Osteogenic Growth Factors and Cytokines and Their Role in Bone Repair Louis C

Total Page:16

File Type:pdf, Size:1020Kb

Osteogenic Growth Factors and Cytokines and Their Role in Bone Repair Louis C 2. Osteogenic Growth Factors and Cytokines and Their Role in Bone Repair Louis C. Gerstenfeld, Cory M. Edgar, Sanjeev Kakar, Kimberly A. Jacobsen, and Thomas A. Einhorn transforming growth factor β (TGF-β) super- 2.1 Introduction family, angiogenic factors, and parathyroid hormone/parathyroid hormone-related peptide Ontogenetic development is initiated at the (PTH/PTHrP). Major emphasis has been time of fertilization and terminates with the directed to these molecules because their activ- differentiation, growth, and maturation of spe- ities constitute current targets of pharmaco- cialized tissues and organs. These developmen- logical studies to promote or alter bone healing. tal processes are characterized by molecular Short reviews of the fi broblast growth factor specialization that accompanies cellular differ- (FGF) and Wnt families of factors are also pre- entiation and tissue morphogenesis. Most sented in the context of their known functions developmental processes terminate after birth in skeletal development and intended use as or when animals reach sexual maturity, but therapeutic agents. The second half of the some morphogenetic processes are reinitiated review (sections 2.3–5) is focused on the in response to injury in specifi c tissues. One anatomy and cell biology of bone healing, on such regenerative process is the repair of skel- what is known about the temporal and spatial etal fractures and bone tissue after surgery, expression of the various cytokines during a process that recapitulates specifi c aspects bone healing, and how cytokines and morpho- of the initial developmental processes in the gens may therapeutically modify the repair course of healing [58, 209]. Several aspects of process. the postnatal tissue environment of fracture healing, however, are unique and differ from what occurs in embryological and postnatal 2.2 Cytokines, Morphogens, development. Understanding how cytokines and morphogens affect fracture or postsurgical and Growth Factors: healing is essential to the development of The TNF-a Family pharmacological and molecular approaches intended to enhance bone healing after surgery or traumatic injury, as well as to promote skel- 2.2.1 The TNF Family of Cytokines etal tissue engineering. and Their Intracellular Functions The fi rst half of this review (Section 2.2) will focus on several groups of soluble protein TNF was fi rst identifi ed in the early 1980s, and factors that regulate postnatal bone repair: the a large superfamily of related molecules has tumor necrosis factor α (TNF-α) family, the since been identifi ed. So far, 18 members with 17 18 Engineering of Functional Skeletal Tissues 15% to 25% amino acid sequence homology growth, primarily through the activation of the and at least six cell-surface receptors have been nuclear factor κB (NFκB) and c-Jun N-terminal described. The two members of this cytokine kinase (JNK) transcription factors. The dichot- family that have been the most extensively omy of cellular responses to these cytokines characterized are TNF and Fas ligand (FasL). resides in the receptors that are activated and The ligands of this family are all predominantly the downstream signal transduction molecules type II transmembrane proteins. The receptors that interact with these receptors. Signal trans- are all type I transmembrane proteins and are duction is mediated through a two-part system believed to aggregate upon interaction with of docking proteins including MORT/FADD, their ligands. Although the extracellular side TRADD, RIP, and CRADD, which bind to the of the receptors is conserved and composed death domain (DD) of the receptors, and the of cysteine repeats, the cytoplasmic domains of adaptor proteins that have been named TRAFs. the receptors are different and mediate unique Downstream from the coupled responses to activities that lead to a multitude of biological TNFR1 and TNFR2 that mediate cell survival responses through variations in their coupled are the various mitogen-activated protein signal transduction processes. These cytokines (MAP)-related kinases. Downstream from the have been implicated in a wide variety of apoptotic activation of TNFR1 and FAS is the diseases, including tumorigenesis, septic shock, activation of specifi c proteases (caspases) [19, viral replication, bone resorption, rheumatoid 121, 153, 187]. There is a further bifurcation arthritis, diabetes, and other infl ammatory of the apoptotic cascade, with two separate diseases [19, 121, 153, 187]. Recently, several pathways that can mediate apoptosis: an intrin- therapeutic regimens have been approved that sic (mitochondria-dependent low caspase 8) antagonize TNF-α activity to treat a variety of pathway and an extrinsic (mitochondria- autoimmune diseases, including rheumatoid independent high caspase 8) pathway [185]. To arthritis and Crohn’s disease [163, 184]. Pre- understand the complex regulatory functions liminary studies have also examined whether within a tissue that are mediated through the these approaches can be used