Heavy Metals Concentrations in Brown Seaweed Padina Pavonia (L.) and P

Total Page:16

File Type:pdf, Size:1020Kb

Heavy Metals Concentrations in Brown Seaweed Padina Pavonia (L.) and P Indian Journal of Geo-Marine Sciences Vol.44(8), August 2015, pp. 1200-1206 Heavy metals concentrations in brown seaweed Padina Pavonia (L.) and P. tetrastromatica at different beaches of Karachi Coast Rashida Qari Institute of Marine Science, University of Karachi, Karachi 75270, Pakistan [Email: [email protected]] Received 18 February 2014; revised 25 June 2014 Present investigation was undertaken to know the levels of heavy metals (Mg, Fe, Mn, Cu, Ni, Zn, Cr, Pb, Co, Cd and Hg) in the brown algae Padina pavonia and P. tetrastromatica collected from three coastal areas of Karachi,.. The concentrations of Mg, Fe, Mn, Cu, Ni, Zn, Cr, Pb, Co, Cd and Hg in digested samples of seaweeds were measured by Atomic Absorption Spectrophotometer (Varian AA-20). Concentrations of Mg, Cd and Co were highest at Buleji, Cu and Ni at Paradise Point and Fe, Mn, Zn, Cr, Pb and Hg were high at Nathia Gali. In both species of Padina high concentrations of heavy metals are due to untreated wastes that are discharging from different sources such as industries and houses in coastal areas. [Key Word: Heavy metal, brown seaweed, Buleji, Paradise Point and Nathia Gali, pollution] Introduction Brown seaweeds are most effectively Padina pavonia and P. tetrastromatica used as indicator of pollution by certain heavy are benthic brown seaweed found abundantly in metals18. The potential of seaweed as metals intertidal areas particularly in tide pools of Buleji, indicator have been reported by various workers Paradise Point and Nathia Gali beaches of for brown seaweed13,19. Many brown seaweed Karachi coast. The coastal areas of Karachi are species are used as an indicator of heavy metal ecologically and economically important but pollution for example Fucus vesiculosus11,20. these coastal areas are facing many types of Basson and Abbas21 reported elemental pollution1-8. Marine pollution either natural or composition (Mg, Fe, Cd, Cr, Co, Mn, and Ni) of anthropogenic is a major threat to the health of fifteen seaweeds from the Bahrain coastline millions of people, marine animals and plants (Arabian Gulf). Many workers related to India especially benthic communities that seriously have also studied the trace metals distribution in impact the entire ecosystem. seaweeds22,23. Whyte and Engler24 studied Fe, Zn, The continental shelves of Pakistan Mn, Cr and Cu in marine algae of Burrard inlet, include Makran and Baluchistan coasts are off Stanley Park. Hussein et al.25 studied the Mg, thriving with natural resources of rich flora and Mn, Zn and Cu concentration in brown algae P. fauna9. Chemical composition of seaweed pavonia from Roushdy, Alexandria. Rajendran et undergoes marked variation in changing al.26 studied metal concentration (Mn, Fe, cu and environments i.e., the seasons, the habitats, and Zn) in seaweed from Tamil Nadu coast of India. depth at which they grow. It is a known fact that Due to rapid growth of population and industries accumulation of metal in seaweeds is related to resulted in the problem of pollution, especially of their concentration in water and it has been the coastal aquatic environment of Karachi. observed that it is also influenced by changing Extent of pollution has transpired the impetus to season10-13. Metals that enter the marine initiate a study on the biodeposition of heavy environment are taken up and accumulate in metals pollutants i.e., Mg, Fe, Mn, cu, Ni, Zn, Cr, plants (marine algae) and animals14. Algae are Pb, Co, Cd and Hg in seaweeds. This study was the primary producers, which possess a great undertaken, to gather information that will serve ability to accumulate heavy metals15. This has as baseline values of heavy metals in brown been reported that industrial discharges and often seaweed (P. pavonia and P. tetrastromatica) environmental factors may lead to metal pollution found along the coastal areas of Karachi. of seawater16. Metals are concentrated by a factor Seasonal variability is also studied in the metal of 30,000 to 50,000 as compared to their concentrations and relationship between heavy concentration in the ambient environments. metals concentrations in seaweeds and seawater. Seaweed absorbed elements like Na, K, Ca, Mg, Cl, Br, and I, from seawater and accumulated in Materials and Methods thallus. Seaweeds have high quantities of Mg and Both species of seaweeds Padina pavonia Fe (15-25%)14,17. and P. tetrastromatica and