Analytical Study of Selected Anti-Inflammatory Drugs

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Study of Selected Anti-Inflammatory Drugs Analytical Study of Selected Anti-Inflammatory Drugs Thesis Presented by Enas Taha Abdelhamed M.Sc. in Pharmaceutical Sciences Pharmaceutical Chemistry Faculty of Pharmacy - Cairo University 2012 Submitted for The Degree of Doctor of Philosophy In Pharmaceutical Sciences (Pharmaceutical Chemistry) Under the supervision of Prof. Dr. Sonia Talat Hassib Professor of Pharmaceutical Chemistry Faculty of Pharmacy - Cairo University Prof. Dr. Ghaneya Sayed Hassan Professor of Pharmaceutical Chemistry Faculty of Pharmacy - Cairo University Prof. Dr. Asmaa Ahmed El-Zaher Professor of Pharmaceutical Chemistry Faculty of Pharmacy - Cairo University Dr. Marwa Ahmed Fouad Associate Professor of Pharmaceutical Chemistry Faculty of Pharmacy - Cairo University Faculty of Pharmacy Cairo University 2018 Abstract Four simple, accurate, sensitive and economic Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopic (ATR-FTIR) methods have been developed for the quantitative estimation of some non-steroidal anti- inflammatory drugs alone or in presence of related substances. The first method involves the determination of etodolac by direct measurement of the absorbance at 1716 cm-1. In the second method, the second derivative of the IR spectra of tolfenamic acid and its imperity (2-chlorobenzoic acid) was used and the amplitudes were measured at 1084.27 cm-1 and 1058.02 cm-1 for tolfenamic acid and 2-chlorobenzoic acid, respectively. The third method used the first derivative of the IR spectra of bumadizone and its reported degradation product, N,N-diphenylhydrazine and the amplitudes were measured at 2874.98 cm-1 and 2160.32 cm-1 for bumadizone and N,N-diphenylhydrazine, respectively. The fourth method depends on measuring the amplitude of diacerein at 1059.18 cm-1 and of rhein, its reported degradation product, at 1079.32 cm-1 in their first derivative spectra. The four methods were successfully applied on the pharmaceutical formulations by extracting the active constituent in chloroform and the extract was directly measured in liquid phase mode using a specific cell. Moreover, validation of these methods was carried out following International Conference of Harmonisation (ICH) guidelines. Synthesis of new derivatives through an esterification reaction between the carboxylic acid functional group in NSAIDs and a naturally occurring phenolic antioxidant, thymol, to give anew prodrug. This is one of possible approaches to solve GIT irritation problem. The suggested prodrugs to be prepared are Etodolac-thymol and Tolfenamic acid-thymol prodrugs. The new prodrugs structure should be confirmed by FT-IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analysis. After synthesis and structure confirmation, the prodrugs will be evaluated for their chemical stability in 2 different temperatures and pHs. Moreover, a kinetic study in 20% liver homogenate and 10% buffered plasma would be carried based on RP- HPLC method for the separation and determination of the 2 new prodrugs and their related bioactive products. Key words: ATR-FTIR, NSAIDs, Etodolac, Diacerein, Bumadizone, Tolfenamic acid, Prodrugs, RP- HPLC. 3 Aim of the Work NSAIDs represent one of the most important classes used for the treatment of many inflammatory diseases and possessing analgesic and antipyretic activity. The aim of this work is to develop simple, accurate, precise and, most importantly, sensitive methods for the determination of some NSAIDs either alone or in combination with their related substances. The work involves the analysis of these drugs in their pure form or in commercially used pharmaceutical dosage forms using ATR-FTIR spectroscopic technique. Drugs cited in this part are etodolac, diacerein, bumadizone and tolfenamic acid. The pharmacopoeial