A Novel Approach for the Study of North Sea Drill

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Approach for the Study of North Sea Drill {(J/I.{( J ( () ISSN 01410814. Journal of rhe Sociely for Underlvater Technology. Vol. 25. No. 2. pp. 77-82.2002 ec n ogy A Novel Approach for the Study of -ca North Sea Drill Cuttings Accumulations: u oe'e The Combined Use of an ROVand Benthic u ~ Lander for In situ Measurements ••• E. BREUER, O. C. PEPPE and G. B. SHIMMIELD Scottish AssociationJor Marine Science. Dunslaflnage Marine Laboralory. Oban. Scotland, PA37 lQA. UK Abstract laboratory. While this has proved a reliable methodology for benthic biological studies [4-8] Two benthic lander systems were used as part the very unstable structural integrity (Black et al., of a project investi gati ng the geochemical char- this volume) and location of the cuttings material, acteristics of a North Sea drill cuttings pile. the very steep gradients of chemical reactivity [2] Complications associated with deploying and the assorted debris (scaffolding, pipes, wire, sampling gear in close proximity to the etc.) scattered throughout the pile make sampling platform required an innovative technique to for geotechnical, geochemical and microbial obtain the necessary measurements. To process studies difficult [2] and lead to sampling achieve this goal, two deep-sea autonomous induced artefacts in analytical results [2]. Benthic free fall vehicles (benthic landers) were lander instrumentation enables measurements to adapted for deployment and transport by be made in situ thus reducing sampling artefacts remotely operated vehicle (ROV). The landers and providing invaluable data that were pre- were fitted with a microelectrode profiling viously unattainable [9]. Benthic landers were system for obtaining high-resolution oxygen, introduced into the oceanographic community sulphide and pH profiles, and a rig to deploy in the 1970s to allow for the measurement of gel probes into the sediment to examine dis- physical, chemical and biological parameters in solved trace metal profiles within the cuttings the deep sea. Progressive research and develop- pile. The use of an ROV for deployment of ment over the years has also allowed for in situ the landers enabled the simultaneous collec- measurements via landers to occur in a diverse ti on of data within a defined spatial context range ofharsh environments such as sulphide oxi- while providing real-time visual feedback of dising bacterial mats, hydrothermal areas, and the landers operating on the seabed. Eight anthropogenically perturbed environments [2,9- deployments were made over 5 days, totalling 12].Over this period benthic landers have proved over 100 hours of sampling time. The to be robust and effective in acquiring data. successful deployment and retrieval of the The potential for employing benthic landers in instrumentation, the quality of data obtained studies associated with sea bottom sampling and the limited disruptions to the ongoing ship under and around oil and gas production operations demonstrate the value of the lander platforms has yet to be evaluated. This account system as an efficient and versatile tool for details the delivery of the first in situ geochemical in situ biogeochemical investigations in areas da ta from drill cuttings piles in the North Sea. associated with sampling and measuring diffi- culties such as North Sea drill cuttings piles. 2. Lander description 1. Introduction Dunstaffnage Marine Laboratory (DML) cur- rently operates two identical geochemical benthic The eventual decommissioning of North Sea oil lander systems purchased from KC Denmark and and gas production platforms is causing increased Unisense AIS. In their autonomous mode the concern regarding the behaviour and ultimate landers comprise an upper buoyancy frame fate of associated drill cutting accumulations bolted to a lower instrumentation frame, (Figure [l, 2]. Large quantities of drill cuttings have I) but for the study described here the buoyancy been accumulating under and around offshore frame was not used. The instrumentation frame, oil and gas installations in the North Sea since an aluminium tripod ].5 m high, can be equipped the 1960s [3]. The present method employed to with a number of different modules. For this study these cuttings piles is to make observations study on the drill cuttings pile of Beryl Alpha a