seawater were sampled from three exposed shores of Karachi coast i.e., Buleji, Paradise Point and Nathia Gali QARI: HEAVY METALS PADINA PAVONIA AND P. TETRASTROMATICA AT KARACHI COAST 1201 at low tide. These plants were carefully cleaned from mud debris and other epiphytes with filtered seawater and dried at 70 oC for 24 hours till a constant weight was achieved. Samples were then homogenized with a porcelain pestle and mortar to a powder form, sieved and stored in plastic bottle until further analysis. Digestion of samples was carried out as described by Denton and Burdon Jones18. Triplicate samples of both species of seaweed (1 gram) were digested with concentrated nitric acid (4 ml) and concentrated perchloric acid (2 ml) in 50 ml Teflon beaker (prewashed with nitric acid solution) covered with lid at 80 oC on a hot plate. After digestion and evaporation of acid, metal salt were re-dissolved in metal free deionized water and the final volume was made up to 100 ml in volumetric flask. Reagents blank were treated similarly as samples using same volume of acid and deionized water. In digested samples of seaweeds concentrations of Mg, Fe, Mn, Cu, Ni, Zn, Cr, Pb, Co, Cd and Hg were measured by Atomic Absorption Spectrophotometer (Varian, AA-20). All results in seaweeds are reported in µg/g except Mg in mg/g. The water samples were filtered using Fig. 1. Variation in magnesium concentration of seaweeds 0.45 µm membrane (Millipore) filter paper and 27, (mg g-1) and seawater (g l-1) at Karachi coast (1. Buleji 2. acidified with 0.1 N HCL for further treatment Paradise Point 3. Nathia Gali). 28. For the preconcentration of heavy metals the samples of seawater were chelated with ammonia pyrrolidine dithiocarbonate and then extracted with methyl isobutyl ketone (MIBK)28-31. The extracted sample was back extracted by evaporating the organic solvent and acidified with concentrated HCl. The Atomic Absorption Spectrophotometer (Varian, Model AA-20) was used to analyze the heavy metals (Mg, Fe, Mn, Cu, Ni, Zn, Cr, Pb, Co, Cd and Hg). All results of seawater are reported in mg l -1 except Mg, which is in g l-1. Results and Discussion For the seasonal variation in heavy metals two brown species of seaweeds P. pavonia and P. tetrastromatica were studied, collected from three sites (Buleji, Paradise Point and Nathia Gali) of Karachi coast. In each species concentrations of eleven metals i.e., Mg, Fe, Mn, Cu, Ni, Zn, Cr, Pb, Co, Cd and Hg were estimated. Data reveals high variability in metals (Mg, Fe, Mn, Cu, Ni, Zn, Cr, Pb, Co, Cd and Hg) concentration in both species along the Karachi coast within and between seaweed species, sampling sites and collection time. Fig. 2. Variation in iron concentration of seaweeds (µg g-1) and seawater (mg l-1) at Karachi coast (1. Buleji 2. Paradise Point 3. Nathia Gali). 1202 INDIAN J. MAR. SCI., VOL. 44, NO. 8 AUGUST 2015 The levels of metals concentration ranged Individually the highest concentration of metals from 1.21- 7.13 mg g-1 for Mg, 0.4 – 6.4 µg g-1 Cu, Zn, Cr, Pb, Co, Cd and Hg were found in P. for Fe, 0.11-0.8 µg g-1 for Mn, 0.011- 0.187µg g- Pavonia, Mg, Fe, Mn in P. tetrastromatica and 1 for Zn, 0.012- 0.17 µg g-1 for Cr, 0.024-0.158 Ni was equal in both species. Among the studied µg g-1 for Pb, 0.01- 0.11 µg g-1 for Cu, 0.016- metals Mg is the essential element of nitrogen 0.063µg g-1 for Ni, 0.004-0.11 µg g-1 for Co, metabolism in algae, was found in high 0.005-0.046 µg g-1 for Cd and 0.0001-0.004 µg concentrations (1.21- 7.13 mg g-1) in both species g-1 for Hg at the three sites Buleji, Paradise Point of seaweed than the other metals. Cd was found and Nathia Gali in both species (Padina pavonia in very low concentrations than the other metals, and P. tetrastromatica) where as levels of metals it was found in low range and showed less concentration in seawater ranged from 1.07-13.66 variation. The concentrations of Mg, Cd and Co mg g-1 for Mg, 0.25 – 1.64 µg g-1 for Fe, 0.06- were high at the Buleji coast. Cu and Ni were 0.31 µg g-1 for Mn, 0.091- 0.76µg g-1 for Zn, high at Paradise Point and Fe, Mn, Zn, Cr, Pb and 0.13- 0.73 µg g-1 for Cr, 0.25-0.63µg g-1 for Pb, Hg were high at Nathia Gali (Figs. 1-11). It is 0.047- 1.22 µg g-1 for Cu, 0.037- 0.42µg g-1 for commentable that small variations in the Co, Cd Ni, 0.061-0.45 µg g-1 for Co, 0.017-0.38 µg g-1 and Hg levels were found among species, site and for Cd and 0.00001-0.0002 µg g-1 for Hg at the collection time, indicating that no major source of three sites Buleji, Paradise Point and Nathia Gali these metals occurred in Karachi coastal water.