methods described for the analysis of etodolac and tolfenamic acid depend on titrimetric method in pure form. In literature, numerous analytical methods have been reported for the determination of etodolac and diacerein, while few methods were reported for bumadizone and tolfenamic acid. Till date, no reported ATR-FT-IR method appears to be available for the determination of the cited drugs. Derivative IR-spectroscopy has been suggested for resolving spectral overlap displayed by Diacerein and its degradation product rhein, bumadizone and its degradation product, N,N-diphenylhydrazine, finally tolfenamic acid and its impurity, 2-chlorobenzoic acid. In addition, method validation and statistical analysis was included to compare the obtained results of the proposed methods with those of reference or pharmacopoeial methods. Gastric irritation and ulcerogenic effect of the acidic NSAIDs are one of the most challenging problems in designing novel anti-inflammatory agents. 4 Therefore, prodrug approach can give an opportunity in medicinal chemistry to improve some undesirable properties hindering the clinical usefulness of a drug. The work was aimed to include synthesis of new derivatives through an esterification reaction between the carboxylic acid functional group in NSAIDs and a naturally occurring phenolic compound, thymol, to give a new prodrug. Thymol was selected to get a safer promoiety, a target which is always challenging in designing prodrugs. These types of promoieties were traditionally in use for their medicinal as well as flavoring properties with well documented safety profiles, thus do not involve the risk of unwanted effects after they are hydrolyzed. This is one of possible approaches to solve GIT irritation problem. The suggested prodrugs prepared were etodolac-thymol tolfenamic acid- thymol prodrugs. The new prodrugs structure were confirmed by FT-IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analysis. After synthesis and structure confirmation, the prodrugs were evaluated for their chemical stability in different temperatures and pHs. Moreover, a kinetic study in 20% liver homogenate and 10% buffered plasma were carried out based on a new developed RP-HPLC method for the separation and determination of the new prodrugs and their related bioactive products. 5 Non-Steroidal Anti-Inflammatory Drugs (NSAIDS). The term NSAID indicates a class of drugs known as non-steroidal anti- inflammatory drugs. This is an important therapeutic class of drugs which in addition to their anti-inflammatory effects, they may possess both analgesic and antipyretic activities. (1) The mechanism of action of NSAIDs involves inhibition of cyclooxygenases (COX), enzymes that initiate the formation of prostanoids.(2) There are 3 subtypes of COX enzymes: COX-1(constitutive), COX-2 (inducible in inflammatory processes), and isozyme COX-3.(3) To be an effective competitive inhibitor of arachidonic acid that binds to COX, (Figure- 1), a drug must possess both high lipophilic and acidic properties to mimic the natural substrate. Some NSAIDs inhibit the lipoxygenase pathway, which may itself result in the production of algogenic metabolites.(4) Figure-1: Arachidonic acid cascade.(4) 6 Classification of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). NSAIDs can be classified based on their chemical structure into: 1. Salicylate and salicylic acid derivatives: This group of drugs was among the first introduced into medicine, and aspirin is the prototype of this group. (3) Most of these drugs are either marketed as salts of salicylic acid, ester or amide derivatives. Salicylate derivatives may inhibit both forms of COX by reversible or irreversible mechanism (5) (Figure- 2a). Diflunisal is a moderately potent inhibitor of prostaglandin biosynthesis; it does not have appreciable effect on platelet aggregation and does not significantly produce gastric or intestinal bleeding (6) (Figure-2b). O O a. Aspirin O HO HO O HO F b. Diflunisal F Figure-2: Salicylate and salicylic acid derivatives. 