Sediment Properties and Benthic–Pelagic Coupling in the North Water

Total Page:16

File Type:pdf, Size:1020Kb

Sediment Properties and Benthic–Pelagic Coupling in the North Water Deep-Sea Research II 49 (2002) 5259–5275 Sediment properties and benthic–pelagic coupling in the North Water Jon Granta,*, Barry Hargravea,b, Paul MacPhersona a Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1 b Department of Fisheries and Oceans, Marine Environmental Sciences Division, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada B2Y 4A2 Received 11 November 2000; received in revised form 27 July 2001; accepted 29 October 2001 Abstract Measurements of sediment oxygen consumption were made during spring and summer in the North Water, the polynya that forms between Greenland and Ellesmere Island, and used in conjunction with sediment trap data to assess benthic–pelagic coupling in this system. Bottom sediments ranged from cobble in the north to soft muds in the southern part of the sampling grid. Muddy sediments were often pelletized as shown by disaggregation. Sediment photopigments were generally lower in coarse sediment stations to the north than in finer sediments stations to the south. Shipboard À2 À1 incubation of intact cores provided rates of 0.07–0.17 mmol O2 m h , with significantly greater oxygen consumption in summer than in spring. Additional incubation of macrofauna-free sediment aliquots in vials demonstrated significantly lower oxygen consumption in summer than in spring. Partitioning of benthic metabolism via these selective exclusion experiments showed a seasonal change in the response of the benthos to pelagic input, with meio-microbenthos dominating oxygen consumption in spring and macrofauna dominating in summer. Increased oxygen demand in the western polynya is suggested to coincide with the highest rates of carbon input measured by sediment traps and highest levels of sediment pigments. This region is an advective sink for particles produced in the east and subsequently transported by net polynya circulation. Although the benthos of the North Water does not display enhanced rates of carbon processing compared to other Arctic sediments, including other polynyas, the protracted production season of North Water provides a longer period over which the benthos can receive and mineralize organic carbon. Crown Copyright r 2002 Published by Elsevier Science Ltd. All rights reserved. 1. Introduction as one of the major constraints on Arctic productivity, and represent an exceptional oppor- Polynyas are Arctic Ocean regions of reduced tunity to study food webs at high latitudes. Arctic ice cover that are characterized by seasonally benthic communities receive most of their annual intense biological activity at all trophic levels food input in brief seasonal pulses, likely enhanced (Stirling, 1997). Polynyas thus constitute a ‘natural by the aggregated sinking of epontic microalgae experiment,’ in terms of removing light limitation and eventually phytoplankton following ice melt (Bauerfeind et al., 1997; Hargrave et al., 2002; *Corresponding author. Tel.: +1-902-494-2021; fax: +1- Sampei et al., 2002). The protracted production 902-494-3877. season that occurs in polynya regions may be E-mail address: [email protected] (J. Grant). expected to elevate the role of the benthos in 0967-0645/02/$ - see front matter Crown Copyright r 2002 Published by Elsevier Science Ltd. All rights reserved. PII: S 0967-0645(02)00189-3 5260 J. Grant et al. / Deep-Sea Research II 49 (2002) 5259–5275 sequestering organic carbon relative to other polar finally disappearing as the waters of Baffin Bay regions (Ambrose and Renaud, 1995). Alterna- become open in the summer. tively, a well-developed pelagic grazer food chain The International North Water Polynya Study and microbial loop in productive waters may (NOW) was a collaborative effort designed to reduce the potential for benthic input (Grebmeier study physical, chemical, and biological aspects of and Barry, 1991; Rowe et al., 1997). In addition, this polynya. Benthic studies were undertaken to the degree of benthic–pelagic coupling that occurs quantify the role of bottom communities and in polynyas serves as a model for scenarios in sediments in the mineralization of organic carbon which global warming reduces Arctic ice cover originating in the euphotic zone. The somewhat (Rowe et al., 1997). confined area of the polynya and depths o1000 m Previous studies of polynyas have demonstrated make the benthos a potentially important sink for seasonal progression in the types of particles carbon exported from the water column via sinking from the euphotic zone (cells, aggregates, sinking particles. We set out to pursue the fecal pellets, etc,) and the fate of enhanced following questions relevant to location, timing, production (Grebmeier and Cooper, 1995; Bauer- and trophic structure in the NOW polynya: fiend et al., 1997; Ritzrau and Thomsen, 1997; see Spatially: Does sediment oxygen consumption also Sampei et al., 2002). Seasonal changes in (SOC) follow a pattern determined by sediment benthic carbon demand have also been examined type and organic matter, circulation, and/or by the in the Northeast Water polynya (Rowe et al., pattern of primary production and carbon input 1997), but few studies allow assessment of the role from the water column? of polynyas in benthic trophodynamics compared Temporally: Does SOC reflect the transition to other Arctic ecosystems (Grebmeier and Barry, from ice cover to open water spring/summer 1991). Arctic benthos display a diverse range in conditions and the consequent change in carbon distribution of biomass and activity between input from ice algae to phytoplankton production? bacteria, microfauna, meiofauna, and macrofau- Trophically: What is the relative importance of na, related to factors such as grain size and organic macrofauna versus meio-microbial benthos in input (Piepenburg et al., 1995; Glud et al., 1998; their contribution to benthic oxygen demand? Kroncke. et al., 2000). We approached these questions by obtaining The North Water in northern Baffin Bay benthic samples at multiple stations in spring and between Greenland and Ellesmere Island is the summer and conducting shipboard incubations for largest polynya in the Canadian Arctic, occurring measurement of SOC. These results were then over 80,000 km2 at its maximal extent. It appears related to sediment properties as well as the results to be maintained largely as a latent heat polynya, of moored sediment trap studies conducted due to the steady winds from the north that simultaneously by Hargrave et al. (2002). transport recently formed ice along the Greenland coast (Ingram et al., 2002; Bacle# et al., 2002). The ice dam across the Nares Strait also plays a role in 2. Materials and methods reducing the southern drift of pack ice. Circulation in the polynya is driven by the boundary current 2.1. Study site north along the Greenland coast, and flow is topographically steered to the west in Smith Benthic sampling was conducted from the Sound. The southern-flowing Baffin current joins CCGS icebreaker Pierre Radisson in Smith Sound the flow from western Greenland to maintain a net and northern Baffin Bay during Leg 1 (April–May; counterclockwise transport in the polynya (Bacle# spring) and Leg 4 (July; summer) of the major field et al., 2002). The seasonal development of the effort in 1998. Stations were chosen to provide polynya follows a similar pattern, occurring as north–south and east–west transects in the poly- broken or thin ice off of western Greenland and nya (Fig. 1). A total of 12 stations were sampled expanding to the southwest through the spring, during Leg 1 and seven during Leg 4, with all J. Grant et al. / Deep-Sea Research II 49 (2002) 5259–5275 5261 Leg-4 locations having been visited during Leg 1. Table 1 Water-column depths ranged from 247 to 680 m, Benthic station location and depth during the 1998 NOW field with all stations except the most northerly, A7, study and easterly, S1, deeper than 400 m (Table 1). Ice Station Location (digital degrees) Depth range (m) cover was still present at many stations during Leg Latitude N, Longitude W 1, while during Leg 4 large areas of open water A7 78.99, 73.33 247–257 were interspersed with drifting pack ice. During N2 78.99, 73.33 517–579 Leg 4, various stations with coarse sediments E2 78.04, 73.27 450 sampled during Leg 1 were avoided to protect the A16 77.85, 74.79 680 box core from damage, resulting in incomplete A22 77.34, 76.48 420 E1 77.01, 72.63 400–532 overlap between legs for some variables. In some D2 77.00, 75.00 553–562 cases, coarse sediment was obtained for chemical S1 77.00, 75.00 259 and grain size analysis, but with insufficient S2 76.29, 72.03 563–570 quantities for core incubations. Station S4 was S4 76.28, 74.24 445–486 visited twice within 7 d during Leg 1, providing a S5 76.37, 77.28 307–370 D1 75.25, 74.95 480–499 measure of the short-term temporal variability that occurs in the polynya. Depth range refers to the variation in depths observed over multiple samples at the same general site. 2.2. Sampling Surface sediments (up to B40 cm) were sampled southern (D1) station outside of this region with a 0.25-m2 USNEL box core at ten stations (Fig. 1). Box-core samples had varying amounts within the polynya and at a northern (A7) and of overlying water due to the presence of rocks which affected closure of the blade. Box cores drained of water raise concerns about loss of 79.00 Kane Basin A7 surficial sediments. Our samples often contained Ellesmere epifauna and intact infaunal tubes, with no 78.50 Island Greenland n Nares Strait obvious disturbance of the sediment surface due N2 to retrieval. Sediment subsamples in general were 78.00 E2 obtained away from the edges of the box. A16 The surface of each box core was photographed 77.50 Smith Sound immediately with a digital camera.