to impede the actions of the TNF cytokine family, it is neces- loosening of orthopedic prostheses [37]. sary to defi ne the ligands and to specify the The TNF family members with the most actions of specifi c receptors and the specifi c homogeneity are TNF-α, TNF-β (LT-α), and mechanisms of intracellular transduction LT-β. Both TNF-α ligands and TNF-β (LT-α) within that tissue. are homotrimers, whereas LT-β is a heterotri- mer of (LT-α)1(LT-β)2. There are three receptors in this family: TNFR1/p55/death receptor 1/ 2.2.1.1 TNF Cytokines as Arbitrators of the DR1, TNFR2 (p75), and LT-β receptor. Both Tissue Microenvironment by Selective TNF ligands bind both TNF receptors, but LT- Promotion of Cell Death or Survival β/TNF-α trimers only bind to the LT receptor. FasL is a unique family member and is solely The TNF family of cytokines plays a central recognized by its receptor, FAS/Apo1/DR2 [211]. role in the timing of the immune response, Most cells express TNF-α and its receptors, but namely, when to terminate activation of the the expression of TNF-β and its receptor innate infl ammatory response and initiate the appears to be restricted to T cells and natural acquired immune response, and when to termi- killer cells. TNFR1 (p55) is constitutively nate an innate or acquired response and initi- expressed by almost all cells, but TNFR2 (p75) ate local tissue repair and regeneration. Thus is strongly induced in immune and infl amma- both TNFR1 and Fas mediate activation- tory responses. FasL and Fas are also expressed induced cell death in macrophages, T cells, and by many cells but show unique expression B cells [99, 111, 187]. The pathological manifes- during many developmental processes, includ- tations of inappropriate control of the apop- ing the hypertrophy of chondrocytes [72, 174] totic processes in immune function are seen in and the regulation of immune cell differentia- mice that are defi cient in TNFR1, Fas, and FAS/ tion [17, 23, 55, 192]. TNF-α and related cyto- TNFR1. These animals exhibit more severe kines either mediate programmed cell death autoimmune disease and accelerated lym- (apoptosis) or facilitate cell survival and phoproliferation. These responses indicate that Osteogenic Growth Factors and Cytokines and Their Role in Bone Repair 19 whereas Fas and TNFR1 receptors both activate 126]. Treatment of human articular chondro- the apoptotic cascade and carry out compensa- cytes with FasL in vitro causes apoptosis. tory or redundant functions, each receptor Because the Fas system is present in growth- mediates a unique set of biological responses plate chondrocytes in vivo, it may play a role in [229]. Thus failure to initiate the programmed chondrocyte apoptosis during endochondral cell death of one or another population of development [6, 83]. In previous studies, carti- immune cells that mediate the transition of the lage cells within the fracture callus [224] have specifi c stages of an immune response leads to been shown to express Fas, and articular chon- a variety of systemic autoimmune pathologies drocytes will undergo programmed cell death [204]. In essence, these cytokines act as the in response to TNF-α [69]. The relationship central arbitrators of a tissue’s microenviron- between the apoptotic process and the normal ment during immune activation. They do so progression of endochondral development can by promoting the survival of one population be observed in pathological conditions such as of cells while causing another to undergo rickets, as well as in the numerous genetically apoptosis. engineered defects that affect growth-cartilage The TNF-α family of cytokines has been the development. The hallmark of almost all of primary focus of many immune function these defects is either a foreshortening or an studies, but the death receptor family also plays expansion of the growth plates. Two examples a pivotal regulatory role in many developmen- of factors causing an expansion of the growth tal processes [43]. It is interesting that during plate are vitamin D defi ciency in growing postnatal tissue repair and regeneration these animals and the genetically engineered abla- cytokines directly and indirectly regulate many tion of matrix metalloproteinase 9 (MMP-9) nonimmune cell types downstream from an [210]. Ablation of the PTHrP gene, on the other initial immune response [82]. The signaling hand, causes an osteochondrodysplasia, functions by immune cell cytokines during primarily manifested in an accelerated hyper- postnatal tissue repair derive from functions trophy and removal of the chondrocytes. A carried out during embryogenesis. Alterna- phenomenon common to these very different tively, these cells may initiate postnatal repair pathologies of the endochondral process is that or regenerative processes that replace mecha- in all three the timing or rate of chondrocyte nisms that functioned during embryological apoptosis has been altered. The consequence of development. TNF-α thus functions within an abnormally timed apoptosis is that the skeletal tissues either during the course of microenvironment of the endochondral tissue normal skeletal homeostasis or in response to is altered by retention or loss of the chondro- tissue injury [158].