2. Acetic acid derivatives: i) Phenylacetic acid derivative Diclofenac is used to treat painful conditions such as arthritis, sprains and strains, gout, migraine, dental pain, and pain after surgical operations. It decreases pain and inflammation (7) (Figure-3). Diclofenac potassium salt was developed to increase absorption rate with rapid onset of pain relief. (5) 7 HO O Cl NH Cl Figure-3: Chemical structure of diclofenac. ii) Aryl and heteroaryl carboxylic acid derivatives Indomethacin is more potent COX inhibitor than aspirin, but patient intolerance generally limits its use to short-term dosing (5) (Figure-4a). Ketorolac, (Figure-4b) is a non-steroidal agent with potent analgesic and moderate anti-inflammatory activity. It is administered orally, intramuscularly, intravenously, and as topical ophthalmic solution.(8) Sulindac, (Figure-4c) is a prodrug which is metabolized to a pharmacologically active sulfide derivative. This metabolite potently inhibits COX. Sulindac is also metabolized to the inactive sulfone derivative. (9) Etodolac, (Figure-4d) is an acetic acid derivative, which is primarily used in the treatment of rheumatic diseases and postoperative pain. It is rapidly metabolized in the liver, followed by renal elimination as the primary route of excretion. (10) O O OH a. Indomethacin N Cl O O O b. Ketorolac N OH 8 F O HO S c. Sulindac O HO H N d. Etodolac O O Figure-4: Aryl- and heteroaryl carboxylic acid derivatives. 3. Propionic Acid derivatives: Propionic acid derivatives are nonselective COX inhibitors, although there are considerable variations in their potency as COX inhibitors, they are approved for use in the symptomatic treatment of rheumatoid arthritis and osteoarthritis. Some are also approved for pain, ankylosing
Recommended publications
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • FORMULATION and EVALUATION of COLON TARGETED PELLETS of BUMADIZONE CALCIUM” Mr
    THESIS ISSN: 2349-2678 Contents lists available at www.ijpba.in International Journal of Pharmaceutical and Biological Science Archive PubMed (National Library of Medicine ID: 101738825) Index Copernicus Value 2017: 71.80 Volume 7 Issue 3; May-June; 2019; Page No. 01-69 “FORMULATION AND EVALUATION OF COLON TARGETED PELLETS OF BUMADIZONE CALCIUM” Mr. Shah Akashkumar Nareshkumar1, Mr. Anil G. Raval2 1PG Research Scholar, Department of Pharmaceutics, Sharda School of Pharmacy, Pethapur, Gandhinagar, Gujarat 2Assistant Professor, Department of Pharmaceutics, Sharda School of Pharmacy, Pethapur, Gandhinagar, Gujarat ABSTRACT Aim: The aim of this study was to Formulation and Evaluation of colon targeted pellets of Bumadizone Calcium Objective: Bumadizone Calcium is an acetic acid derivative, having irritation in stomach. Bumadizone Calcium has short half-life (4hrs) and undergoes first pass metabolism. It is pH-dependent. This research work was carried out to improve the bioavailability, patient compliance on oral colon targeted drug delivery. Bumadizone Calcium sustained release enteric coated pellets were prepared, which minimize the release of drug in stomach for treatment of IBD formulated by Extrusion Spheronization process. Experimental work done: Enteric coated pellets prepared by Extrusion Spheronization technique. Eudragit S100, HPMC, PVP K30, and Ethyl Cellulose were used as rate controlling polymers. In this study, a pH dependent colon targeted enteric coated pellets was established using 32 full factorial design by giving enteric coating with Eudragit S100. Different Concentration of Eudragit S100 as an enteric coating material (4%, 5%, & %6) and PVP K30 as a Binder (0.5%, 1% & 1.5%) are taken for the measurements of % Drug Release that are performed by using USP dissolution 1 (Basket type) at 50 rpm.