Recommended publications
  • Stable Isotope Techniques to Address Coastal Marine Pollution
    Chapter 10 Stable Isotope Techniques to Address Coastal Marine Pollution Azhar Mashiatullah, Nasir Ahmad and Riffat Mahmood Additional information is available at the end of the chapter http://dx.doi.org/10.5772/62897 Abstract Stable isotopes of carbon (δ13C), sulfur (δ34S), oxygen (δ18O), hydrogen (δ2H), nitrogen (δ15N), and radioactive isotope of hydrogen (tritium) have been applied in combina‐ tion with conventional techniques (chemical) to investigate Karachi coastal water pollution due to Layari and Malir rivers, which mainly carry the domestic and industrial wastewater of Karachi Metropolitan. Heavy metal contents of the Manora Channel and southeast coastal waters were higher than the Swedish guidelines for the quality of seawater. By contrast, heavy metal concentrations in coastal sediments were found to be significantly higher than that of seawater. Mn and Ni contents in sediments of entire coast (Manora Channel, southeast and northwest coast) were above USEPA guidelines except at Buleji site, whereas Cr, Zn, and Cu levels only in Manora Channel sediments were higher than USEPA guidelines. The higher heavy metal contents of Manora Channel water and sediments can be attributed to an influx of a major portion of untreated industrial and/or domestic wastewater. Layari and 13 34 Malir river water was observed to be depleted in δ C(TDIC)and δ S, which showed heavy influx of sewage into these rivers. Manora Channel water was also depleted in 13 34 δ CTDIC and δ S during low tide environment, showing a large-scale domestic wastewater mixing with seawater. Southeast coastal water was found to be slightly 13 34 enriched in δ C(TDIC) and δ S and exhibited mixing of relatively small quantity of 13 34 sewage with the seawater as compared to the Manora Channel.
    [Show full text]
  • Environmental Problems of the Marine and Coastal Area of Pakistan: National Report
    -Ç L^ q- UNITED NATIONS ENVIRONMENT PROGRAMME Environmental problems of the marine and coastal area of Pakistan: National Report UNEP Regional Seal Reports and Studies No. 77 PREFACE The Regional Seas Pragra~eMS initiated by UMEP in 1974. Since then the Governing Council of UNEP has repeatedly endorsed a regional approach to the control of marine pollution and the ma-t of marine ad coastal resources ad has requested the develqmmt of re#ioml action plans. The Regional Seas Progr- at present includes ten mimyand has over 120 coastal States à participating in it. It is amceival as an action-oriented pmgr- havim cmcera not only fw the consqmces bt also for the causes of tnvirommtal dtgradation and -ssing a msiveapproach to cantrollbg envimtal -1- thmqb the mamgaent of mrine and coastal areas. Each regional action plan is formulated according to the needs of the region as perceived by the Govemnents concerned. It is designed to link assessment of the quality of the marine enviroment and the causes of its deterioration with activities for the ma-t and development of the marine and coastal enviroment. The action plans promote the parallel developmmt of regional legal agreemnts and of actioworimted pmgr- activitiesg- In Hay 1982 the UNEP Governing Council adopted decision 10/20 requesting the Executive Director of UNEP "to enter into consultations with the concerned States of the South Asia Co-operative Envirof~entProgran~e (SACEP) to ascertain their views regarding the conduct of a regional seas programe in the South Asian Seasm. In response to that request the Executive Director appointed a high level consultant to undertake a mission to the coastal States of SACW in October/November 1982 and February 1983.