Recommended publications
  • Systemic Therapy of Mscs in Bone Regeneration: a Systematic Review and Meta-Analysis Jingfei Fu, Yanxue Wang, Yiyang Jiang, Juan Du, Junji Xu* and Yi Liu*
    Fu et al. Stem Cell Research & Therapy (2021) 12:377 https://doi.org/10.1186/s13287-021-02456-w REVIEW Open Access Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis Jingfei Fu, Yanxue Wang, Yiyang Jiang, Juan Du, Junji Xu* and Yi Liu* Abstract Objectives: Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of MSCs for bone regeneration in pre-clinical studies. Methods: The article search was conducted in PubMed and Embase databases. Original research articles that assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of injection, and bone diseases. Results: Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV).
    [Show full text]
  • Effect of Freeze-Dried Bovine Bone Xenograft on Tumor Necrosis Factor- Alpha Secretion in Human Peripheral Blood Mononuclear Cells
    Asian Jr. of Microbiol. Biotech. Env. Sc. Vol. 20 (December Suppl.) : 2018 : S88-S92 © Global Science Publications ISSN-0972-3005 EFFECT OF FREEZE-DRIED BOVINE BONE XENOGRAFT ON TUMOR NECROSIS FACTOR- ALPHA SECRETION IN HUMAN PERIPHERAL BLOOD MONONUCLEAR CELLS AHMAD K.M. HUMIDAT1, DAVID B. KAMADJAJA2,3*, CHRIST BIANTO1, ANINDITA Z. RASYIDA1, PURWATI3 AND ACHMAD HARIJADI2 1Residency Program, Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia. 2Department of Oral Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya,Indonesia. 3Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia (Received 25 September, 2018; accepted 15 November, 2018) Key words: Tumor Necrosis Factor , Freeze Dried Bovine Bone Xenograft, Human peripheral blood mononuclear cell. Abstract– Alveolar bone augmentation requires the use of bone graft particles to promote bone formation. Freeze-dried bovine bone xenograft (FDBBX) is a type of bone substitute may be potential as an alternative to autogenous bone graft. However, since it is xenogeneic material, it may trigger body’s immune response and cause early resorption of the graft. Tumor Necrosis Factor- (TNF-) is a cytokine which is released rapidly after trauma or infection and is one of the most abundant mediators in inflammation tissue. The immune system and immune response play a very important role in the concept of bone healing. Human peripheral blood mononuclear cells (hPBMCs) is a critical component of the immune system which release TNF-. This study aims to evaluate FDBBX effect on the secretion of TNF-á in hPBMCs culture. hPBMC cultures were divided into two groups. In experimental groups, the cell was cultured in FDBX conditioned medium of 2.5% dilution while in control group, basic medium was used.
