CT of the Pulmonary Veins Joan M

Total Page:16

File Type:pdf, Size:1020Kb

CT of the Pulmonary Veins Joan M SYMPOSIA CT of the Pulmonary Veins Joan M. Lacomis, MD,* Orly Goitein, MD,w Christopher Deible, MD, PhD,* and David Schwartzman, MDz component of stroke volume (‘‘atrial kick’’), combined Abstract: Atrial fibrillation (AF) is a common cardiac rhythm with heart rates that are either too fast or too slow to disturbance and its incidence is increasing. Radiofrequency maintain an adequate cardiac output, leads to hemody- catheter ablation (RFCA) is a highly successful therapy for namic compromise, poor left ventricular function, and treating AF, and its use is becoming more widespread; however, heart failure.3 The left atrial appendage (LAA) has been with its increasing use and evolving technique, known complica- documented as the source of thrombi in 90% to 100% of tions are better understood and new complications are emer- nonrheumatic AF.3–6 Not only do up to 20% of all ging. Computed tomography (CT) of the pulmonary veins, or ischemic strokes occur in AF patients, but AF patients more correctly, the posterior left atrium (LA), has an established also have an 18 times higher rate of systemic arterial role in precisely defining the complex anatomy of the LA and emboli than the general population.3–6 pulmonary veins preablation and has an expanding role in Normally, the sinoatrial node fires by self-excitation identifying the myriad of possible complications postablation. eliciting a single electrical impulse. This impulse rapidly The purposes of this article are: to review AF and RFCA; to spreads across the right atrium (RA) along defined discuss CT evaluation of the LA and pulmonary veins electrical pathways and to the left atrium (LA) via preablation; and to review the complications of RFCA focusing Bachman’s Bundle.7 Synchronous atrial contraction on the role of CT postablation. forces blood into the ventricles. The speed of the electrical Key Words: atrial fibrillation, pulmonary veins, left atrium, impulse is slowed by the atrioventricular (AV) node radiofrequency catheter ablation, CT before the impulse continues to the Bundle of His and is propagated through the interventricular septum via the (J Thorac Imaging 2007;22:63–76) right and left bundle branches causing synchronous ventricular contraction (Fig. 1).7 AF occurs when multiple ectopic electrical foci fire independently sending the AV node as many as 300 discharges per minute.7 The irregular ventricular response ATRIAL FIBRILLATION depends on the refractoriness of the AV node, vagal and The most common of the sustained cardiac rhythm sympathetic tone, and the presence of accessory pathways disturbances, atrial fibrillation (AF) is a supraventricular resulting in heart rates ranging from 30 to over 300 beats tachyarrhythmia that has an overall prevalence of 0.4%, per minute.4,8 Although regular R-R intervals are but increases in incidence with age.1,2 Although rare in possible, on an electrocardiogram (ECG), AF is char- children, in adults, the incidence nearly doubles every 10 acterized by a lack of P waves which are replaced by years affecting approximately 5% of the population over fibrillatory waves of varying morphology and frequency, 65 years.3 It is estimated that approximately 2.2 to 2.5 with an irregularly irregular, often rapid, ventricular million people in the United States are affected by AF rhythm.4 which has significant clinical and economic consequences, Terminology describing AF can be confusing. Lone accounting for as many as one-third of yearly cardiac AF, accounting for 45% of AF cases, is defined as AF dysrhythmia hospitalizations.4 occurring in patients under 60 years of age without AF is an important overall marker for cardiovas- underlying cardiopulmonary disease.9,10 Paroxysmal AF cular risk and a major risk factor for stroke related to its (PAF) lasts less than 7 days and terminates sponta- 2 main complications: hemodynamic compromise and neously; whereas, persistent AF lasts at least 7 days and formation of thromboemboli.3 The loss of the atrial lasts indefinitely unless cardioverted. Both PAF and persistent AF can be recurrent, occurring more than once.4 With increasing age, recurrent episodes of PAF z tend to become persistent as the LA undergoes electrical From the *Department of Radiology; Cardiovascular Institute, 4 University of Pittsburgh Medical Center, Pittsburgh, PA; and and structural