View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications JournalofGeophysicalResearch: Planets RESEARCH ARTICLE Structural and tidal models of Titan and inferences 10.1002/2013JE004512 on cryovolcanism Key Points: F. Sohl1, A. Solomonidou2,3,4, F. W. Wagner1,5, A. Coustenis2, H. Hussmann1, and D. Schulze-Makuch6,7 • Interior models and amplitude patterns of diurnal tidal stresses 1DLR, Institute of Planetary Research, Berlin, Germany, 2LESIA, Observatoire de Paris, CNRS, UPMC University Paris 06, are calculated University Paris-Diderot-Meudon, Paris, France, 3Department of Geology and Geoenvironment, National and Kapodistrian • The diurnal tidal stress pattern 4 is compliant with cryovolcanic University of Athens, Athens, Greece, Now at Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 5 6 candidate areas California, USA, Westphalian Wilhelms-University, Institute for Planetology, Münster, Germany, School of Earth and • A warm, low-ammonia ocean could Environmental Sciences, Washington State University, Pullman, Washington, USA, 7Center for Astronomy and increase Titan’s habitable potential Astrophysics, Technical University of Berlin, Berlin, Germany Correspondence to: F. Sohl, Abstract Titan, Saturn’s largest satellite, is subject to solid body tides exerted by Saturn on the timescale
[email protected] of its orbital period. The tide-induced internal redistribution of mass results in tidal stress variations, which could play a major role for Titan’s geologic surface record. We construct models of Titan’s interior that are Citation: consistent with the satellite’s mean density, polar moment-of-inertia factor, obliquity, and tidal potential Sohl, F., A. Solomonidou, F. W.