    [Show full text]
  • Status of Metal Pollution in the River and Coastal Areas of Karachi
    Middle-East Journal of Scientific Research 22 (9): 1288-1293, 2014 ISSN 1990-9233 © IDOSI Publications, 2014 DOI: 10.5829/idosi.mejsr.2014.22.09.9234 Status of Metal Pollution in the River and Coastal Areas of Karachi Seema Jilani Institute of Environmental Studies, University of Karachi, Karachi-Pakistan Abstract: The study objective was to determine the level and the distribution pattern of heavy metals in the coastal waters receiving a continuous discharge of untreated domestic and industrial effluent through Lyari River. In this research, the heavy metals in the surface water samples collected from Lyari River and adjoining coastal areas of Karachi namely; Fish Harbour, Netty Jetty, West Wharf, Naval Dockyard and Sandspit were analyzed using the atomic absorption spectrophotometer. The results of the analysis indicate that the mean concentrations of all metals (Cu, Fe, Mn, Ni, Pb & Zn) except for Cr, in Lyari River and Karachi fish harbor were significantly higher than the standard values. However, metals concentration decreased gradually as the distance from the discharged point increased and at the Sandspit point where no mixing of wastewater, the concentration was within safe limits. Moreover, the level of heavy metal concentration in the water samples were in following descending order Zn>Mn>Fe>Cu>Ni>Pb. Compare to other metal element, the Zn level was notably high and its main source of pollution could be the domestic and industrial waste as well as shipping activity. The study findings therefore suggest that incorporating quick remedial measures can combat pollution and help in achieving the socioeconomic sustainability. Key words: Heavy Metals Coastal Areas Industrial Waste Pollution Sustainability INTRODUCTION as copper, manganese, iron and zinc are important trace micronutrients.
    [Show full text]
  • Source Apportionment of PM10 at an Urban Site of a South Asian Mega City
    Aerosol and Air Quality Research, 18: 2498–2509, 2018 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2017.07.0237 Source Apportionment of PM10 at an Urban Site of a South Asian Mega City Imran Shahid1*, Muhammad Usman Alvi2,3, Muhammad Zeeshaan Shahid4, Khan Alam5, 6 Farrukh Chishtie 1 Institute of Space Technology, Islamabad 44000, Pakistan 2 Institute of Chemistry, University of the Punjab, Lahore 54590, Pakistan 3 University of Education, Okara Campus, Okara 57000, Pakistan 4 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 5 Department of Physics, University of Peshawar, Peshawar 25120, Pakistan 6 SERVIR-Mekong, Asian Disaster Preparedness Center, Bangkok 10400, Thailand ABSTRACT In the present study, analysis and source apportionment of the elemental composition of PM10 was conducted in the urban atmosphere of Karachi. Trace elements such as Ni, Ba, Cd, Ca, Mg, Cr, Mn, Fe, Co, Cu, Sr and Ti were measured. The PM10 concentration ranged from 255 μg m–3 to 793 μg m–3, with an average of 438 ± 161 μg m–3. Among the various elements analyzed, concentrations of Ca, Al and Fe were the highest (> 10000 ng m–3), followed by Mg and S (> 1000 ng m–3). Elements such as Zn, P, Cu, Pb, Mn, Ti, Sr and Ba demonstrated medium concentrations (> 100 ng m–3), whereas the lowest concentrations were found for elements such as Cr, Ni and Se (> 10 ng m–3). The Positive Matrix Factorization (PMF) model identified five possible factors that contributed to PM10, namely, biomass burning, coal combustion, resuspended road/soil dust, vehicular emissions and industrial dust.