remodeling. Permanent AF lasts longer wDepartment of Radiology, Sheba Medical Center, Tel Hashomer, than a year and sinus rhythm is not possible.4 Isolated AF Israel. is defined as AF occurring without associated atrial Reprints: Joan M. Lacomis, MD, UPMC Presbyterian, Suite E-177, 200 4 Lothrop St, Pittsburgh, PA 15213-2582 (e-mail: lacomisjm@ tachycardia or aflutter. upmc.edu). Acute causes of AF include: recent surgery espe- Copyright r 2007 by Lippincott Williams & Wilkins cially cardiothoracic surgery, acute myocardial infarction, J Thorac Imaging Volume 22, Number 1, February 2007 63 Lacomis et al J Thorac Imaging Volume 22, Number 1, February 2007 RADIOFREQUENCY CATHETER ABLATION Although treatments for AF include direct electrical cardioversion or chemical cardioversion with antiarrhyth- mic agents, these are of limited success, with AF often refractory to or recurrent after the treatment.4 In addition, these require the use of long-term anticoagula- tion therapy. Newer therapies such as the surgical Cox-Maze procedure, cryoablation and radiofrequency catheter ablation (RFCA) are aimed at causing anatomic scars to disrupt electrical communication between the ectopic foci of the pulmonary veins and the LA body.14,15 If successful, long-term anticoagulation is unnecessary. RFCA, which is predominantly used for PAF, less often for persistent AF, is still under investigation and is a rapidly evolving therapy. As originally described by Haissaguerre et al in 1994, point ablation of site- specific arrhythmogenic foci within the walls of the distal pulmonary veins has subsequently proven to have a success rate of approximately 47%, often requiring repeat procedures and multiple veins, and has been associated with a high risk of pulmonary 12,14,16–20 FIGURE 1. ‘‘Conduction system’’: graphic representation of vein stenosis. The trend since then has been the basic components of the cardiac conduction system away from identifying the specific site of origin or superimposed on a volume rendered whole heart model with trigger point of AF, and to increase the number of an anterior cut away. AV indicates atrio-ventricular node; HIS, ablation lesions, thus increasing the volume of ablated bundle of HIS; LA, left atrium; LBB, left bundle branch; LV, left or electrically isolated substrate for the AF, the left ventricle; RA, right atrium; RBB, right bundle branch; RV, right atrial myocardium. Circumferential, also known as ventricle; SA, sino-atrial node. segmental, ablation of the extraostial region of the pulmonary vein(s) increased the success rate to 67%.18,19,21–23 To minimize the potential of recurrence of AF and the need for repeat ablation procedures, more myocarditis, pulmonary embolism or other acute pul- recent advances involve posterior left atrial ablation monary disease, hyperthyroidism, electrocution, stimu- which is circumferential ablation of the pulmonary lants such as caffeine or alcohol or increased sympathetic venous inflow vestibules bilaterally. Success rates in or parasympathetic tone.4 Treatment of the underlying patients without underlying structural heart disease have conditions can resolve the AF. However, AF is also increased to 88%, resulting in the more widespread associated with underlying structural heart disease, clinical use of RFCA for AF (Fig. 2).17–25 The 2005 particularly mitral valvular disease, hypertension, and worldwide RF catheter compilation reported that the coronary artery disease.4 Other independent risk factors numbers of AF ablations have increased every year since include: male sex, white race, age, diabetes, smoking, and 1995 when 18 patients underwent the procedure to a total obesity. With the increasing incidence of obesity, parti- of 8745 patients in 181 centers.23 Circumferential extra- cularly childhood obesity, the incidence of AF is expected ostial ablation and posterior left atrial ablation for to significantly increase.11 segmental isolation of the pulmonary veins are the Ectopic foci responsible for the initiation of AF current most widely used techniques; point ablation have been identified in the walls of the superior vena cava within the distal pulmonary veins has been aban- (SVC), both atria, the crista terminalis, ostium of the doned.19,26 coronary sinus, interatrial septum, and the muscular Technically, RFCA has several procedural varia- sleeves of the distal pulmonary veins.4,8,12 The importance tions, understanding the common