Recommended publications
  • Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting
    OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 Editors Melanie McKay Copy Editor Judith Nides Production Editor Debra Vigil Editor Prepared under MMS Contract 1435-00-01-CA-31060 by University of New Orleans Office of Conference Services New Orleans, Louisiana 70814 Published by New Orleans U.S. Department of the Interior Minerals Management Service October 2001 Gulf of Mexico OCS Region iii DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and the University of New Orleans, Office of Conference Services. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards. REPORT AVAILABILITY Extra copies of this report may be obtained from the Public Information Office (Mail Stop 5034) at the following address: U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394 Telephone Numbers: (504) 736-2519 1-800-200-GULF CITATION This study should be cited as: McKay, M., J. Nides, and D. Vigil, eds. 2001. Proceedings: Twentieth annual Gulf of Mexico information transfer meeting, December 2000.
    [Show full text]
  • Curriculum Vitae Markus H. Huettel
    Curriculum Vitae Markus H. Huettel April 05, 2013 General Information University address: Earth, Ocean, & Atmospheric Science College of Arts and Sciences Rogers Building - OSB 0515 Florida State University Tallahassee, Florida 32306-4320 Phone: 850-645-1394; Fax: 850-644-2581 E-mail address: [email protected] Web site: http://myweb.fsu.edu/mhuettel/ Professional Preparation 1988 Doctor of Philosophy, University of Kiel, Germany. Major: Biological Sciences. Marine Biology. Supervisor: Prof. Wolfram Noodt. Summa Cum Laude. Huettel, M. (1988). On the impact of macrofauna on the nutrient profiles in Wadden Sea sediments. (Doctoral dissertation, University of Kiel, Germany). Retrieved from Report of the Institute of Marine Research in Kiel, 182: 1-203. 1984 M.S., University of Kiel, Germany. Major: Biology. Zoology, Biological Oceanography, Biochemistry. Supervisor: Prof. Wolfram Noodt. Summa Cum Laude. Huettel, M. (1984). On the ecology of intertidal flat scavengers: Investigations of Carcinus maenas and Anaitides maculata. Unpublished master's thesis, University of Kiel, Germany. Postdegree Education and Training 1989–1990 Boundary layer hydrodynamics at the sandy seafloor. Vita for Markus H. Huettel Professional Experience 2005–present Associate Geophysical Fluid Dynamics Institute, Geophysical Fluid Dynamics Institute, Florida State University. 2003–present Professor, Earth, Ocean & Atmospheric Science, Florida State University. 2000–2002 Research Group Leader, Fluid Dynamics Lab, Max Plack Institute for Marine Microbiology, Bremen, Germany. 1992–1999 Staff Scientist, Fluid Dynamics Lab, Max Planck Institute for Marine Microbiology, Bremen, Germany. 1997 Visiting Scientist, University of Hawaii. Research group, Dr. F. Sansone. 1991 Lecturer, Biology, University of Kiel, Germany. 1989–1990 Postdoctoral Fellow, University of South Florida. 1988 Lecturer, Biology, University of Kiel, Germany.