    [Show full text]
  • Ecological Impbalances in the Coastal Areas of Pakistan and Karachi
    Pakistan Journal of Marine Sciences, VoL4(2), 159-174, 1995. REVIEW ARTICLE ECOLOGICAL IMBALANCES IN THE COASTAL AREAS OF PAKISTAN AND KARACID HARBOUR Mirza Arshad Ali Beg 136-C, Rafahe Aam Housing Society, Malir Halt, Karachi-75210. ABSTRACT: The marine environment of Pakistan has been described in the context of three main regions : the Indus delta and its creek system, the Karachi coastal region, and the Balochistan coast The creeks, contrary to concerns, do receive adequate discharges of freshwater. On site observations indicate that freshwater continues flowing into them during the lean water periods and dilutes the seawater there. A major factor for the loss of mangrove forests. as well as ecological disturbances in the Indus delta is loss of the silt load resulting in erosion of its mudflats. The ecological disturbance has been aggravated by allowing camels to browse the mangroves. The tree branches and trunks, having been denuded of leaves are felled for firewood. Evidence is presented to show that while indiscriminate removal of its mangrove trees is responsible for the loss oflarge tracts of mangrove forests, overharvesting of fisheries resources has depleted the river of some valuable fishes that were available from the delta area. Municipal and industrial effluents discharged into the Lyari and Malir rivers and responsible for land-based pollution at the Karachi coast and the harbour. The following are the three major areas receiving land-based pollution and whose environmental conditions have been examined in detail: (l) the Manora channel, located on the estuar}r of the Lyari river and serving as the main harbour, has vast areas forming its western and eastern backwaters characterized by mud flats and mangroves.
    [Show full text]
  • PAD2894 Public Disclosure Authorized INTERNATIONAL BANK for RECONSTRUCTION and DEVELOPMENT
    FOR OFFICIAL USE ONLY Report No: PAD2894 Public Disclosure Authorized INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT PROJECT APPRAISAL DOCUMENT ON A PROPOSED LOAN IN THE AMOUNT OF US$230 MILLION TO THE Public Disclosure Authorized ISLAMIC REPUBLIC OF PAKISTAN FOR A COMPETITIVE AND LIVABLE CITY OF KARACHI PROJECT June 6, 2019 Social, Urban, Rural and Resilience Global Practice Finance, Competitiveness and Innovation Global Practice Public Disclosure Authorized South Asia Region This document has a restricted distribution and may be used by recipients only in the performance of Public Disclosure Authorized their official duties. Its contents may not otherwise be disclosed without World Bank authorization. CURRENCY EQUIVALENTS (Exchange Rate Effective April 30, 2019) Currency Unit = P KR US$1 = PKR 141.65 FISCAL YEAR July 1 – June 30 Regional Vice President: Hartwig Schafer Country Director: Patchamuthu Illangovan Senior Global Practice Directors: Ede Jorge Ijjasz-Vasquez; Alfonso Garcia Mora Practice Managers: Catalina Marulanda; Nabila Assaf Task Team Leaders: Yoonhee Kim; Namoos Zaheer ABBREVIATIONS AND ACRONYMS ADP Annual Development Plan MC(s) Minimum Condition(s) AED Anti-Encroachment Drive MOU Memorandum of Understanding AFS Annual Financial Statements NGO Non-government organization AGP Auditor General of Pakistan NOC No-Objection Certificate APA Annual Performance Assessment O&M Operations and Maintenance APPM Accounting Policies and Procedures Manual OSR Own-Source Revenue ARP(s) Abbreviated Resettlement Plan(s) OZT Octroi
    [Show full text]
  • Downloaded 10/02/21 05:00 AM UTC Earth Interactions Volume 8 (2004) Paper No
    Earth Interactions Volume 8 (2004) Paper No. 17 Page 1 Copyright Ó 2004, Paper 8-017; 3,366 words, 3 Figures, 0 Animations, 4 Tables. http://EarthInteractions.org Land Use—Iron Pollution in Mangrove Habitat of Karachi, Indus Delta S. M. Saifullah* Mangrove Ecosystem Laboratory, Botany Department, University of Karachi, Karachi, Pakistan Sarwat Ismail Pakistan Council of Scientific and Industrial Research Laboratories, Karachi, Pakistan S. H. Khan and M. Saleem National Institute of Oceanography, Clifton, Karachi, Pakistan Received 11 December 2003; accepted 23 February 2004 ABSTRACT: The coastal area of Karachi, Pakistan, which lies at the northwestern part of the Indus delta, is heavily polluted particularly in the mangrove habitat. The present study traces the pathway of trace metal iron from the source to the different mangrove parts via seawater and sediment. The concentration in the sediment was as high as 34 436 ppm and as low as 0.01 ppm in seawater, while vegetative mangrove parts like pneumatophores, bark, twigs, and leaves possessed generally less than 1000 ppm. The concentration factor (CF) of mangroves was very low, indicating minimum bioavailability of iron from the sediment. The concentration of the metal decreases progressively through different sections of the mangrove habitat in the following sequence: from sediment to pneumatophores to bark to leaves to twigs to seawater. KEYWORDS: Indus delta; Mangroves; Iron pollution * Corresponding author address: S. M. Saifullah, Mangrove Ecosystem Laboratory, Botany Department, University of Karachi, Karachi, Pakistan. E-mail address: [email protected] Unauthenticated | Downloaded 10/02/21 05:00 AM UTC Earth Interactions Volume 8 (2004) Paper No.