on retrieved sediment sampies and carry out micro-electrode profiler and gel deployment experiments either on-board ship or in the system were deployed. The system was controlled 77 E. Breuer et al. A Nove/ ApproachJor the Study oJ North Sea Drill CUllings Accumu/ations by a mini-computer contained in a cylindrical 2.1 Micro-electrode profiler pressure housing along with the analog amplifier The system used for the measurements of oxygen and sampling circuitry. Power was supplied by a and sulphide microprofiles was the Profi/ur [11] 12V 76Ah Deep-Sea Power and Light Sea- (Figure 2). The micro-electrode profiler used a Battery. motor with a very high ratio reduction gearbox to drive electrodes into the sediment in 1011m increments. Micro-electrodes with a sensing tip diameter of < 1011mand 90% response time of I s were mounted on the Profi/ur for in situ mea- suring of oxygen, sulphide and pR concentrations in the interstitial water of the seabed. The micro- electrodes were mounted on the boUom of the vertical pressure cylinder containing the control computer and were specially pressure compen- sated within an oil-filled perspex housing. The electrodes were around 100mm long, enabling the probes to penetrate the sediment by up to 80mm (Figure 3). Once the lander had settled Figure 3 Micro-electrodes with tips 01less than 100 l!m attached Figure 1 The DML-KC Lander being deployed in autono- to the Profi/ur. This photograph was taken after retrieval demon- mous mode. The principle system components are labelIed. strating the durability of the electrodes when in use. As seen in the Photograph courtesy of Kevin Black. photograph only one micro-electrode broke during deployment. I \ Worm gear and motor · ~ · Profiling rack •· · • ~ ..• ·• Computer housing · · · ~ · Adjustable legs · · 106m r-· .•.· • •· •· • • Micro-electrodes ~ · 0 0 •· ~ · • •· 1- 1.4m Figure 2 A schematic showing the major components of the Profilursystem. 78 Underwater Technology, Vol. 25 No. 1,2001 on the seabed the electrodes were moved con- of any residual sediment partieles by a jet of tinuously down from their retracted position to seawater from hoses mounted on the cover plates. within a few millimetres above the sediment surface. From here the electrodes were driven 3. Sampling Methodology into the sediment in steps of 25l!m with a pause of a few seconds at each step to allow the Deployment of the benthic landers was per- signal response to settle before sampling. On formed on the Beryl 'A' cutting pile (Figure 5) reaching the pre-programmed maximum depth which is located 346 km north east of Aberdeen, the electrodes were withdrawn from the sediment. Seotland in a water depth of 119m. A preliminary Three 750 ml water bottles attached to the lander inspection of the surface conditions of the drill collected ambient bottom water sampies for cuttings pile by remotely operated vehide calibration of the oxygen electrodes. (ROV) revealed a diverse sedimentological mixture of poody sorted weakly cohesive oil- rich silt, drill cutting chips, shells, stones and 2.2 Gel deployment system sand with bacterial mats scattered over the top The gel deployment system (GDS; Figure 4) of the pile in varying degrees of eoverage. Four consisted of a moving rack holding up to four Profi/ur deployments and four GDS deployments trace-metal gel probes [13, 14]. These perspex were made onto the drill cuttings piles during a probes had an active gel surface of 145mm x 5-day cruise. The benthic landers were used in a 10mm and were driven into the sediment by a non-autonomous mode, without buoyancy and computer-controlled motor. Gel probes were ballast, and were deployed and reeovered using mounted on the GDS module for the deter- a Pioneer 11 work-dass ROV and ship's crane mination of high-resolution trace metal profiles (Figure 6). Once on station, the ROV was used using the diffusion gradient in thin film (DGT) to reconnoitre the cuttings pile to ascertain the technique [13]. As the probes were lowered, the best possible locations to deposit the benthic perspex plates covering the gel surface for pro tec- lander. This reconnaissance induded observation tion during deployment and recovery were raised of the loeation of objects protruding from the pile up exposing the gel to the surrounding seawater (pipes, meta I framework, etc.), slope angle, and sediment. Once the probes had been inserted proximity