    [Show full text]
  • Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea Lena
    Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea Lena Viktorsson, Elin Almroth-Rosell, Anders Tengberg, Roman Vankevich, Ivan Neelov, Alexey Isaev, Victor Kravtsov & Per O. J. Hall Aquatic Geochemistry ISSN 1380-6165 Volume 18 Number 6 Aquat Geochem (2012) 18:543-564 DOI 10.1007/s10498-011-9155-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media B.V.. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Aquat Geochem (2012) 18:543–564 DOI 10.1007/s10498-011-9155-y ORIGINAL PAPER Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea Lena Viktorsson • Elin Almroth-Rosell • Anders Tengberg • Roman Vankevich • Ivan Neelov • Alexey Isaev • Victor Kravtsov • Per O. J. Hall Received: 25 January 2011 / Accepted: 20 December 2011 / Published online: 11 January 2012 Ó Springer Science+Business Media B.V. 2012 Abstract Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load).
    [Show full text]
  • Full Text in Pdf Format
    MARINE ECOLOGY PROGRESS SERIES Published September 17 Mar Ecol Prog Ser Benthic in situ respiration in the upwelling area off central Chile Ronnie N~hrGlud*, Jens Kristian Gundersen*', Ola Holby8** Max Planck Institute for Marine Microbiology. Microsensor Research Group, Celsiusstraße 1,28359 Bremen, Germany ABSTRACT. Benthic O2 uptake rates and O2 microprofiles were measured in the upwelling area off central Chile. Measurements were performed both in situ and in the laboratory on recovered sediment cores. Comparison between the 2 data sets confirmed retrieval and handling artifacts inferred from previous studies. Onboard measurements indicated that the effects were mainly associated with core warming during recovery. Fauna mediated O2 uptake was significant even at abyssal depths and gen- erally in situ O2uptake rates were higher and showed stronger attenuation with water depth than pre- vious measurements performed in the NE Pacific. However, O2uptake rates and O2penetration depths were very sirnilar to measurements performed in the SE Atlantic, and the compiled data sets were approxirnated by simple exponential equations relating the measurements to water depth. By compar- ing our total O2 in situ uptake rates to simultaneous measurements of primary production (PP) and new production (NP) of the overlying water column, it was calculated that the benthic mineralization accounted for 13 to 66% of the PP and for 28 to 92% of the NP at water depths shallower than 1000 m. At water depths from 1000 to 4000 m, the benthic rnineralization equaled 2 to 11 % of the PP and 22 to 38% of the NP. The benthic mineralization thereby accounted for a significant turnover of organic material even at the abyssal stations.
    [Show full text]
  • Long-Term Monitoring of Bottom Environments of the Continental Slope Off Otsuchi Bay,…
    J Oceanogr DOI 10.1007/s10872-015-0330-4 SPECIAL SECTION: ORIGINAL ARTICLE Oceanographic observations after the 2011 earthquake off the Pacific coast of Tohoku Long‑term monitoring of bottom environments of the continental slope off Otsuchi Bay, northeastern Japan Kazumasa Oguri1 · Yasuo Furushima1 · Takashi Toyofuku1 · Takafumi Kasaya1 · Masahide Wakita1 · Shuichi Watanabe1 · Katsunori Fujikura1 · Hiroshi Kitazato1 Received: 31 March 2015 / Revised: 21 September 2015 / Accepted: 27 September 2015 © The Oceanographic Society of Japan and Springer Japan 2015 Abstract Long-term monitoring of the seafloor environ- Keywords Off Otsuchi Bay · The Tohoku Earthquake of ment off Otsuchi Bay, northeastern Japan, was carried out 2011 · Long-term monitoring · Water mass · Marine snow · to investigate environmental changes of the deep-sea floor Benthic habitats · Sediment after the 2011 off the Pacific coast of the Tohoku Earth- quake. We deployed two deep-sea stations, one on an upper continental slope site (around 300 m water depth) and the 1 Introduction other on a bathyal (998 m) site, to measure current inten- sity and direction, water temperature, salinity, dissolved On 11 March 2011, the Tohoku Earthquake off the Pacific oxygen, and turbidity, and to obtain seafloor images. coast of Japan caused strong shaking and a huge tsunami The monitoring period on the upper slope was 9 months along the entire Pacific coast of the Tohoku region of Japan. (March–September 2013), and 14 months (August 2012– After the earthquake and many aftershocks, dense nephe- October 2013) at the bathyal site. The oceanographic data loid layers were widely observed in the sea off northeastern from the upper slope site recorded the seasonal exchange Japan (Kawagucci et al.
