Pdf (361.73 K)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Drontal Nematocide and Cestocide for Cats
28400 Aufbau neu 09.07.2003 13:27 Uhr Seite 1 Drontal Nematocide and Cestocide for cats Product information International Edition 28400 Aufbau neu 09.07.2003 13:27 Uhr Seite 2 Bayer AG Business Group Animal Health D-51368 Leverkusen Germany 2 28400 Aufbau neu 09.07.2003 13:27 Uhr Seite 3 Drontal Important note This product information on Drontal is based on the available results of controlled inter- national studies. User information is to be found in the instructions for use contained in the Drontal package inserts which have been approved by the regulatory authority. 3 28400 Aufbau neu 09.07.2003 13:27 Uhr Seite 4 4 28400 Aufbau neu 09.07.2003 13:27 Uhr Seite 5 Drontal Contents General Observations 6 The worm problem in cats 7 Roundworms (Nematodes) 7 Tapeworms (Cestodes) 8 Routes of infection 9 Oral infection 9 Percutaneous infection 10 Transmammary infection (post partum) 10 Damage to health in cats 11 Clinical manifestations 12 Routes of infection in man (false host) 13 Oral infection 13 Percutaneous 14 Damage to human health (man as false host) 15 Life cycle of the most important intestinal worms of the cat 18 1. Nematodes 18 2. Cestodes 21 Control of worm infections in cats 24 Diagnosis and prepatent periods 24 Treatment programmes 24 Drontal Product Profile 27 1. Active ingredients 27 2. Mode of action 28 3. Spectrum of activity/Indications 28 4. Dosage 28 5. Efficacy 29 6. Tolerability 32 References 33 5 28400 Aufbau neu 09.07.2003 13:27 Uhr Seite 6 Drontal General observations Worm infections continue to be a major problem in farm livestock and companion animals worldwide, as well as in man. -
Clinical Cysticercosis: Diagnosis and Treatment 11 2
WHO/FAO/OIE Guidelines for the surveillance, prevention and control of taeniosis/cysticercosis Editor: K.D. Murrell Associate Editors: P. Dorny A. Flisser S. Geerts N.C. Kyvsgaard D.P. McManus T.E. Nash Z.S. Pawlowski • Etiology • Taeniosis in humans • Cysticercosis in animals and humans • Biology and systematics • Epidemiology and geographical distribution • Diagnosis and treatment in humans • Detection in cattle and swine • Surveillance • Prevention • Control • Methods All OIE (World Organisation for Animal Health) publications are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any other medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the OIE. The designations and denominations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the OIE concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by the OIE in preference to others of a similar nature that are not mentioned. –––––––––– The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations, the World Health Organization or the World Organisation for Animal Health concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records
125 Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango, Sharon, PA 16146 Matthew B. Connior Life Sciences, Northwest Arkansas Community College, Bentonville, AR 72712 Abstract: Between May 2013 and September 2015, two amphibian and eight reptilian species/ subspecies were collected from Atoka (n = 1) and McCurtain (n = 31) counties, Oklahoma, and examined for helminth parasites. Twelve helminths, including a monogenean, six digeneans, a cestode, three nematodes and two acanthocephalans was found to be infecting these hosts. We document nine new host and three new distributional records for these helminths. Although we provide new records, additional surveys are needed for some of the 257 species of amphibians and reptiles of the state, particularly those in the western and panhandle regions who remain to be examined for helminths. ©2015 Oklahoma Academy of Science Introduction Methods In the last two decades, several papers from Between May 2013 and September 2015, our laboratories have appeared in the literature 11 Sequoyah slimy salamander (Plethodon that has helped increase our knowledge of sequoyah), nine Blanchard’s cricket frog the helminth parasites of Oklahoma’s diverse (Acris blanchardii), two eastern cooter herpetofauna (McAllister and Bursey 2004, (Pseudemys concinna concinna), two common 2007, 2012; McAllister et al. 1995, 2002, snapping turtle (Chelydra serpentina), two 2005, 2010, 2011, 2013, 2014a, b, c; Bonett Mississippi mud turtle (Kinosternon subrubrum et al. 2011). However, there still remains a hippocrepis), two western cottonmouth lack of information on helminths of some of (Agkistrodon piscivorus leucostoma), one the 257 species of amphibians and reptiles southern black racer (Coluber constrictor of the state (Sievert and Sievert 2011). -
Redalyc.Endohelminth Parasites of the Freshwater Fish Zoogoneticus
