on local host barcoding and morphology discover the same provisional species and dynamics is whether the parasitoid is a generalist or specialist. A whether the biological entities revealed by our analysis are congruent generalist, especially a mobile one, is viewed as stabilizing food webs with wasp host specificity. Morphological analysis revealed 171 (see ref.
    [Show full text]
  • Sensory Gene Identification in the Transcriptome of the Ectoparasitoid
    www.nature.com/scientificreports OPEN Sensory gene identifcation in the transcriptome of the ectoparasitoid Quadrastichus mendeli Zong‑You Huang, Xiao‑Yun Wang, Wen Lu & Xia‑Lin Zheng* Sensory genes play a key role in the host location of parasitoids. To date, the sensory genes that regulate parasitoids to locate gall‑inducing insects have not been uncovered. An obligate ectoparasitoid, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), is one of the most important parasitoids of Leptocybe invasa, which is a global gall‑making pest in eucalyptus plantations. Interestingly, Q. mendeli can precisely locate the larva of L. invasa, which induces tumor‑like growth on the eucalyptus leaves and stems. Therefore, Q. mendeli–L. invasa provides an ideal system to study the way that parasitoids use sensory genes in gall‑making pests. In this study, we present the transcriptome of Q. mendeli using high‑throughput sequencing. In total, 31,820 transcripts were obtained and assembled into 26,925 unigenes in Q. mendeli. Then, the major sensory genes were identifed, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. Three chemosensory proteins (CSPs), 10 gustatory receptors (GRs), 21 ionotropic receptors (IRs), 58 odorant binding proteins (OBPs), 30 odorant receptors (ORs) and 2 sensory neuron membrane proteins (SNMPs) were identifed in Q. mendeli by bioinformatics analysis. Our report is the frst to obtain abundant biological information on the transcriptome of Q. mendeli that provided valuable information regarding the molecular basis of Q. mendeli perception, and it may help to understand the host location of parasitoids of gall‑making pests.
    [Show full text]
  • E0020 Common Beneficial Arthropods Found in Field Crops
    Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents.
    [Show full text]
  • CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
    WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties.
    [Show full text]
  • Commodity Risk Assessment of Nerium Oleander Plants from Turkey
    SCIENTIFIC OPINION ADOPTED: 25 March 2021 doi: 10.2903/j.efsa.2021.6569 Commodity risk assessment of Nerium oleander plants from Turkey EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Alan MacLeod, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Elisavet Chatzivassiliou, Jane Debode, Charles Manceau, Ciro Gardi, Olaf Mosbach-Schulz and Roel Potting Abstract The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation EU/2018/2019 as ‘High risk plants, plant products and other objects’. This Scientific Opinion covers plant health risks posed by bare rooted and potted plants of Nerium oleander that are imported from Turkey, taking into account the available scientific information, including the technical information provided by the Turkish NPPO. The relevance of any pest for this opinion was based on evidence following defined criteria. One species, the EU non-regulated pest Phenacoccus solenopsis, fulfilled all relevant criteria and was selected for further evaluation. For this pest, the risk mitigation measures proposed in the technical dossier from Turkey were evaluated taking into account the possible limiting factors. For this pest, an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including uncertainties associated with the assessment. The Expert Knowledge Elicitation indicated, with 95% certainty, that between 9,719 and 10,000 plants per 10,000 would be free of P.
    [Show full text]