to the apex of the pile and location of into the sediment to the required depth the motor the cuttings discharge pipe. Once a suitable site was switched off and the gels left to reach was found, the ship's crane placed the lander on equilibrium. After 24 hours in the sediment, the the seabed in the approximate location. The ROV probes were retrieved, and as the perspex covers then disconneeted the lander from the ship's fell back in place the gel surfaces were washed free crane, picked it up and moved it to the specified Warm gear and motor •• Adjustable legs Moving rack 1.6m Pump Computer housing • 0 o· •· •· Cleaning hose Perspex cover Gel probe I·------------1.4m ·1 Figure 4 Schematic representation of the gel deployment system (GDS). 79 E. Breuer et al. A Novel Approachfor the Study' oI North Sca prifl Cuttmgs AccumulatlOns Figure 7 Visual inspection 01 the benthic lander after placement on the seabed by the ROV. % saturation % saturation o 25 50 75 100 o 25 50 75 100 -I ·1 8a 8b o . E Figure 5 Locatlon of the Beryl Alpha drill cu\llngs pile. E :;; 2 Ö. Q) 3 3 Q 4 4 5 5 65m 165m (a) 6 (b) 6 % saturation 0 25 50 75 100 -1 8c 0 .....................................
Recommended publications
  • Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting
    OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region OCS Study MMS 2001-082 Proceedings: Twentieth Annual Gulf of Mexico Information Transfer Meeting December 2000 Editors Melanie McKay Copy Editor Judith Nides Production Editor Debra Vigil Editor Prepared under MMS Contract 1435-00-01-CA-31060 by University of New Orleans Office of Conference Services New Orleans, Louisiana 70814 Published by New Orleans U.S. Department of the Interior Minerals Management Service October 2001 Gulf of Mexico OCS Region iii DISCLAIMER This report was prepared under contract between the Minerals Management Service (MMS) and the University of New Orleans, Office of Conference Services. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards. REPORT AVAILABILITY Extra copies of this report may be obtained from the Public Information Office (Mail Stop 5034) at the following address: U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394 Telephone Numbers: (504) 736-2519 1-800-200-GULF CITATION This study should be cited as: McKay, M., J. Nides, and D. Vigil, eds. 2001. Proceedings: Twentieth annual Gulf of Mexico information transfer meeting, December 2000.
    [Show full text]
  • Curriculum Vitae Markus H. Huettel
    Curriculum Vitae Markus H. Huettel April 05, 2013 General Information University address: Earth, Ocean, & Atmospheric Science College of Arts and Sciences Rogers Building - OSB 0515 Florida State University Tallahassee, Florida 32306-4320 Phone: 850-645-1394; Fax: 850-644-2581 E-mail address: [email protected] Web site: http://myweb.fsu.edu/mhuettel/ Professional Preparation 1988 Doctor of Philosophy, University of Kiel, Germany. Major: Biological Sciences. Marine Biology. Supervisor: Prof. Wolfram Noodt. Summa Cum Laude. Huettel, M. (1988). On the impact of macrofauna on the nutrient profiles in Wadden Sea sediments. (Doctoral dissertation, University of Kiel, Germany). Retrieved from Report of the Institute of Marine Research in Kiel, 182: 1-203. 1984 M.S., University of Kiel, Germany. Major: Biology. Zoology, Biological Oceanography, Biochemistry. Supervisor: Prof. Wolfram Noodt. Summa Cum Laude. Huettel, M. (1984). On the ecology of intertidal flat scavengers: Investigations of Carcinus maenas and Anaitides maculata. Unpublished master's thesis, University of Kiel, Germany. Postdegree Education and Training 1989–1990 Boundary layer hydrodynamics at the sandy seafloor. Vita for Markus H. Huettel Professional Experience 2005–present Associate Geophysical Fluid Dynamics Institute, Geophysical Fluid Dynamics Institute, Florida State University. 2003–present Professor, Earth, Ocean & Atmospheric Science, Florida State University. 2000–2002 Research Group Leader, Fluid Dynamics Lab, Max Plack Institute for Marine Microbiology, Bremen, Germany. 1992–1999 Staff Scientist, Fluid Dynamics Lab, Max Planck Institute for Marine Microbiology, Bremen, Germany. 1997 Visiting Scientist, University of Hawaii. Research group, Dr. F. Sansone. 1991 Lecturer, Biology, University of Kiel, Germany. 1989–1990 Postdoctoral Fellow, University of South Florida. 1988 Lecturer, Biology, University of Kiel, Germany.