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Martínez-Aquino, Andrés; Hernández-Mena, David Iván; Pérez-Rodríguez, Rodolfo; Aguilar-Aguilar, Rogelio; Pérez-Ponce de León, Gerardo Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico Revista Mexicana de Biodiversidad, vol. 82, núm. 4, diciembre, 2011, pp. 1132-1137 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42520885007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 82: 1132-1137, 2011 Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico Endohelmintos parásitos del pez dulceacuícola Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) en dos manantiales de la cuenca del río Lerma bajo, México Andrés Martínez-Aquino1,3, David Iván Hernández-Mena1,3, Rodolfo Pérez-Rodríguez1,3, Rogelio Aguilar- Aguilar2 and Gerardo Pérez-Ponce de León1 1Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-153, 04510 México, D.F., Mexico. 2Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado postal 70-399, 04510 México, D.F., Mexico. 3Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. [email protected] Abstract. In order to establish the helminthological record of the viviparous fish species Zoogoneticus purhepechus, 72 individuals were collected from 2 localities, La Luz spring (n= 45) and Los Negritos spring (n= 27), both in the lower Lerma River, in Michoacán state, Mexico. -
Identity of Diphyllobothrium Spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People Along the Pacific Coast of South America
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 4-2010 Identity of Diphyllobothrium spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People along the Pacific Coast of South America Robert L. Rausch University of Washington, [email protected] Ann M. Adams United States Food and Drug Administration Leo Margolis Fisheries Research Board of Canada Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Rausch, Robert L.; Adams, Ann M.; and Margolis, Leo, "Identity of Diphyllobothrium spp. (Cestoda: Diphyllobothriidae) from Sea Lions and People along the Pacific Coast of South America" (2010). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 498. https://digitalcommons.unl.edu/parasitologyfacpubs/498 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 96(2), 2010, pp. 359–365 F American Society of Parasitologists 2010 IDENTITY OF DIPHYLLOBOTHRIUM SPP. (CESTODA: DIPHYLLOBOTHRIIDAE) FROM SEA LIONS AND PEOPLE ALONG THE PACIFIC COAST OF SOUTH AMERICA Robert L. Rausch, Ann M. Adams*, and Leo MargolisÀ Department of Comparative Medicine and Department of Pathobiology, Box 357190, University of Washington, Seattle, Washington 98195-7190. e-mail: [email protected] ABSTRACT: Host specificity evidently is not expressed by various species of Diphyllobothrium that occur typically in marine mammals, and people become infected occasionally when dietary customs favor ingestion of plerocercoids. -
A Survey of Helminth Parasites of Chiropterans from Indiana
Proc. Helminthol. Soc. Wash. 55(2), 1988, pp. 270-274 A Survey of Helminth Parasites of Chiropterans from Indiana DAVID H. PISTOLE ' Life Sciences Department, Indiana State University, Terre Haute, Indiana 47809 ABSTRACT: From 1980 to 1982, 888 bats representing 9 host species were collected from Indiana and examined for helminth parasites. Sixty-three percent of the bats were infected with 1 or more species of parasite. Six nematode species, 4 cestode species, and 20 digenean species were recovered. Paralecithodendrium transversum and Ochoterenatrema diminutum were the most commonly occurring parasite species, being found in high intensities or prevalence in the most bat species. This is the first survey of chiropteran helminths in Indiana. KEY WORDS: Nematoda, Cestoda, Trematoda, Chiropterans, bats, survey, new host records. Chiropteran helminths have been recorded mounts. The use of prevalence, mean intensity, and from the early 19th century to the present. Prior range of intensity follows the definitions of Margolis to 1930, only 5 species of chiropteran helminths et al. (1982). Representative specimens are deposited in the USNM Helminthological Collection, USDA, had been reported from the United States: Acan- Beltsville, Maryland 20705 (Nos. 80046-80122). thatnum nycteridis from Lasiurus borealis (red bat) (Faust, 1919); Distoma sp. from L. cincrcus Results and Discussion (hoary bat) (Stiles and Hassall, 1894); and Le- A total of 888 bats, representing 9 species, was dthodendrium anticum, L. posticum, and Pla- collected and examined. Helminths were found giorchis vespertilionis from Myotis leibii (small- only in the stomach and the small and large in- footed Myotis) (Stafford, 1905). Reports since testines. Of the total bats, 63% (559) were in- that time concerning helminth faunas of bats fected with 1 or more helminths. -
Occurrence and Spatial Distribution of Dibothriocephalus Latus (Cestoda: Diphyllobothriidea) in Lake Iseo (Northern Italy): an Update