features and challenges of the pulmonary veins in the initiation of AF is now well are important for both pre-RFCA and post-RFCA established. The myocardium of the LA extends a computed tomography (CT) evaluation. The procedure variable length into the distal pulmonary veins with the time is long, typically lasting several hours, and is myocardial sleeves of the superior and left pulmonary performed with the patient under general anesthesia. This veins longer than those of the inferior and right requires endotracheal or oro-tracheal intubation and the pulmonary veins.12,13 Over 90% of ectopic beats initiating use of high frequency ventilation to minimize respiratory AF arise from the pulmonary veins, 50% from the left motion.15–20,22 Transesophageal echocardiography (TEE) superior
Recommended publications
  • Cardiac Arrhythmia and Catheter Ablation UK
    Media backgrounder Cardiac Arrhythmia and Catheter Ablation Technique Cardiac arrhythmia – when the heart falls out of rhythm Cardiac arrhythmias (CA) represent a group of conditions with an abnormal heart rhythm or heart rate. This may involve the heart beating too fast (over 100 bpm), too slow (less than 60 bpm) or irregularly.1 Arrhythmias are often caused by problems with the electrical system that regulates the steady heartbeat and can originate in the lower chambers of the heart (ventricles) or in the upper chambers (atria).2 There are various types of arrhythmia; the most common forms include atrial fibrillation (AF), atrial flutter and atrioventricular nodal re-entrant tachycardia. Noticeable warning symptoms include fluttering in the chest, shortness of breath, fatigue, chest pain, dizziness or fainting.3 Many people experience irregular heartbeats at some point in their lives. Most of the time they are harmless, especially when not associated with other heart conditions. However, some arrhythmias can be serious and even life-threatening if left untreated. For example, atrial fibrillation is the most common cardiac arrhythmia and an independent contributor to mortality, morbidity and impaired quality of life.4,5 According to data from the long-term, ongoing Framingham heart study, AF is associated with a 1.5- to 1.9-fold higher risk of death. This is in part attributed to the strong association between AF and thromboembolic events (where the blood in the heart can clot).6 Overall, AF is estimated to be responsible for approximately 15 percent of all strokes7,8,9 and 20 percent of all ischemic strokes.10 Cardiac arrhythmia – a growing global burden • Anyone can develop arrhythmias, even young adults without previous heart problems.
    [Show full text]
  • The Influence of Iatrogenic Atrial Septal Defect On
    Bioscience Reports (2020) 40 BSR20193128 https://doi.org/10.1042/BSR20193128 Research Article The influence of iatrogenic atrial septal defect on the prognosis of patients with atrial fibrillation between cryoablation and radiofrequency ablation Ying Yang, Jinglan Wu, Lixia Yao, Yue Liu, Chenfeng Zhang, Ling You, Jing Yang and Ruiqin Xie Downloaded from http://portlandpress.com/bioscirep/article-pdf/40/2/BSR20193128/867399/bsr-2019-3128.pdf by guest on 02 October 2021 Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China Correspondence: Ruiqin Xie ([email protected]) Objective: The present study was to compare the incidence of septal defect (SD) in patients with atrial fibrillation (AF) who received radiofrequency ablation or cryoablation. Methods: A total of 293 AF patients were performed with radiofrequency ablation and cryoablation. Cardiac ultrasonography was performed to calculate left atrial diameter (LAD), left atrial ejection fraction (LAEF%), strain rate (SR), left ventricular systolic (SRs), left ven- tricular diastolic (SRe), and left atrial systole (SRa) before surgery, 3 months and 1 year after surgery. The patients were followed up to observe statin and angiotensin-converting enzyme inhibitor (ACEI)/angiotensin receptor blocker (ARB) medication, AF recurrence, 6-min walk test, stroke, any symptoms caused by arrhythmia, and re-hospitalization. Results: The lev- els of LAD and SD were higher, while SRe and SRa were lower in the cryoablation group in the comparison with the radiofrequency ablation group after surgery (P<0.05). LAEF was lower in the cryoablation group than the radiofrequency ablation group after 3 months (P<0.05). After 1-year follow-up, no right-to-left shunt occurred in all patients with SD.