    [Show full text]
  • Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea Lena
    Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea Lena Viktorsson, Elin Almroth-Rosell, Anders Tengberg, Roman Vankevich, Ivan Neelov, Alexey Isaev, Victor Kravtsov & Per O. J. Hall Aquatic Geochemistry ISSN 1380-6165 Volume 18 Number 6 Aquat Geochem (2012) 18:543-564 DOI 10.1007/s10498-011-9155-y 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media B.V.. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Aquat Geochem (2012) 18:543–564 DOI 10.1007/s10498-011-9155-y ORIGINAL PAPER Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea Lena Viktorsson • Elin Almroth-Rosell • Anders Tengberg • Roman Vankevich • Ivan Neelov • Alexey Isaev • Victor Kravtsov • Per O. J. Hall Received: 25 January 2011 / Accepted: 20 December 2011 / Published online: 11 January 2012 Ó Springer Science+Business Media B.V. 2012 Abstract Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load).
    [Show full text]
  • Full Text in Pdf Format
    MARINE ECOLOGY PROGRESS SERIES Published September 17 Mar Ecol Prog Ser Benthic in situ respiration in the upwelling area off central Chile Ronnie N~hrGlud*, Jens Kristian Gundersen*', Ola Holby8** Max Planck Institute for Marine Microbiology. Microsensor Research Group, Celsiusstraße 1,28359 Bremen, Germany ABSTRACT. Benthic O2 uptake rates and O2 microprofiles were measured in the upwelling area off central Chile. Measurements were performed both in situ and in the laboratory on recovered sediment cores. Comparison between the 2 data sets confirmed retrieval and handling artifacts inferred from previous studies. Onboard measurements indicated that the effects were mainly associated with core warming during recovery. Fauna mediated O2 uptake was significant even at abyssal depths and gen- erally in situ O2uptake rates were higher and showed stronger attenuation with water depth than pre- vious measurements performed in the NE Pacific. However, O2uptake rates and O2penetration depths were very sirnilar to measurements performed in the SE Atlantic, and the compiled data sets were approxirnated by simple exponential equations relating the measurements to water depth. By compar- ing our total O2 in situ uptake rates to simultaneous measurements of primary production (PP) and new production (NP) of the overlying water column, it was calculated that the benthic mineralization accounted for 13 to 66% of the PP and for 28 to 92% of the NP at water depths shallower than 1000 m. At water depths from 1000 to 4000 m, the benthic rnineralization equaled 2 to 11 % of the PP and 22 to 38% of the NP. The benthic mineralization thereby accounted for a significant turnover of organic material even at the abyssal stations.