International Journal of Environmental Research and Public Health Article Occurrence and Spatial Distribution of Dibothriocephalus Latus (Cestoda: Diphyllobothriidea) in Lake Iseo (Northern Italy): An Update Vasco Menconi 1 , Paolo Pastorino 1,2,* , Ivana Momo 3, Davide Mugetti 1, Maria Cristina Bona 1, Sara Levetti 1, Mattia Tomasoni 1, Elisabetta Pizzul 2 , Giuseppe Ru 1 , Alessandro Dondo 1 and Marino Prearo 1 1 The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy; [email protected] (V.M.); [email protected] (D.M.); [email protected] (M.C.B.); [email protected] (S.L.); [email protected] (M.T.); [email protected] (G.R.); [email protected] (A.D.); [email protected] (M.P.) 2 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] 3 Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy; [email protected] * Correspondence: [email protected]; Tel.: +390112686251 Received: 11 June 2020; Accepted: 12 July 2020; Published: 14 July 2020 Abstract: Dibothriocephalus latus (Linnaeus, 1758) (Cestoda: Diphyllobothriidea; syn. Diphyllobothrium latum), is a fish-borne zoonotic parasite responsible for diphyllobothriasis in humans. Although D. latus has long been studied, many aspects of its epidemiology and distribution remain unknown. The aim of this study was to investigate the prevalence, mean intensity of infestation, and mean abundance of plerocercoid larvae of D. latus in European perch (Perca fluviatilis) and its spatial distribution in three commercial fishing areas in Lake Iseo (Northern Italy). A total of 598 specimens of P. -
Cestoidea Subclass Cestoda
CLASS CESTOIDEA SUBCLASS CESTODA Characters: *Flattened dorsoventrally *Ribbonlike (Tapeworms). *Has no body cavity. *Alimentary canal absent. *Segmented into scolex, neck and strobila. Scolex ( head ): carry organs of fixation in the form of suckers or grooves (bothria). The scolex may carry a terminal sometimes ret ractile protuberance called the rostellum. The rostellum is usually armed with hooks. Neck : actively dividing part forming the strobila . Strobila ( segments or proglottids ): a c hain of progressively develop ing segments. The anterior most segments in which the reproduc tive organs are not fully developed are called immature segments . These gradually merge into mature segments in which the organs are fully developed and functioning , and these in turn into gravid segments having a uterus full of eggs . * Excretory system : Flame cells and collecting tubules drain into ventral and dorsal longitudinal excretory canals extending along the lateral margins of the proglottids and discharge at the posterior end. * Genital system: Cestodes are hermaphrodites . Each mature segment contains male and female genital systems. Cross as well as auto copulation takes place. Male organs develop before female ones. Man may be infected with the adult tapeworms (Definitive host) or their larval stages (Intermediate host): Human infection with adult cestodes (Intestinal cestodes): Diphyllobothvium latum Taenia saginata Taenia soliwn Hymenolepis nana Hymenolepis diminuta Dipylidium oaninum Human infection with larval cestodes (Extraintestinal cestodes): Sparganosis. Cysticercosis. Hydatid disease. Coenurosis. INTESTINAL CESTODES DIPHYLOBOTHRIUM LATUM (Broad tapeworm, Pish tapeworm) Disese: Diphyllobothriasis Distribution : Lake regions in Europe , Baltic countries , some foci in America and Russia. Morphology : Adult: Size : 310 m. Scolex: elongated almondshaped (about 2.5x1 mm) with 2 elongated dorsal and ventral grooves (bothria). -
Trematoda, Cestoda An-D Acanthocephatja
TREMATODA, CESTODA AN-D ACANTHOCEPHATJA BY STEPHEN PRUDHOE (London) Distribue Ie 31 mars 1951. Vol. III. rase. 2. TREMATODA, CESTODA AND ACANTHOCEPHALA The present report deals with a small consignment of parasitic worms belonging to these three groups obtained during the hydrobiological survey of Lake Tanganyika, 1946-1947. Dr. V. VAN STTIAELEN, President du Comite de Coordination pour les Recherches hydrobiologiques au lac Tanganika, has kindly entrusted the writer with the determination of this material. Thoug'h small, the collection is of much interest, including as it does one species of Trematoda which appears to be new to science, and five species of Cestoda, Olle of which has been hitherto little known morphologically. Moreover, further light is thrown on the distribution of a recently-described Acanthocephalan in East Africa. TREMATODA. FAMILY ACANTHOSTOMATIDJE. Cladocystis tanganyikre n. sp. (Fig. 1.) Two specimens of the form here described were found amongst the « residus de fixations des POiSSOIlS ». The fishes were taken in a small bay south of Cape Tembwe (Stn. 68), 15-16.f.1947, and apparently included Lampl'ichthys tangani canus and several species of CICllLID.E. Unfortunately, it is not yet possible to state which of the fishes collected is the definitive host. The body is flattened and somewhat pyriform in outline, each specimen having the unusual shape shown in figure 1. It is 2.5 mm in length and 1 mm in maximum width. The cuticle is thin and provided with rows of extremely small spines, which are very closely set anteriorly. These spines gradually increase in size and diminish in number towards the posterior end of the body, and finally disappear in the region of the ovary. -