    [Show full text]
  • Table of Contents
    Version 4.9.2019 Table of Contents Abdominal Transplantation 1 Cardiothoracic Transplantation & Circulatory Support 31 Cardiothoracic Surgery 50 Congenital Heart Surgery 84 General Surgery 95 General Thoracic Surgery 145 Pediatric Surgery 152 Plastic Surgery 199 Surgical Oncology 223 Vascular Surgery and Endovascular Therapy 258 Office of Surgical Research 282 ABDOMINAL TRANSPLANTATION The division is committed to clinical and basic research, in part funded through NIH grants, in areas such as adult and pediatric solid organ transplantation, liver disease, kidney disease, immunogenetics, bone marrow transplant and chronic hepatitis C. Led by Dr. John M. Vierling, professor and chief of hepatology, the Baylor St. Luke’s Advanced Liver Therapies Research Center gives patients access to clinical trials offering the latest therapies. Co-directed by Drs. Peter Jindra and Matt Cusick, the division- run Immune Evaluation Laboratory continues to expand its research activities while remaining the largest program of its kind in the Texas Medical Center John A Goss, M.D., F.A.C.S. Professor of Surgery and Chief, Division of Abdominal Transplantation Baylor College of Medicine JLH Foundation Chair in Transplant Surgery - Texas Children's Hospital Director of Liver Transplantation - Baylor St. Luke's Medical Center Director of Liver Transplantation - Texas Children's Hospital Director of Liver Transplantation - Michael E. DeBakey Veterans Affairs Medical Center Keywords • Adult and pediatric liver transplantation • Biliary resection/reconstruction • Bile duct tumor • Bile duct injury • Cirrhosis • Hepatobiliary surgery • Liver disease • Liver resection • Liver tumors • Portal hypertension • Portosystemic shunts • Radio frequency ablation • Sugiura procedure • Surgical management of liver tumors Research Interests Dr. Goss' primary research interests revolve around the genomic alterations that occur with hepatocellular carcinoma.
    [Show full text]
  • Radiofrequency Catheter Ablation of Persistent Atrial Fibrillation with Myotonic Dystrophy and Achalasia-Like Esophageal Dilatation Bong Joon Kim
    CASE REPORTS International Journal of Arrhythmia 2017;18(4):205-208 doi: http://dx.doi.org/10.18501/arrhythmia.2017.031 Radiofrequency Catheter Ablation of Persistent Atrial Fibrillation with Myotonic Dystrophy and Achalasia-like Esophageal Dilatation Bong Joon Kim Bong-Joon Kim, MD; Tae-Joon Cha, ABSTRACT MD, PhD, FHRS Myotonic dystrophy, a multi-systemic disease with cardiac involve- Division of Cardiology, Kosin University Gospel ment, is the most common inherited neuromuscular disease. Here, Hospital, Busan, Republic of Korea we report the results of radiofrequency catheter ablation of persis- tent atrial fibrillation in a patient with myotonic dystrophy and acha- Received: September 25, 2017 Accepted: September 29, 2017 lasia-like esophageal dilatation. Correspondence: Tae-Joon Cha, MD, PhD, FHRS Division of Cardiology, Kosin University Gospel Hospital, 262, Gamchen-Ro, Seo-Gu, Busan 49267, Republic of Korea Tel: +82-51-990-6105, Fax: +82-51-990-3047 E-mail: [email protected] Copyright © 2017 The Official Journal of Korean Heart Rhythm Society Editorial Board and EUM & Communications Key Words: ■Atrial Fibrillation ■Myotonic Dystrophy Introduction Case Myotonic dystrophy (dystrophia myotonica [DM]) is an On March 7, 2009, a 46-year-old man presented with autosomal-dominant, multi-systemic disease for which the clinical palpitation that had persisted for several years. He had undergone presentation includes myotonia, muscular dystrophy, cardiac DC cardioversion for AF 8 months prior. He did not have a involvement, posterior iridescent cataracts, and endocrine history of hypertension, diabetes mellitus, dyslipidemia, or disorders.1 The incidence of myotonic dystrophy type 1 (DM1) ischemic heart disease; however, he had a stroke 4 years prior.