    [Show full text]
  • Søgeprotokol for Nationale Kliniske Retningslinjer
    Søgeprotokol for nationale kliniske retningslinjer Projekttitel/aspekt NKR behandling af patienter med lumbal spinalstenose – Søgning efter primærlitteratur Fagkonsulent /projektleder Rikke Rousing / Maria Herlev Ahrenfeldt Søgespecialist Kirsten Birkefoss Senest opdateret 23.12.2016 Fokuserede spørgsmål Bør patienter med lumbal spinalstenose have tilbudt aktiv PICO 1: behandling i form af superviseret træning fremfor vanlig behandling? PICO 2: Bør patienter med lumbal spinalstenose have tilbudt ledmobiliserende behandling frem for vanlig behandling? PICO 3: Bør patienter med lumbal spinalstenose have tilbudt paracetamol frem for ingen smertestillende behandling? PICO 4: Bør patienter med lumbal spinalstenose have tilbudt non steroid antiinflammatorisk medicin (NSAID) frem for ingen smertestillende behandling? PICO 5: Bør patienter med lumbal spinalstenose have tilbudt smertestillende medicin i form af opioider i tillæg til eventuel behandling med svage smertestillende? PICO 6: Bør patienter med lumbal spinalstenose have tilbudt muskelrelaxantia i tillæg til eventuel behandling med svage smertestillende? PICO 7: Bør patienter med lumbaspinalstenose have tilbudt medicin for neuropatiske smerter? PICO 8: Bør patienter med lumbal spinalstenose have tilbudt kirurgisk dekompression i tilfælde af manglende effekt af ikke kirurgisk behandling? PICO 9: Bør patienter med lumbal spinalstenose have tilbudt stivgørende operation med eller uden instrumentering i tillæg til dekompression? PICO 10: Bør patienter opereret for lumbal spinalstenose tilbydes
    [Show full text]
  • Bumadizone Calcium Dihydrate Microspheres Compressed Tablets for Colon Targeting: Formulation, Optimization and in Vivo Evaluation in Rabbits
    http://informahealthcare.com/drd ISSN: 1071-7544 (print), 1521-0464 (electronic) Drug Delivery, Early Online: 1–12 ! 2014 Informa Healthcare USA, Inc. DOI: 10.3109/10717544.2014.889779 RESEARCH ARTICLE Bumadizone calcium dihydrate microspheres compressed tablets for colon targeting: formulation, optimization and in vivo evaluation in rabbits Samia A. Nour, Nevine Shawky Abdelmalak, and Marianne J. Naguib Faculty of Pharmacy, Department of Pharmaceutics, Cairo University, Cairo, Egypt Abstract Keywords The objective of this study was the development of a colon-targeted microspheres which were Bumadizone calcium, colon targeting, compressed into tablets containing the non-steroidal anti-inflammatory bumadizone calcium histopathology, microspheres compressed 2 dihydrate. A 3 full factorial design was adopted for the evaluation of the prepared into tablets, myeloperoxidase activity, microspheres. The effect of two independent variables namely polymer type (Eudragit RS100, pharmacokinetic parameters ethyl cellulose and cellulose acetate butyrate), and drug: polymer ratio (1:1, 9:1 and 18:1) was studied on the entrapment efficiency and in vitro drug release for 12 h. Colon targeting aims History to minimize the release of the drug off target area (pH 1.2 and 6.8) and to maximize the release of the drug in target area (pH 7.4). Candidate formulae were compressed into core tablets Received 12 January 2014 and colon targeting was achieved using the enzyme-dependent polymer (pectin) as coat in Revised 26 January 2014 three different concentrations 50, 75 and 90%. Candidate formula F15 (microspheres prepared Accepted 28 January 2014 using BDZ:CAB in a ratio of 18:1 and compressed into tablets using 50% pectin and 50% Avicel in the coat) was able to adequately modulate drug release avoiding drug release in the gastric ambient, and reaching the colonic targeting where 99.7% release was achieved within 12 h following zero-order model.