Cestoda Known As 'Tapeworms'
Cestoda known as ‘Tapeworms’ MLS 602: General and Medical Microbiology Lecture: 12 Edwina Razak [email protected] Learning Objectives • Describe the general characteristics of cestodes. • Identify different genus and species in the Class Cestoda which causes human infection. • Discuss morphology, mode of transmission and life cycle. • Outline the laboratory diagnosis and treatment. Introduction • Inhabit small intestine • Found worldwide and higher rates of illness have been seen in people in Latin America, Eastern Europe, sub-Saharan Africa, India, and Asia. • Cestodes: Digestive system is absent • Well developed muscular, excretory and nervous system. • hermaphrodites (monoecious) and every mature segment contains both male and female sex organs. • embryo inside the egg is called the oncosphere (‘hooked ball’). Structural characteristics Worms have long, flat bodies consisting of three parts: head, neck and trunk. • Head region called the scolex, contains hooks or sucker-like devices. Function of scolex: enables the worm to hold fast to infected tissue. Neck region is referred as region of growth where segments of the body are regenerated. • The trunk (called strobila) is composed of a chain of proglottides or segments. • Gravid proglottides contains testes and ovaries. Is the site where eggs spread . • Rostellum is small button-like structure on the scolex of “armed” tapeworms from which the hooks protrude. It may be retractable. Structural Characteristics • 1.Scolex or head. • 2. Neck, leading to the region of growth below, showing immature segments. • 3. Mature segments • 4. Gravid segments filled with eggs Medically important tapeworms are classified into the following: ORDER: Pseudophyllidean ORDER: Cyclophyllidean tapeworms tapeworms 1. Genus Taenia 1. -
Severe Coenurosis Caused by Larvae of Taenia Serialis in an Olive Baboon (Papio Anubis) in Benin T
IJP: Parasites and Wildlife 9 (2019) 134–138 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Severe coenurosis caused by larvae of Taenia serialis in an olive baboon (Papio anubis) in Benin T ∗ E. Chanoveb, , A.M. Ionicăa, D. Hochmanc, F. Berchtolda, C.M. Ghermana, A.D. Mihalcaa a Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca, 400372, Romania b Department of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca, 400372, Romania c Veterinary Clinic “du clos”, 67 rue de la chapelle, Saint-Cergues, 74140, France ARTICLE INFO ABSTRACT Keywords: In March 2017, a captive male juvenile (ca. 6 months old) olive baboon (Papio anubis) was brought to a primate Olive baboon rescue center in Benin with multiple subcutaneous swellings of unknown aetiology. At the general inspection of Intermediate host the body, around 15 partially mobile masses of variable sizes were found in different locations across the body. Taenia serialis Following two surgical procedures, several cyst-like structures were removed and placed either in 10% formalin Coenurus or in absolute ethanol. The cysts had a typical coenurus-like morphology. Genomic DNA was extracted from one cyst using a commercially available kit. The molecular characterization was performed by PCR amplification and sequencing of a region of the nuclear ITS-2 rDNA and a fragment of the mitochondrial 12S rDNA gene, revealing its identity as T. serialis, with 88%–98% similarity to T. -
Praziquantel Treatment in Trematode and Cestode Infections: an Update
Review Article Infection & http://dx.doi.org/10.3947/ic.2013.45.1.32 Infect Chemother 2013;45(1):32-43 Chemotherapy pISSN 2093-2340 · eISSN 2092-6448 Praziquantel Treatment in Trematode and Cestode Infections: An Update Jong-Yil Chai Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul, Korea Status and emerging issues in the use of praziquantel for treatment of human trematode and cestode infections are briefly reviewed. Since praziquantel was first introduced as a broadspectrum anthelmintic in 1975, innumerable articles describ- ing its successful use in the treatment of the majority of human-infecting trematodes and cestodes have been published. The target trematode and cestode diseases include schistosomiasis, clonorchiasis and opisthorchiasis, paragonimiasis, het- erophyidiasis, echinostomiasis, fasciolopsiasis, neodiplostomiasis, gymnophalloidiasis, taeniases, diphyllobothriasis, hyme- nolepiasis, and cysticercosis. However, Fasciola hepatica and Fasciola gigantica infections are refractory to praziquantel, for which triclabendazole, an alternative drug, is necessary. In addition, larval cestode infections, particularly hydatid disease and sparganosis, are not successfully treated by praziquantel. The precise mechanism of action of praziquantel is still poorly understood. There are also emerging problems with praziquantel treatment, which include the appearance of drug resis- tance in the treatment of Schistosoma mansoni and possibly Schistosoma japonicum, along with allergic or hypersensitivity