    [Show full text]
  • Computing in Cardiology
    COMPUTING IN CARDIOLOGY September 13-16, 2020 Rimini, Italy Table of Contents Sponsors 3 Welcome to CinC@Rimini in 2020! 5 Board of Directors 7 Local Organizing Committee 8 Letter from the President 9 Welcome to Brno for CinC 2021 10 Maps 11 General Map of Rimini 11 Transportation, Hotels and Practical Information 14 Transportation 14 By air 14 By car 14 By train 14 Local Transportation in Rimini 15 By bus 15 By bike 15 Practical Information 16 Climate 16 Money/currency 16 Emergency phone numbers 16 Electric standards 16 Language 17 Time Zones 17 Mobile Phones 17 Safety and Security 17 COVID-19 emergency – Main general rules in Emilia - Romagna 17 COVID-19 emergency – Safety rules and procedures at Palacongressi 18 Internet Access 19 Computing in Cardiology 2020 1 Meals 20 Accompanying Persons (Guests) 20 Conference Information 21 General Information 21 Sunday Symposium 21 Programme outline 21 Conference site 22 Monday Social Program 23 Activist program 23 Passivist program 24 For Authors and Speakers 25 Oral presentations 25 IN PERSON oral presentations 25 REMOTE oral presentations 26 Q&A during oral presentations 26 Poster presentations 26 IN PERSON poster session 26 REMOTE poster session 27 Rosanna Degani Young Investigator Award 28 Clinical Needs Translational (CTA) Award 28 PhysioNet/Computing in Cardiology Challenge 2020 28 Maastricht Simulation Award (MSA) 29 Deadlines 29 Manuscripts 29 Scientific Program Details 31 Program Overview 2 Computing in Cardiology 2020 Sponsors Computing in Cardiology 2020 is supported by several institutions, companies and academic partnerships. The Local Organizing Committee would like to thank the following partners: Computing in Cardiology 2020 3 4 Computing in Cardiology 2020 Welcome to CinC@Rimini in 2020! Dear Colleagues and Friends, On behalf of the Local Organizing Committee, we warmly welcome you to Computing in Cardiology 2020.