    [Show full text]
  • Interactions Between Bone and Immune Systems: a Focus on the Role of Inflammation in Bone Resorption and Fracture Healing
    PERIODICUM BIOLOGORUM UDC 57:61 VOL. 116, No 1, 45–52, 2014 CODEN PDBIAD ISSN 0031-5362 Interactions between bone and immune systems: A focus on the role of inflammation in bone resorption and fracture healing Abstract TOMISLAV KELAVA1,2 ALAN ŠUĆUR1,2 Functional interactions between the immune system and bone tissues are SANIA KUZMAC2,3 reflected in a number of cytokines, chemokines, hormones and other media- 2,3 VEDRAN KATAVIĆ tors regulating the functions of both bone and immune cells. Investigations 1 Department of Physiology and Immunology of the mechanisms of those interactions have become important for the un- University of Zagreb School of Medicine derstanding of the pathogeneses of diseases like inflammatory arthritis, in- [alata 3b, Zagreb-HR 10000, Croatia flammatory bowel disease, periodontal disease and osteoporosis. This review 2 Laboratory for Molecular Immunology first addresses the roles of the inflammatory mediators and mechanisms by University of Zagreb School of Medicine which they cause inflammation-induced bone loss. In the second part of the [alata 12, Zagreb-HR 10000, Croatia review we stress the importance of proinflammatory mediators for normal 3 Department of Anatomy fracture healing. Defective bone remodeling underlying different patho- University of Zagreb School of Medicine logical processes may be caused by disturbed differentiation and function of [alata 3b, Zagreb-HR 10000, Croatia either osteoclast or osteoblast lineage cells. Understanding of the mechanisms governing enhanced differentiation and activation
    [Show full text]
  • Bone Healing
    BONE HEALING How Does a Bone Heal? Bone generally takes 6 to 8 weeks ll broken bones go through the to heal to a significant degree. In A same healing process. This general, children's bones heal faster is true whether a bone has been than those of adults. The foot and cut as part of a surgical procedure ankle surgeon will determine when or fractured through an injury. the patient is ready to bear weight The bone healing process Inflammation on the area. This will depend on the has three overlapping stages: location and severity of the fracture, inflammation, bone production, the type of surgical procedure and bone remodeling. performed, and other considerations. • Inflammation starts immediately after the bone is fractured and What Helps Promote lasts for several days. When Bone Healing? the bone is fractured there is If a bone will be cut during a bleeding into the area, leading planned surgical procedure, some to inflammation and clotting of steps can be taken pre-and post- blood at the fracture site. This operatively to help optimize healing. provides the initial structural Bone production The surgeon may offer advice on diet stability and framework for and nutritional supplements that are producing new bone. essential to bone growth. Smoking • Bone production begins when cessation, and adequate control the clotted blood formed by of blood sugar levels in diabetics, inflammation is replaced with are important. Smoking and high fibrous tissue and cartilage glucose levels interfere with bone (known as “soft callus”). As healing. healing progresses, the soft For all patients with fractured callus is replaced with hard bones, immobilization is a critical bone (known as “hard callus”), Bone remodeling part of treatment, because any which is visible on x-rays several movement of bone fragments slows weeks after the fracture.
    [Show full text]
  • Biology of Bone Repair
    Biology of Bone Repair J. Scott Broderick, MD Original Author: Timothy McHenry, MD; March 2004 New Author: J. Scott Broderick, MD; Revised November 2005 Types of Bone • Lamellar Bone – Collagen fibers arranged in parallel layers – Normal adult bone • Woven Bone (non-lamellar) – Randomly oriented collagen fibers – In adults, seen at sites of fracture healing, tendon or ligament attachment and in pathological conditions Lamellar Bone • Cortical bone – Comprised of osteons (Haversian systems) – Osteons communicate with medullary cavity by Volkmann’s canals Picture courtesy Gwen Childs, PhD. Haversian System osteocyte osteon Picture courtesy Gwen Childs, PhD. Haversian Volkmann’s canal canal Lamellar Bone • Cancellous bone (trabecular or