    [Show full text]
  • Healthcare Waste Management in Karachi, Pakistan
    HEALTHCARE WASTE MANAGEMENT IN KARACHI, PAKISTAN Case Study Report Engr. Rehan Ahmed Prof. Dr. Noman Ahmed October 2008 Nieuwehaven 201 fax: +31 182 550313 2801 CW Gouda e-mail: [email protected] The Netherlands website: http://www.waste.nl HEALTHCARE WASTE MANAGEMENT IN KARACHI, PAKISTAN CASE STUDY REPORT Engr. Rehan Ahmed Prof. Dr. Noman Ahmed October 2008 Prepared for WASTE Advisers on Urban Environment and Development Nieuwehaven 201, 2801 CW Gouda The Netherlands Fax: +31-182-550313 Email: [email protected] Website: http://www.waste.nl TABLE OF CONTENTS TABLE OF CONTENTS .........................................................................................................1 LIST OF TABLES ....................................................................................................................3 LIST OF ABBREVIATIONS ..................................................................................................4 GLOSSARY OF LOCAL TERMS .........................................................................................5 CHAPTER 1 APPROACH AND METHODOLOGY......................................................6 1.1 Background ...............................................................................................................6 1.2 The Context ...............................................................................................................7 1.3 SWM in Karachi .....................................................................................................11 1.4 Important Issues......................................................................................................12
    [Show full text]
  • A Vanishing Ecosystem Vanishing a a Vanishing Ecosystem Vanishing A
    The Indus Delta is landmark of Pakistan’s coastline extending up to 150 km along the Arabian Sea. It comprises of 17 major and numerous minor creeks, an extensive area of mud flats and mangrove forests. The delta holds 97% of the total mangrove forests of Pakistan. Nearly 95% of the total mangrove cover in the delta is comprised of Avicennia marina. The Indus Delta occupies almost 6,00,000 ha area located mainly in Badin and Thatta districts of Sindh Province. Indus Delta mangroves, one of the largest tracts of arid mangroves in the world, used to cover an approximate area of 2,50,000 to 2,83,000 ha till early 1980s but the area dropped drastically to 1,60,000 ha in 1990s. A recent study by WWF - Pakistan (2006) has estimated the existing cover of the Indus delta mangroves around 73,000 ha. Historically, there used to exist eight species of mangroves which have declined to four species at present. Legally, mangrove forests of the Indus Delta have been notified as “Protected Forests” on 29th August 1958. Ecologically, the Indus Delta mangroves constitute a complex ecosystem with the following outstanding significance: Providing habitat, shelter and breeding ground for economically important marine plants, animals and migratory birds; Protecting coastline and sea ports from storms, cyclones and Tsunamis; Meeting fuelwood requirements of local communities and fodder for their livestock; Sustaining livelihoods of coastal population of more than 1,00,000 people; Serving as laboratory for marine research; Serving as nursery for fish, shrimp and crabs those spend at least a part of their lives in mangroves.