    [Show full text]
  • Clinical Guideline Experimental Or Investigational Services
    Clinical Guideline Guideline Number: CG012, Ver. 6 Experimental or Investigational Services Disclaimer Clinical guidelines are developed and adopted to establish evidence-based clinical criteria for utilization management decisions. Oscar may delegate utilization management decisions of certain services to third-party delegates, who may develop and adopt their own clinical criteria. Clinical guidelines are applicable to certain plans. Clinical guidelines are applicable to members enrolled in Medicare Advantage plans only if there are no criteria established for the specified service in a Centers for Medicare & Medicaid Services (CMS) national coverage determination (NCD) or local coverage determination (LCD) on the date of a prior authorization request. Services are subject to the terms, conditions, limitations of a member’s policy and applicable state and federal law. Please reference the member’s policy documents (e.g., Certificate/Evidence of Coverage, Schedule of Benefits) or contact Oscar at 855-672-2755 to confirm coverage and benefit conditions. Summary The services referenced in this Clinical Guideline are considered experimental or investigational and are therefore not covered by Oscar. The services referenced in this Clinical Guideline may not be all- inclusive. Specific benefit plan documents (e.g., Certificate of Coverage, Schedule of Benefits) and federal or state mandated health benefits and laws take precedence over this Clinical Guideline. A service considered experimental or investigational when its safety and efficacy has been established. They may have outcomes that are inferior to standard medical treatment, for which long-term clinical utility has been established. To determine whether a service, device, treatment or procedure has proven safety and efficacy, the available reliable evidence is reviewed, which may include but is not limited to (listed in order of decreasing reliability): 1.
    [Show full text]
  • CT Coronary Angiography for Detection of Coronary Artery Obstruction, Without the Need for Further Imaging Studies Or Additional Radiation Exposure
    IAEA Department of Technical Cooperation And Nuclear Medicine Section RAS 6/063 Strengthening the Application of Nuclear Medicine in the Management of Cardiovascular Diseases Cardiac Imaging CT and MR Prof Lin Tun Tun Head of Department of Radiology University of Medicine (1) Yangon General Hospital CARDIAC CT Advances in CT Technology • Increased image quality • Improvements in hardware and software such as refined image reconstruction methods. • lower radiation exposure of cardiac CT especially for coronary CTA INDICATIONS FOR CARDIAC CT • Chest pain with intermediate pretest probability of CAD • Acute coronary syndrome with intermediate pretest probability of CAD (no ECG changes and negative serial enzymes negative) Evaluation of bypass grafts and coronary anatomy • Evaluation of complex congenital heart disease (anomalies of coronary circulation, great vessels, and cardiac chambers and valves) • Evaluation of cardiac masses or pericardial conditions • Evaluation of pulmonary vein anatomy before radiofrequency ablation, coronary vein • Evaluation of suspected aortic dissection, aortic aneurysm, or pulmonary embolism. History • EBCT – mid 1990 – 1.5 to 3mm slice thickness • 4 MSCT -2000- 1mm s thickness (30 heart beats minimum over all image-acquisition time) • 4-16-64 MSCT - 2004 -0.5 to 0.75 mm (4-8 heart beats) EBCT- Electron Beam CT Evolution of CT - 40 years ‘72. …85…… 89…..91 …….95 ……98.99…01..02..04…05…2006----2012 1st CT Slip Ring Spiral Twin ub sec ½ sec 64 DSCT 256 / ……640/ CT detector MSCT /FPD DSCT/DECT 0.33sec/ritation Multidetector, Multisource CT New detector technologies Data Handling, Dose management Dual source CT 2005- Dual Source CT 2 X-ray sources and 2 detectors Faster than every beating heart DSCT became available around the year 2005, with 2 64 simultaneously acquired slices and a rotation time of 33 milliseconds and More recently, with 2 128 simultaneously acquired slices and a gantry rotation time of 0.28 seconds.