spongy bone) – Bony struts (trabeculae) that are oriented in direction of the greatest stress Woven Bone • Coarse with random orientation • Weaker than lamellar bone • Normally remodeled to lamellar bone Figure from Rockwood and Green’s: Fractures in Adults, 4th ed Bone Composition • Cells – Osteocytes – Osteoblasts – Osteoclasts • Extracellular Matrix – Organic (35%) • Collagen (type I) 90% • Osteocalcin, osteonectin, proteoglycans, glycosaminoglycans, lipids (ground substance) – Inorganic (65%) • Primarily hydroxyapatite Ca5(PO4)3(OH)2 Osteoblasts • Derived from mesenchymal stem cells • Line the surface of the bone and produce osteoid • Immediate precursor is fibroblast-like Picture courtesy Gwen Childs, PhD. preosteoblasts Osteocytes • Osteoblasts surrounded by bone matrix – trapped in lacunae • Function
    [Show full text]
  • Distal Radius Fracture
    Distal Radius Fracture Osteoporosis, a common condition where bones become brittle, increases the risk of a wrist fracture if you fall. How are distal radius fractures diagnosed? Your provider will take a detailed health history and perform a physical evaluation. X-rays will be taken to confirm a fracture and help determine a treatment plan. Sometimes an MRI or CT scan is needed to get better detail of the fracture or to look for associated What is a distal radius fracture? injuries to soft tissues such as ligaments or Distal radius fracture is the medical term for tendons. a “broken wrist.” To fracture a bone means it is broken. A distal radius fracture occurs What is the treatment for distal when a sudden force causes the radius bone, radius fracture? located on the thumb side of the wrist, to break. The wrist joint includes many bones Treatment depends on the severity of your and joints. The most commonly broken bone fracture. Many factors influence treatment in the wrist is the radius bone. – whether the fracture is displaced or non-displaced, stable or unstable. Other Fractures may be closed or open considerations include age, overall health, (compound). An open fracture means a bone hand dominance, work and leisure activities, fragment has broken through the skin. There prior injuries, arthritis, and any other injuries is a risk of infection with an open fracture. associated with the fracture. Your provider will help determine the best treatment plan What causes a distal radius for your specific injury. fracture? Signs and Symptoms The most common cause of distal radius fracture is a fall onto an outstretched hand, • Swelling and/or bruising at the wrist from either slipping or tripping.
    [Show full text]
  • Current and Future Concepts for the Treatment of Impaired Fracture Healing
    International Journal of Molecular Sciences Review Current and Future Concepts for the Treatment of Impaired Fracture Healing Carsten W. Schlickewei y, Holger Kleinertz y, Darius M. Thiesen , Konrad Mader , Matthias Priemel, Karl-Heinz Frosch and Johannes Keller * Clinic of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; [email protected] (C.W.S.); [email protected] (H.K.); [email protected] (D.M.T.); [email protected] (K.M.); [email protected] (M.P.); [email protected] (K.-H.F.) * Correspondence: [email protected]; Tel.: +49-1522-2817-439 These authors contributed equally to this work. y Received: 30 October 2019; Accepted: 15 November 2019; Published: 19 November 2019 Abstract: Bone regeneration represents a complex process, of which basic biologic principles have been evolutionarily conserved over a broad range of different species. Bone represents one of few tissues that can heal without forming a fibrous scar and, as such, resembles a unique form of tissue regeneration. Despite a tremendous improvement in surgical techniques in the past decades, impaired bone regeneration including non-unions still affect a significant number of patients with fractures. As impaired bone regeneration is associated with high socio-economic implications, it is an essential clinical need to gain a full understanding of the pathophysiology and identify novel treatment approaches. This review focuses on the clinical implications of impaired bone regeneration, including currently available treatment options. Moreover, recent advances in the understanding of fracture healing are discussed, which have resulted in the identification and development of novel therapeutic approaches for affected patients.