    [Show full text]
  • Downloaded As Tab Delimited Text Files to the Users’ Local Drive for Further Analysis
    BOOK OF ABSTRACTS VLIZ MARINE SCIENCE DAY MEC STAF VERSLUYS, BREDENE 21 MARCH 2018 VLIZ SPECIAL PUBLICATION 80 This publication should be quoted as follows: Jan Mees and Jan Seys (Eds). 2018. Book of abstracts – VLIZ Marine Science Day. Bredene, Belgium, 21 March 2018. VLIZ Special Publication 80. Vlaams Instituut voor de Zee – Flanders Marine Institute (VLIZ): Oostende, Belgium. 142 + ix p. Vlaams Instituut voor de Zee (VLIZ) – Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium Tel. +32-(0)59-34 21 30 – Fax +32-(0)59-34 21 31 E-mail: [email protected] – Website: http://www.vliz.be Photo cover: VLIZ The abstracts in this book are published on the basis of the information submitted by the respective authors. The publisher and editors cannot be held responsible for errors or any consequences arising from the use of information contained in this book of abstracts. Reproduction is authorized, provided that appropriate mention is made of the source. ISSN 1377-0950 PREFACE This is the ‘Book of Abstracts’ of the 18th edition of the VLIZ Marine Science Day, a one-day event that was organised on 21 March 2018 in the MEC Staf Versluys in Bredene. This annual event has become more and more successful over the years. With almost 400 participants and more than 100 scientific contributions, it is fair to say that it is the place to be for Flemish marine researchers and for the end-users of their research. It is an important networking opportunity, where scientists can meet and interact with their peers, learn from each other, build their personal professional network and establish links for collaborative and interdisciplinary research.
    [Show full text]
  • A Novel Approach for the Study of North Sea Drill
    {(J/I.{( J ( () ISSN 01410814. Journal of rhe Sociely for Underlvater Technology. Vol. 25. No. 2. pp. 77-82.2002 ec n ogy A Novel Approach for the Study of -ca North Sea Drill Cuttings Accumulations: u oe'e The Combined Use of an ROVand Benthic u ~ Lander for In situ Measurements ••• E. BREUER, O. C. PEPPE and G. B. SHIMMIELD Scottish AssociationJor Marine Science. Dunslaflnage Marine Laboralory. Oban. Scotland, PA37 lQA. UK Abstract laboratory. While this has proved a reliable methodology for benthic biological studies [4-8] Two benthic lander systems were used as part the very unstable structural integrity (Black et al., of a project investi gati ng the geochemical char- this volume) and location of the cuttings material, acteristics of a North Sea drill cuttings pile. the very steep gradients of chemical reactivity [2] Complications associated with deploying and the assorted debris (scaffolding, pipes, wire, sampling gear in close proximity to the etc.) scattered throughout the pile make sampling platform required an innovative technique to for geotechnical, geochemical and microbial obtain the necessary measurements. To process studies difficult [2] and lead to sampling achieve this goal, two deep-sea autonomous induced artefacts in analytical results [2]. Benthic free fall vehicles (benthic landers) were lander instrumentation enables measurements to adapted for deployment and transport by be made in situ thus reducing sampling artefacts remotely operated vehicle (ROV). The landers and providing invaluable data that were pre- were fitted with a microelectrode profiling viously unattainable [9]. Benthic landers were system for obtaining high-resolution oxygen, introduced into the oceanographic community sulphide and pH profiles, and a rig to deploy in the 1970s to allow for the measurement of gel probes into the sediment to examine dis- physical, chemical and biological parameters in solved trace metal profiles within the cuttings the deep sea.