    [Show full text]
  • Non Adherence of Marine Pollution Laws
    Pakistan Journal of Criminology Vol. 9, Issue 1, January 2017 (60-73) Socio-Ecological Analysis of Karachi Harbour Area – Non Adherence of Marine Pollution Laws Muhammad Tahir* Abstract The environmental degradation of Pakistani waters especially in Karachi coast became a serious threat to the human health, marine environment, life & marine vessels since long. This long-standing issue and pollution created by many sources is major contributing factor. At ancient times, it was considered that Earth can sustain all the human activities and oceans cannot be polluted by these activities but later it is experienced that Earth has limited capacities to absorb human waste & oceans can be polluted. A close analysis of the existing state of degraded marine environment/ecosystem (a great challenge for the concerned authorities) reveals that ignorance of laws, less interest of responsible organizations and non-cooperation by public are the main reasons of socio- environmental threats, which are social crimes. This research article gives an unambiguous and broad picture for correct understanding of the major issues threatening the social life in Karachi Harbour & its adjoining coastal areas due to non-adhering of Marine Pollution laws. The deteriorating environment at Karachi Harbour warrants immediate corrective actions in order to curtail further destruction by this menace & social crime. For Socio-economic uplift the Maritime Policy 2002 incorporated for protection and promotion of strategic and maritime interests, conservation of maritime environment, including development of coastal zones, ports and harbours has been enforced. The implementation of existing laws in a true letter and spirit merits the best possible solution to meet the challenges regarding sociological threats in the Pakistani waters.
    [Show full text]
  • An Application of Principal Component Analysis for the Temporal Variations in Water Quality Data of Manora Channel: Karachi
    IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.5, May 2019 1 An Application of Principal Component Analysis for the Temporal Variations in Water Quality Data of Manora Channel: Karachi Sidrah Ghayas1*, Junaid Sagheer Siddiquie2, Suboohi Safdar3, Asif Mansoor4 University of Karachi, University of Karachi, University of Karachi, National university of Science and Technology Summary seawater quality [1,2]. The physicochemical and biological The most important area of the port is the Manora channel, where seawater quality variation parameters are a result of factors the Arabian Sea is connected to the city of Karachi. The like storm water runoff, marine traffic and coastal land use significance is in both economical and ecological means as it 2 conflicts other than sewage discharges and industrial covers the area of 7.17 km . The current water quality aspects of dumping. Seawater quality temporal variations have been the critical deteriorating conditions of Manora channel are due to examined physical, chemical and biological parameter(s) multiple factors examples are domestic wastages, sewages effluents and industrial pollutants. This study is intended to by numerous researchers [3, 4, 5]. Many studies have account the temporal variations and respective conditions of the shown that the changes of physico-chemical and biological water quality of Manora channel during the time period of 1996 seawater quality parameters are a result of sewage to 2014 for the selected certain chemical parameters BCO3, COD, discharges and other factors such as storm water runoff, pH, Cl, NH3, BOD and SO4 which have been split in all four marine traffic and coastal land use conflicts.
    [Show full text]
  • Health Risk Assessment of Heavy Metals Accumulated on PM2.5 Fractioned Road Dust from Two Cities of Pakistan
    International Journal of Environmental Research and Public Health Article Health Risk Assessment of Heavy Metals Accumulated on PM2.5 Fractioned Road Dust from Two Cities of Pakistan Haseeb Tufail Moryani, Shuqiong Kong *, Jiangkun Du and Jianguo Bao * School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; [email protected] (H.T.M.); [email protected] (J.D.) * Correspondence: [email protected] (S.K.); [email protected] (J.B.) Received: 20 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: The aim of this study is to identify and investigate levels of toxic heavy metals in PM2.5 fractioned road dust to better understand the associated inhalation risk and potential health impacts. To achieve this aim, concentrations of seven traffic generated heavy metals (Cu, Pb, Zn, Cd, Ni, Sb, and Cr) were determined in the PM2.5 fraction of road dust samples from four different locations (offices, residential, hospital, and school) in two cities (Karachi and Shikarpur) of Pakistan using ICP-MS. The average concentration values of heavy metals in Karachi were as follows: 332.9 mg/kg Cu, 426.6 mg/kg Pb, 4254.4 mg/kg Zn, 62.3 mg/kg Cd, 389.7 mg/kg Ni, 70.4 mg/kg Sb, 148.1 mg/kg Cr, whereas the average concentration values of heavy metals in Shikarpur were 245.8 mg/kg Cu, 538.4 mg/kg Pb, 8351.0 mg/kg Zn, 57.6 mg/kg Cd, 131.7 mg/kg Ni, 314.5 mg/kg Sb, 346.6 mg/kg Cr.
    [Show full text]