    [Show full text]
  • Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing
    TISSUE-SPECIFIC STEM CELLS Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing a a b c a FROILA´ N GRANERO-MOLTO´ , JARED A. WEIS, MICHAEL I. MIGA, BENJAMIN LANDIS, TIMOTHY J. MYERS, c a b d a,e LYNDA O’REAR, LARA LONGOBARDI, E. DUCO JANSEN, DOUGLAS P. MORTLOCK, ANNA SPAGNOLI Departments of aPediatrics and eBiomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Departments of bBiomedical Engineering, cPediatrics, and dMolecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA Key Words. Mesenchymal stem cells • Fracture healing • CXCR4 • Bone morphogenic protein 2 • Stem cell niche ABSTRACT Mesenchymal stem cells (MSC) have a therapeutic poten- migration at the fracture site is time- and dose-dependent tial in patients with fractures to reduce the time of healing and, it is exclusively CXCR4-dependent. MSC improved the and treat nonunions. The use of MSC to treat fractures is fracture healing affecting the callus biomechanical proper- attractive for several reasons. First, MSCs would be imple- ties and such improvement correlated with an increase in menting conventional reparative process that seems to be cartilage and bone content, and changes in callus morphol- defective or protracted. Secondly, the effects of MSCs treat- ogy as determined by micro-computed tomography and ment would be needed only for relatively brief duration of histological studies. Transplanting CMV-Cre-R26R-Lac reparation. However, an integrated approach to define the Z-MSC, we found that MSCs engrafted within the callus multiple regenerative contributions of MSC to the fracture endosteal niche. Using MSCs from BMP-2-Lac Z mice genet- repair process is necessary before clinical trials are initiated.
    [Show full text]
  • Systemic Mesenchymal Stem Cell Administration Enhances Bone Formation in Fracture Repair but Not Load-Induced Bone Formation A.E
    EuropeanAE Rapp Cellset al. and Materials Vol. 29 2015 (pages 22-34) DOI: 10.22203/eCM.v029a02 Bone formation after systemic MSC ISSN administration 1473-2262 SYSTEMIC MESENCHYMAL STEM CELL ADMINISTRATION ENHANCES BONE FORMATION IN FRACTURE REPAIR BUT NOT LOAD-INDUCED BONE FORMATION A.E. Rapp1, R. Bindl1, A. Heilmann1, A. Erbacher2, I. Müller3, R.E. Brenner4 and A. Ignatius1 1Institute of Orthopaedic Research and Biomechanics, Centre of Musculoskeletal Research, University of Ulm, Germany 2Department of General Paediatrics, Haematology and Oncology, University Children’s Hospital Tübingen, Tübingen, Germany 3Clinic for Paediatric Haematology and Oncology, Bone Marrow Transplantation Unit, University Medical Centre Hamburg-Eppendorf, Germany 4Department of Orthopaedics, Division of Joint and Connective Tissue Diseases, Centre of Musculoskeletal Research, University of Ulm, Germany Abstract Introduction Mesenchymal stem cells (MSC) were shown to support Mesenchymal stem cells (MSC), also termed mesenchymal bone regeneration, when they were locally transplanted stromal or progenitors cells, are a promising tool in into poorly healing fractures. The benefit of systemic regenerative therapies because of their great potential MSC transplantation is currently less evident. There is for proliferation and differentiation as well as their consensus that systemically applied MSC are recruited to ability to secrete a broad spectrum of biologically active the site of injury, but it is debated whether they actually factors with paracrine regenerative and anti-inflammatory support bone formation. Furthermore, the question arises effects (Caplan, 2007). MSC and other progenitor cells as to whether circulating MSC are recruited only in case types like endothelial progenitor cells have supported of injury or whether they also participate in mechanically bone regeneration in animal experiments (Atesok et al., induced bone formation.
    [Show full text]
  • The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering
    cells Review The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering Wolfgang Mende 1, Rebekka Götzl 1 , Yusuke Kubo 2, Thomas Pufe 2 , Tim Ruhl 1 and Justus P. Beier 1,* 1 Hand Surgery—Burn Center, Department of Plastic Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany; [email protected] (W.M.); [email protected] (R.G.); [email protected] (T.R.) 2 Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, 52074 Aachen, Germany; [email protected] (Y.K.); [email protected] (T.P.) * Correspondence: [email protected]; Tel.: +49-241-808-9700 Abstract: Bone regeneration is a complex process that is influenced by tissue interactions, inflam- matory responses, and progenitor cells. Diseases, lifestyle, or multiple trauma can disturb fracture healing, which might result in prolonged healing duration or even failure. The current gold standard therapy in these cases are bone grafts. However, they are associated with several disadvantages, e.g., donor site morbidity and availability of appropriate material. Bone tissue engineering has been proposed as a promising alternative. The success of bone-tissue engineering depends on the admin- istered cells, osteogenic differentiation, and secretome. Different stem cell types offer advantages and drawbacks in this field, while adipose-derived stem or stromal cells (ASCs) are in particular promising. They show high osteogenic potential, osteoinductive ability, and immunomodulation properties. Furthermore, they can be harvested through a noninvasive process in high numbers. ASCs can be induced into osteogenic lineage through bioactive molecules, i.e., growth factors and Citation: Mende, W.; Götzl, R.; Kubo, cytokines. Moreover, their secretome, in particular extracellular vesicles, has been linked to fracture Y.; Pufe, T.; Ruhl, T.; Beier, J.P.