    [Show full text]
  • Long-Term Monitoring of Bottom Environments of the Continental Slope Off Otsuchi Bay,…
    J Oceanogr DOI 10.1007/s10872-015-0330-4 SPECIAL SECTION: ORIGINAL ARTICLE Oceanographic observations after the 2011 earthquake off the Pacific coast of Tohoku Long‑term monitoring of bottom environments of the continental slope off Otsuchi Bay, northeastern Japan Kazumasa Oguri1 · Yasuo Furushima1 · Takashi Toyofuku1 · Takafumi Kasaya1 · Masahide Wakita1 · Shuichi Watanabe1 · Katsunori Fujikura1 · Hiroshi Kitazato1 Received: 31 March 2015 / Revised: 21 September 2015 / Accepted: 27 September 2015 © The Oceanographic Society of Japan and Springer Japan 2015 Abstract Long-term monitoring of the seafloor environ- Keywords Off Otsuchi Bay · The Tohoku Earthquake of ment off Otsuchi Bay, northeastern Japan, was carried out 2011 · Long-term monitoring · Water mass · Marine snow · to investigate environmental changes of the deep-sea floor Benthic habitats · Sediment after the 2011 off the Pacific coast of the Tohoku Earth- quake. We deployed two deep-sea stations, one on an upper continental slope site (around 300 m water depth) and the 1 Introduction other on a bathyal (998 m) site, to measure current inten- sity and direction, water temperature, salinity, dissolved On 11 March 2011, the Tohoku Earthquake off the Pacific oxygen, and turbidity, and to obtain seafloor images. coast of Japan caused strong shaking and a huge tsunami The monitoring period on the upper slope was 9 months along the entire Pacific coast of the Tohoku region of Japan. (March–September 2013), and 14 months (August 2012– After the earthquake and many aftershocks, dense nephe- October 2013) at the bathyal site. The oceanographic data loid layers were widely observed in the sea off northeastern from the upper slope site recorded the seasonal exchange Japan (Kawagucci et al.
    [Show full text]
  • Downloaded As Tab Delimited Text Files to the Users’ Local Drive for Further Analysis
    BOOK OF ABSTRACTS VLIZ MARINE SCIENCE DAY MEC STAF VERSLUYS, BREDENE 21 MARCH 2018 VLIZ SPECIAL PUBLICATION 80 This publication should be quoted as follows: Jan Mees and Jan Seys (Eds). 2018. Book of abstracts – VLIZ Marine Science Day. Bredene, Belgium, 21 March 2018. VLIZ Special Publication 80. Vlaams Instituut voor de Zee – Flanders Marine Institute (VLIZ): Oostende, Belgium. 142 + ix p. Vlaams Instituut voor de Zee (VLIZ) – Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium Tel. +32-(0)59-34 21 30 – Fax +32-(0)59-34 21 31 E-mail: [email protected] – Website: http://www.vliz.be Photo cover: VLIZ The abstracts in this book are published on the basis of the information submitted by the respective authors. The publisher and editors cannot be held responsible for errors or any consequences arising from the use of information contained in this book of abstracts. Reproduction is authorized, provided that appropriate mention is made of the source. ISSN 1377-0950 PREFACE This is the ‘Book of Abstracts’ of the 18th edition of the VLIZ Marine Science Day, a one-day event that was organised on 21 March 2018 in the MEC Staf Versluys in Bredene. This annual event has become more and more successful over the years. With almost 400 participants and more than 100 scientific contributions, it is fair to say that it is the place to be for Flemish marine researchers and for the end-users of their research. It is an important networking opportunity, where scientists can meet and interact with their peers, learn from each other, build their personal professional network and establish links for collaborative and interdisciplinary research.
    [Show full text]
  • The AMERIGO Lander and the Automatic Benthic Chamber (CBA): Two New Instruments to Measure Benthic Fluxes of Dissolved Chemical Species †
    Article The AMERIGO Lander and the Automatic Benthic Chamber (CBA): Two New Instruments to Measure † Benthic Fluxes of Dissolved Chemical Species Federico Spagnoli 1,*, Pierluigi Penna 1, Giordano Giuliani 1, Luca Masini 2 and Valter Martinotti 3 1 Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM), Consiglio Nazionale delle Ricerche (CNR), 60125 Ancona, Italy; [email protected] (P.P.); [email protected] (G.G.) 2 Institute for Microelectronics and Microsystems, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; [email protected] 3 Dipartimento Sviluppo sostenibile e Fonti Energetiche, RSE SpA, 20134 Milano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-071-2078847 † This paper is an extended version of paper published in Spagnoli, F.; Giuliani, G.; Martinotti, V.; Masini, L.; Penna, P. AMERIGO and CBA: A new lander and a new automatic benthic chamber for dissolved benthic flux measurements. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018. Received: 28 April 2019; Accepted: 5 June 2019; Published: 10 June 2019 Abstract: Marine environments are currently subject to strong ecological pressure due to local and global anthropic stressors, such as pollutants and atmospheric inputs, which also cause ocean acidification and warming. These strains can result in biogeochemical cycle variations, environmental pollution, and changes in benthic-pelagic coupling processes. Two new devices, the Amerigo Lander and the Automatic Benthic Chamber (CBA), have been developed to measure the fluxes of dissolved chemical species between sediment and the water column, to assess the biogeochemical cycle and benthic-pelagic coupling alterations due to human activities.