    [Show full text]
  • Pulmonary Vein Isolation Induces Changes in Vectorcardiogram P-Wave Loops
    Pulmonary Vein Isolation Induces Changes in Vectorcardiogram P-wave Loops Nuria Ortigosa1, Oscar´ Cano2, Frida Sandberg3 1 I.U. Matematica´ Pura y Aplicada, Universitat Politecnica` de Valencia,` Spain 2 Servicio de Cardiolog´ıa, Hospital Universitari i Politecnic` La Fe. Valencia, Spain 3 Department of Biomedical Engineering, Lund University, Sweden Abstract ful AF ablation has been the durable PVI [6] and it is there- fore desirable to study changes induced by the procedure Pulmonary vein isolation (PVI) is considered a stan- that may be linked to durability of the PVI. dard treatment of paroxysmal atrial fibrillation aiming to Previous studies have analysed how PVI changes the restore and maintain sinus rhythm. The purpose of this surface ECG signal by decreasing the P-wave duration [7, study is to analyse how the PVI treatment affects the elec- 8], and P-wave amplitude and duration dispersion [9–11]. trical conduction pattern in the atria. We have compared In this study we propose to analyse the vectorcardio- the morphology of P wave loops extracted from the vector- gram (VCG) to assess how PVI affects the electrical con- cardiogram (VCG) before and after PVI. duction pattern in the atria. Based on the 12-lead surface Ten patients suffering from paroxysmal atrial fibrillation ECG of patients with paroxysmal AF in sinus rhythm, we who underwent PVI were included in the study. All patients have extracted the VCG, and then compared the morphol- were in sinus rhythm before as well as after the procedure. ogy of P-wave loops before and after PVI to reveal changes Vectorcardiogram was obtained using the Kors matrix and induced by the procedure.
    [Show full text]
  • Coronary Sinus Cryoablation of Ventricular Tachycardia After Failed Radiofrequency Ablation
    www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com Case Report Journal of Clinical Trials in Cardiology Open Access Coronary Sinus Cryoablation of Ventricular Tachycardia after Failed Radiofrequency Ablation Jiménez-Fernández M*, Macías- Ruiz R, Álvarez-López M, and Tercedor- Sánchez L Virgen de las Nieves University Hospital, Granada, Spain Received: March 11, 2014; Accepted: September 10, 2014; Published: September 25, 2014 *Corresponding author: Miriam Jiménez-Fernández, Virgen de las Nieves University Hospital, Granada, Spain, E-mail: [email protected] Abstract We present a case of Great Cardiac Vein (GCV) cryoablation in order to suppress idiopathic epicardial Ventricular Tachycardia (VT) after failed Radiofrequency (RF) ablation via the epicardium and GCV. RF ablation is the technique of choice for the treatment of Ventricular Arrhythmias (VA). However, this procedure has its limitations when delivered inside the distal cardiac veins. Cryoablation is a good alternative in patients where RF cannot be used because of risk of high impedance. Keywords: Percutaneous epicardial ablation; Ventricular tachycardia; Radiofrequency; Catheter ablation; Cryoablation; Coronary sinus; High impedance; Cryoenergy; Great cardiac vein; Mapping; Electroanatomic mapping system; 12-lead surface electrocardiogram Case Report tachycardia, but the delivery of RF had to be interrupted with a maximal energy of 15 W, as the impedance rise exceeded the A 56-year-old female patient presented in emergency room referring shortness of breath and chest pain. ECG showed we decided to change to a 6 mm tip cryoablation catheter that was sustained monomorphic VT at 160 beats per minute with right ablesafety to limit reach (>300 the programmed Ω) (Figure 1C). temperature In order to of solve -80°C this suppressing problem, bundle branch block and right inferior axis morphology (Figure the VT with no further recurrences.
    [Show full text]
  • Discharge Advice After Atrial Fibrillation Ablation
    Oxford University Hospitals NHS Trust Oxford Heart Centre Discharge advice after Atrial Fibrillation ablation Information for patients page 2 This booklet contains important advice about discharge after your Atrial Fibrillation (AF) ablation. It contains information about what to do when you get home. Contents 1. Discharge summary 4 Follow-up 4 Transport 4 2. What to do when you get home 5 Puncture site care 5 Bleeding 6 Sedation/General Anaesthetic 6 After the catheter ablation 6 Recurrence of AF symptoms - what to do 6 Driving 7 Return to work 8 3. Medication 8 4. How to contact us 9 5. Further information 10 6. Message for doctor reviewing this patient 10 page 3 1. Discharge summary Your Consultant at the John Radcliffe Hospital is: ………………………….…............................................................…….. Follow-up You will be sent an appointment for follow-up in the Arrhythmia clinic. (This appointment will be sent in the post. If you do not receive a date for an appointment within 8 weeks, please call the John Radcliffe Hospital and ask to speak to the secretary of your Consultant. Follow-up appointments are currently planned approximately 3 to 4 months after your procedure.) Transport to your outpatient appointments If you have difficulty getting to your outpatient appointments your GP surgery may have the phone numbers of voluntary transport schemes which operate at subsidised rates. A directory of these services is available at www.oxonrcc.org.uk for residents of the Oxfordshire area. page 4 2. What to do when you get home When you are discharged home, you should have a quiet few days resting to recover from your procedure.