    [Show full text]
  • Principles of Bone Healing
    Neurosurg Focus 10 (4):Article 1, 2001, Click here to return to Table of Contents Principles of bone healing IAIN H. KALFAS, M.D., F.A.C.S. Department of Neurosurgery, Section of Spinal Surgery, Cleveland Clinic Foundation, Cleveland, Ohio Our contemporary understanding of bone healing has evolved due to knowledge gleaned from a continuous interac- tion between basic laboratory investigations and clinical observations following procedures to augment healing of frac- tures, osseous defects, and unstable joints. The stages of bone healing parallel the early stages of bone development. The bone healing process is greatly influenced by a variety of systemic and local factors. A thorough understanding of the basic science of bone healing as well as the many factors that can affect it is critical to the management of a vari- ety of musculoskeletal disorders. In particular, the evolving management of spinal disorders can greatly benefit from the advancement of our understanding of the principles of bone healing. KEY WORDS • bone healing • spinal fusion • arthrodesis Bone is a dynamic biological tissue composed of meta- thick outer layer, termed the “fibrous layer,” consists of ir- bolically active cells that are integrated into a rigid frame- regular, dense connective tissue. A thinner, poorly defined work. The healing potential of bone, whether in a fracture inner layer called the “osteogenic layer” is made up of os- or fusion model, is influenced by a variety of biochem- teogenic cells. The endosteum is a single layer of osteo- ical, biomechanical, cellular, hormonal, and pathological genic cells lacking a fibrous component. mechanisms. A continuously occurring state of bone dep- Osteoblasts are mature, metabolically active, bone- osition, resorption, and remodeling facilitates the healing forming cells.
    [Show full text]
  • Intramembranous Ossification and Endochondral Ossification Are Impaired Differently Between Glucocorticoid-Induced Osteoporosis
    www.nature.com/scientificreports OPEN Intramembranous ossifcation and endochondral ossifcation are impaired diferently Received: 1 September 2017 Accepted: 15 February 2018 between glucocorticoid-induced Published: xx xx xxxx osteoporosis and estrogen defciency-induced osteoporosis Hongyang Zhang1, Xiaojuan Shi1, Long Wang2, Xiaojie Li3, Chao Zheng1, Bo Gao1, Xiaolong Xu1, Xisheng Lin1, Jinpeng Wang1, Yangjing Lin4, Jun Shi5, Qiang Huang6, Zhuojing Luo 1 & Liu Yang1 A fracture is the most dangerous complication of osteoporosis in patients because the associated disability and mortality rates are high. Osteoporosis impairs fracture healing and prognosis, but how intramembranous ossifcation (IO) or endochondral ossifcation (EO) during fracture healing are afected and whether these two kinds of ossifcation are diferent between glucocorticoid-induced osteoporosis (GIOP) and estrogen defciency-induced osteoporosis (EDOP) are poorly understood. In this study, we established two bone repair models that exhibited repair via IO or EO and compared the pathological progress of each under GIOP and EDOP. In the cortical drill-hole model, which is repaired through IO, osteogenic diferentiation was more seriously impaired in EDOP at the early stage than in GIOP. In the periosteum scratch model, in which EO is replicated, chondrocyte hypertrophy progression was delayed in both GIOP and EDOP. The in vitro results were consistent with the in vivo results. Our study is the frst to establish bone repair models in which IO and EO occur separately, and the results strongly describe the diferences in bone repair between GIOP and EDOP. Osteoporosis is a skeletal disorder characterized by systemically decreased bone mass and bone microarchitec- ture destruction, with an increased risk of fracture1.
    [Show full text]