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • WO 2013/020527 Al 14 February 2013 (14.02.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/020527 Al 14 February 2013 (14.02.2013) P O P C T (51) International Patent Classification: (74) Common Representative: UNIVERSITY OF VETER¬ A61K 9/06 (2006.01) A61K 47/32 (2006.01) INARY AND PHARMACEUTICAL SCIENCES A61K 9/14 (2006.01) A61K 47/38 (2006.01) BRNO FACULTY OF PHARMACY; University of A61K 47/10 (2006.01) A61K 9/00 (2006.01) Veterinary and Pharmaceutical Sciences Brno Faculty Of A61K 47/18 (2006.01) Pharmacy, Palackeho 1/3, CZ-61242 Brno (CZ). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/CZ20 12/000073 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 2 August 2012 (02.08.2012) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, 201 1-495 11 August 201 1 ( 11.08.201 1) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 2012- 72 1 February 2012 (01.02.2012) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 2012-5 11 26 July 2012 (26.07.2012) ZW.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • (CD-P-PH/PHO) Report Classification/Justifica
    COMMITTEE OF EXPERTS ON THE CLASSIFICATION OF MEDICINES AS REGARDS THEIR SUPPLY (CD-P-PH/PHO) Report classification/justification of - Medicines belonging to the ATC group M01 (Antiinflammatory and antirheumatic products) Table of Contents Page INTRODUCTION 6 DISCLAIMER 8 GLOSSARY OF TERMS USED IN THIS DOCUMENT 9 ACTIVE SUBSTANCES Phenylbutazone (ATC: M01AA01) 11 Mofebutazone (ATC: M01AA02) 17 Oxyphenbutazone (ATC: M01AA03) 18 Clofezone (ATC: M01AA05) 19 Kebuzone (ATC: M01AA06) 20 Indometacin (ATC: M01AB01) 21 Sulindac (ATC: M01AB02) 25 Tolmetin (ATC: M01AB03) 30 Zomepirac (ATC: M01AB04) 33 Diclofenac (ATC: M01AB05) 34 Alclofenac (ATC: M01AB06) 39 Bumadizone (ATC: M01AB07) 40 Etodolac (ATC: M01AB08) 41 Lonazolac (ATC: M01AB09) 45 Fentiazac (ATC: M01AB10) 46 Acemetacin (ATC: M01AB11) 48 Difenpiramide (ATC: M01AB12) 53 Oxametacin (ATC: M01AB13) 54 Proglumetacin (ATC: M01AB14) 55 Ketorolac (ATC: M01AB15) 57 Aceclofenac (ATC: M01AB16) 63 Bufexamac (ATC: M01AB17) 67 2 Indometacin, Combinations (ATC: M01AB51) 68 Diclofenac, Combinations (ATC: M01AB55) 69 Piroxicam (ATC: M01AC01) 73 Tenoxicam (ATC: M01AC02) 77 Droxicam (ATC: M01AC04) 82 Lornoxicam (ATC: M01AC05) 83 Meloxicam (ATC: M01AC06) 87 Meloxicam, Combinations (ATC: M01AC56) 91 Ibuprofen (ATC: M01AE01) 92 Naproxen (ATC: M01AE02) 98 Ketoprofen (ATC: M01AE03) 104 Fenoprofen (ATC: M01AE04) 109 Fenbufen (ATC: M01AE05) 112 Benoxaprofen (ATC: M01AE06) 113 Suprofen (ATC: M01AE07) 114 Pirprofen (ATC: M01AE08) 115 Flurbiprofen (ATC: M01AE09) 116 Indoprofen (ATC: M01AE10) 120 Tiaprofenic Acid (ATC:
    [Show full text]
  • Method and Use for Increasing Efficacy of Anti-Adhesive Compositions in Controlling Inflammation and Pain
    (19) & (11) EP 2 465 513 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 20.06.2012 Bulletin 2012/25 A61K 31/77 (2006.01) A61K 33/06 (2006.01) A61K 45/06 (2006.01) A61P 29/00 (2006.01) (21) Application number: 11195175.2 (22) Date of filing: 12.11.2007 (84) Designated Contracting States: (72) Inventor: Chamness, Kathy L. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Memphis, TN 38104-5305 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: O’Connell, Maura et al FRKelly (30) Priority: 13.11.2006 US 598397 27 Clyde Road Ballsbridge (62) Document number(s) of the earlier application(s) in Dublin 4 (IE) accordance with Art. 76 EPC: 07864257.6 / 2 104 505 Remarks: •This application was filed on 22-12-2011 as a (71) Applicant: Warsaw Orthopedic, Inc. divisional application to the application mentioned Warsaw, IN 46581 (US) under INID code 62. •Claims filed after the date of filing of the application (Rule 68(4) EPC). (54) Method and use for increasing efficacy of anti-adhesive compositions in controlling inflammation and pain (57) The invention discloses a method and kit thereof prising an effective amount of at least one pharmaceuti- for increasing the efficiency of anti-adhesive composi- cally-acceptable anti-adhesive non-ionic polymer to a tions by parenterally administering a composition com- site of injury, controlling inflammation at the site of injury, and reducing pain. EP 2 465 513 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 465 513 A2 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to methods of increasing efficacy of anti-adhesive compositions by parental administration of compositions containing anti-adhesive polymers and magnesium salts.