    [Show full text]
  • Strategic Science & Innovation Agenda
    Strategic Science & Innovation Agenda Underpinning the Technical and Organisational Design of DANUBIUS-RI Draft - Deliverable 2.5 DANUBIUS-PP Deliverable 2.5 Science & Innovation Agenda (draft) Preparatory Phase for the pan-European Research Infrastructure DANUBIUS-RI Project Full Title “The International Centre for Advanced Studies on River-Sea Systems” Project Acronym DANUBIUS-PP Grant Agreement No. 739562 Coordinator Dr. Adrian Stanica Project Start Date 1st December 2016, 36 months and Duration Project Website www.danubius-pp.eu Deliverable Nr. 2.5 Deliverable Date M24 Work Package No. 2 Work Package Title Science and Innovation Agenda Responsible HZG GERMANY Helmholtz-Zentrum Geesthacht (HZG) Jana Friedrich, Sina Bold, Peter Heininger, Justus van Beusekom, Jürgen Gandraß, Daniel Pröfrock Federal Institute of Hydrology (BAFG) Lars Düster, Katharina Schütze, Marie Maßmig, Ole Rössler, Stephan Dietrich, Jörg Uwe Belz, Christine Borgsmüller, Sebastian Buchinger, Authors & Arne Wick, Vera Breitung, Thomas Hoffmann, Institutes Acronyms Elmar Fuchs, Axel Winterscheid, Silke Rademacher, Gudrun Hillebrand, Helmut Fischer Federal Waterways Engineering and Research Institute (BAW) Ingrid Holzwarth, Nils Huber UNITED KINGDOM University of Birmingham (UOB) Chris Bradley DANUBIUS-PP Deliverable 2.5 Science & Innovation Agenda (draft) University of Stirling (USTIR) Andrew Tyler, Adriana Constantinescu, Peter Hunter, Evangelos Spyrakos, Armando Marino Natural Environment Research Council – Centre for Ecology and Hydrology (CEH) Mike Bowes, Gareth
    [Show full text]
  • Deep-Sea Life Issue 16, January 2021 Cruise News Sedimentation Effects Survey Series (ROBES III) Completed
    Deep-Sea Life Issue 16, January 2021 Despite the calamity caused by the global pandemic, we are pleased to report that our deep ocean continues to be investigated at an impressive rate. Deep-Sea Life 16 is another bumper issue, brimming with newly published research, project news, cruise news, scientist profiles and so on. Even though DOSI produce a weekly Deep-Sea Round Up newsletter and DOSI and DSBS are active on social media, there’s still plenty of breaking news for Deep- Sea Life! Firstly a quick update on the status of INDEEP. As most of you are aware, INDEEP was a legacy programme of the Census of Marine Life (2000-2010) and was established to address knowledge gaps in deep-sea ecology. Among other things, the INDEEP project played central role in the creation of the Deep-Ocean Stewardship Initiative and funded initial DOSI activities. In 2018, the DOSI Decade of Ocean Science working group was established with a view to identifying key priorities for deep-ocean science to support sustainable development and to ensure deep- ocean ecological studies were included in the UN Decade plans via truly global collaborative science. This has resulted in an exciting new initiative called “Challenger 150”. You are all invited to learn more about this during a webinar on 9th Feb (see p. 22 ). INDEEP has passed on the baton and has now officially closed its doors.Eva and I want to sincerely thank all those that led INDEEP with us and engaged in any of the many INDEEP actions. It was a productive programme that has left a strong legacy.