    [Show full text]
  • Atrial Fibrillation Ablation
    Atrial Fibrillation Ablation Atrial Fibrillation Ablation This handout will help you learn about atrial fibrillation ablation, also called pulmonary vein isolation. © Hamilton Health Sciences, 2008 PD 6062 – 02/2012 dpc/pted/LrgBk/AtrialFibrillationAblation-trh.doc dt/February 27, 2012 2 15 Atrial Fibrillation Ablation Atrial Fibrillation Ablation How does the heart work? Notes: To understand atrial fibrillation, you need to know how the heart’s electrical system works. __________________________________________________________ The sinoatrial node (SA node) is a natural pacemaker. It starts the __________________________________________________________ electrical signal that travels across the upper 2 chambers or atria of the heart to the atrioventricular node (AV node). __________________________________________________________ The AV node transfers the electrical signal from the upper part of the heart to the lower 2 pumping chambers or ventricles. The bundle branches are __________________________________________________________ specialized tissue that help send electrical impulses through the ventricles. This makes a normal heart beat, called normal sinus rhythm. __________________________________________________________ __________________________________________________________ __________________________________________________________ SA node __________________________________________________________ Bundle branches __________________________________________________________ AV node __________________________________________________________
    [Show full text]
  • Percutaneous CT-Guided Renal Cryoablation: Technical Aspects, Safety, and Long-Term Oncological Outcomes in a Single Center
    medicina Article Percutaneous CT-Guided Renal Cryoablation: Technical Aspects, Safety, and Long-Term Oncological Outcomes in a Single Center Stefano Cernic 1,* , Cristina Marrocchio 2 , Riccardo Ciabattoni 2, Ilaria Fiorese 2, Fulvio Stacul 3, Fabiola Giudici 4,5 , Michele Rizzo 6 and Maria Assunta Cova 2 1 Department of Radiology, ASUGI, Ospedale di Cattinara, 30149 Trieste, Italy 2 Department of Radiology, University of Trieste, ASUGI, Ospedale di Cattinara, 34149 Trieste, Italy; [email protected] (C.M.); [email protected] (R.C.); fi[email protected] (I.F.); [email protected] (M.A.C.) 3 Department of Radiology, ASUGI, Ospedale Maggiore, 30125 Trieste, Italy; [email protected] 4 Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; [email protected] 5 Unit of Biostatistic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy 6 Department of Urology, University, ASUGI, Ospedale di Cattinara, 30149 Trieste, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-040-399-4372; Fax: +39-040-399-4350 Abstract: Background and objectives: Cryoablation is emerging as a safe and effective therapeutic option for treating renal cell carcinoma. This study analyzed the safety and long-term oncological outcomes of cryoablation in our center. Materials and methods: Patients who underwent computed Citation: Cernic, S.; Marrocchio, C.; tomography (CT)-guided percutaneous cryoablation between February 2011 and June 2020 for one Ciabattoni, R.; Fiorese, I.; Stacul, F.; or more clinically localized renal tumors were identified. Technical success and treatment efficacy Giudici, F.; Rizzo, M.; Cova, M.A.
    [Show full text]