    [Show full text]
  • The AMERIGO Lander and the Automatic Benthic Chamber (CBA): Two New Instruments to Measure Benthic Fluxes of Dissolved Chemical Species †
    Article The AMERIGO Lander and the Automatic Benthic Chamber (CBA): Two New Instruments to Measure † Benthic Fluxes of Dissolved Chemical Species Federico Spagnoli 1,*, Pierluigi Penna 1, Giordano Giuliani 1, Luca Masini 2 and Valter Martinotti 3 1 Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), 60125 Ancona, Italy; [email protected] (P.P.); [email protected] (G.G.) 2 Institute for Microelectronics and Microsystems, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; [email protected] 3 Dipartimento Sviluppo sostenibile e Fonti Energetiche, RSE SpA, 20134 Milano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-071-2078847 † This paper is an extended version of paper published in Spagnoli, F.; Giuliani, G.; Martinotti, V.; Masini, L.; Penna, P. AMERIGO and CBA: A new lander and a new automatic benthic chamber for dissolved benthic flux measurements. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018. Received: 28 April 2019; Accepted: 5 June 2019; Published: 10 June 2019 Abstract: Marine environments are currently subject to strong ecological pressure due to local and global anthropic stressors, such as pollutants and atmospheric inputs, which also cause ocean acidification and warming. These strains can result in biogeochemical cycle variations, environmental pollution, and changes in benthic-pelagic coupling processes. Two new devices, the Amerigo Lander and the Automatic Benthic Chamber (CBA), have been developed to measure the fluxes of dissolved chemical species between sediment and the water column, to assess the biogeochemical cycle and benthic-pelagic coupling alterations due to human activities.
    [Show full text]
  • Strategic Science & Innovation Agenda
    Strategic Science & Innovation Agenda Underpinning the Technical and Organisational Design of DANUBIUS-RI Draft - Deliverable 2.5 DANUBIUS-PP Deliverable 2.5 Science & Innovation Agenda (draft) Preparatory Phase for the pan-European Research Infrastructure DANUBIUS-RI Project Full Title “The International Centre for Advanced Studies on River-Sea Systems” Project Acronym DANUBIUS-PP Grant Agreement No. 739562 Coordinator Dr. Adrian Stanica Project Start Date 1st December 2016, 36 months and Duration Project Website www.danubius-pp.eu Deliverable Nr. 2.5 Deliverable Date M24 Work Package No. 2 Work Package Title Science and Innovation Agenda Responsible HZG GERMANY Helmholtz-Zentrum Geesthacht (HZG) Jana Friedrich, Sina Bold, Peter Heininger, Justus van Beusekom, Jürgen Gandraß, Daniel Pröfrock Federal Institute of Hydrology (BAFG) Lars Düster, Katharina Schütze, Marie Maßmig, Ole Rössler, Stephan Dietrich, Jörg Uwe Belz, Christine Borgsmüller, Sebastian Buchinger, Authors & Arne Wick, Vera Breitung, Thomas Hoffmann, Institutes Acronyms Elmar Fuchs, Axel Winterscheid, Silke Rademacher, Gudrun Hillebrand, Helmut Fischer Federal Waterways Engineering and Research Institute (BAW) Ingrid Holzwarth, Nils Huber UNITED KINGDOM University of Birmingham (UOB) Chris Bradley DANUBIUS-PP Deliverable 2.5 Science & Innovation Agenda (draft) University of Stirling (USTIR) Andrew Tyler, Adriana Constantinescu, Peter Hunter, Evangelos Spyrakos, Armando Marino Natural Environment Research Council – Centre for Ecology and Hydrology (CEH) Mike Bowes, Gareth
    [Show full text]
  • Deep-Sea Life Issue 16, January 2021 Cruise News Sedimentation Effects Survey Series (ROBES III) Completed