    [Show full text]
  • WHO-EMP-RHT-TSN-2018.1-Eng.Pdf
    WHO/EMP/RHT/TSN/2018.1 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization [2018] Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO.
    [Show full text]
  • Pharmaceuticals (Monocomponent Products) ………………………..………… 31 Pharmaceuticals (Combination and Group Products) ………………….……
    DESA The Department of Economic and Social Affairs of the United Nations Secretariat is a vital interface between global and policies in the economic, social and environmental spheres and national action. The Department works in three main interlinked areas: (i) it compiles, generates and analyses a wide range of economic, social and environmental data and information on which States Members of the United Nations draw to review common problems and to take stock of policy options; (ii) it facilitates the negotiations of Member States in many intergovernmental bodies on joint courses of action to address ongoing or emerging global challenges; and (iii) it advises interested Governments on the ways and means of translating policy frameworks developed in United Nations conferences and summits into programmes at the country level and, through technical assistance, helps build national capacities. Note Symbols of United Nations documents are composed of the capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. Applications for the right to reproduce this work or parts thereof are welcomed and should be sent to the Secretary, United Nations Publications Board, United Nations Headquarters, New York, NY 10017, United States of America. Governments and governmental institutions may reproduce this work or parts thereof without permission, but are requested to inform the United Nations of such reproduction. UNITED NATIONS PUBLICATION Copyright @ United Nations, 2005 All rights reserved TABLE OF CONTENTS Introduction …………………………………………………………..……..……..….. 4 Alphabetical Listing of products ……..………………………………..….….…..….... 8 Classified Listing of products ………………………………………………………… 20 List of codes for countries, territories and areas ………………………...…….……… 30 PART I. REGULATORY INFORMATION Pharmaceuticals (monocomponent products) ………………………..………… 31 Pharmaceuticals (combination and group products) ………………….……........
    [Show full text]
  • Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes
    Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2004) -- Supplement 1 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABACAVIR 136470-78-5 ACEXAMIC ACID 57-08-9 ABAFUNGIN 129639-79-8 ACICLOVIR 59277-89-3 ABAMECTIN 65195-55-3 ACIFRAN 72420-38-3 ABANOQUIL 90402-40-7 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABIRATERONE 154229-19-3 ACIVICIN 42228-92-2 ABITESARTAN 137882-98-5 ACLANTATE 39633-62-0 ABLUKAST 96566-25-5 ACLARUBICIN 57576-44-0 ABUNIDAZOLE 91017-58-2 ACLATONIUM NAPADISILATE 55077-30-0 ACADESINE 2627-69-2 ACODAZOLE 79152-85-5 ACAMPROSATE 77337-76-9 ACONIAZIDE 13410-86-1 ACAPRAZINE 55485-20-6 ACOXATRINE 748-44-7 ACARBOSE 56180-94-0 ACREOZAST 123548-56-1 ACEBROCHOL 514-50-1 ACRIDOREX 47487-22-9 ACEBURIC ACID 26976-72-7
    [Show full text]