    Deep-Sea Life Issue 16, January 2021 Despite the calamity caused by the global pandemic, we are pleased to report that our deep ocean continues to be investigated at an impressive rate. Deep-Sea Life 16 is another bumper issue, brimming with newly published research, project news, cruise news, scientist profiles and so on. Even though DOSI produce a weekly Deep-Sea Round Up newsletter and DOSI and DSBS are active on social media, there’s still plenty of breaking news for Deep- Sea Life! Firstly a quick update on the status of INDEEP. As most of you are aware, INDEEP was a legacy programme of the Census of Marine Life (2000-2010) and was established to address knowledge gaps in deep-sea ecology. Among other things, the INDEEP project played central role in the creation of the Deep-Ocean Stewardship Initiative and funded initial DOSI activities. In 2018, the DOSI Decade of Ocean Science working group was established with a view to identifying key priorities for deep-ocean science to support sustainable development and to ensure deep- ocean ecological studies were included in the UN Decade plans via truly global collaborative science. This has resulted in an exciting new initiative called “Challenger 150”. You are all invited to learn more about this during a webinar on 9th Feb (see p. 22 ). INDEEP has passed on the baton and has now officially closed its doors.Eva and I want to sincerely thank all those that led INDEEP with us and engaged in any of the many INDEEP actions. It was a productive programme that has left a strong legacy.
    [Show full text]
  • The Role of Benthic Fluxes of Dissolved Organic Carbon in Oceanic and Sedimentary Carbon Cycling Davd J
    Old Dominion University ODU Digital Commons OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences 1992 The Role of Benthic Fluxes of Dissolved Organic Carbon in Oceanic and Sedimentary Carbon Cycling Davd J. Burdige Old Dominion University, [email protected] Marc J. Alperin Juliana Homstead Old Dominion University Christopher S. Martens Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs Part of the Biogeochemistry Commons, and the Oceanography Commons Repository Citation Burdige, Davd J.; Alperin, Marc J.; Homstead, Juliana; and Martens, Christopher S., "The Role of Benthic Fluxes of Dissolved Organic Carbon in Oceanic and Sedimentary Carbon Cycling" (1992). OEAS Faculty Publications. 129. https://digitalcommons.odu.edu/oeas_fac_pubs/129 Original Publication Citation Burdige, D.J., Alperin, M.J., Homstead, J., & Martens, C.S. (1992). The or le of benthic fluxes of dissolved organic-carbon in oceanic and sedimentary carbon cycling. Geophysical Research Letters, 19(18), 1851-1854. doi: 10.1029/92gl02159 This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GEOPHYSICAL RESEARCH LETTERS, VOL. 19, NO.. 18, PAGES 1851-1854, SEPTEMBER 23, 1992 TIIEROI.E OFBFNI1IIC R.lJXES OF DISSOLVED ORGANIC CARBON IN OCFANIC ANDSFDIMENTARY CARBON CYCTlNG David J. Burdigel, Marc J. Alperin2, Juliana Homsteadl, Christopher S. Martens2 ~ Benthic fluxes (sediment-water exchange) of dissolved acrc6', the sediment-water interface mediated by macrobenthos, this organic carbon (IX)C) rerresent a poorly quantified canpooent of diffusive flux (J) can be predicted by Fick's First Law, as modified sedimentary and oceanic carbon cycling.
    [Show full text]
  • Review of Deep-Sea Ecology and Monitoring As They Relate to Deep-Sea Oil and Gas Operations
    PNNL-14540 Review of Deep-Sea Ecology and Monitoring as They Relate to Deep-Sea Oil and Gas Operations R.K. Kropp Battelle Marine Sciences Laboratory Sequim, Washington January 2004 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper.
    [Show full text]