    [Show full text]
  • The Role of Benthic Fluxes of Dissolved Organic Carbon in Oceanic and Sedimentary Carbon Cycling Davd J
    Old Dominion University ODU Digital Commons OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences 1992 The Role of Benthic Fluxes of Dissolved Organic Carbon in Oceanic and Sedimentary Carbon Cycling Davd J. Burdige Old Dominion University, [email protected] Marc J. Alperin Juliana Homstead Old Dominion University Christopher S. Martens Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs Part of the Biogeochemistry Commons, and the Oceanography Commons Repository Citation Burdige, Davd J.; Alperin, Marc J.; Homstead, Juliana; and Martens, Christopher S., "The Role of Benthic Fluxes of Dissolved Organic Carbon in Oceanic and Sedimentary Carbon Cycling" (1992). OEAS Faculty Publications. 129. https://digitalcommons.odu.edu/oeas_fac_pubs/129 Original Publication Citation Burdige, D.J., Alperin, M.J., Homstead, J., & Martens, C.S. (1992). The or le of benthic fluxes of dissolved organic-carbon in oceanic and sedimentary carbon cycling. Geophysical Research Letters, 19(18), 1851-1854. doi: 10.1029/92gl02159 This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. GEOPHYSICAL RESEARCH LETTERS, VOL. 19, NO.. 18, PAGES 1851-1854, SEPTEMBER 23, 1992 TIIEROI.E OFBFNI1IIC R.lJXES OF DISSOLVED ORGANIC CARBON IN OCFANIC ANDSFDIMENTARY CARBON CYCTlNG David J. Burdigel, Marc J. Alperin2, Juliana Homsteadl, Christopher S. Martens2 ~ Benthic fluxes (sediment-water exchange) of dissolved acrc6', the sediment-water interface mediated by macrobenthos, this organic carbon (IX)C) rerresent a poorly quantified canpooent of diffusive flux (J) can be predicted by Fick's First Law, as modified sedimentary and oceanic carbon cycling.
    [Show full text]
  • Review of Deep-Sea Ecology and Monitoring As They Relate to Deep-Sea Oil and Gas Operations
    PNNL-14540 Review of Deep-Sea Ecology and Monitoring as They Relate to Deep-Sea Oil and Gas Operations R.K. Kropp Battelle Marine Sciences Laboratory Sequim, Washington January 2004 Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL01830 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC06-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: [email protected] Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161 ph: (800) 553-6847 fax: (703) 605-6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm This document was printed on recycled paper.
    [Show full text]
  • Azmbg7bkhyjgdjckd8mgr06b
    Authors: Martina Bocci, Emiliano Ramieri, Marina Marković Supporting authors: Rezart Kapedani (Albania), Josip Njavro (Bosnia and Herzegovina), Ariana Korlaet (Croatia), Athena Mourmouris (Greece), Daniela Addis (Italy), Marina Izgarević (Montenegro), Emilija Kastelic (Slovenia), Stavros Antoniadis and Jelena Knezevic (UNEP-MAP), Željka Škaričić (UNEP-MAP PAP/RAC) Contributors: Tarik Kupusović (Bosnia and Herzegovina), Snježana Dominković-Alavanja and Vesna Marohnić Kuzmanović (Croatia), Foteini Stefani (Greece), Roberto Giangreco (Italy), Željka Čurović (Montenegro), Slavko Mezek (Slovenia) Editing: Ana Irena Hudi Cover design: swim2birds.co.uk Graphic design: Ljudomat Cover photograph: Grama Bay ©Regional Agency of Protected Areas (RAPA) Vlorë The views expressed in this document are those of the authors and do not necessarily reflect the views of the UNEP/MAP. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP/MAP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. This study has been supported by the Cooperation Agreement between UNEP/MAP and the Italian Ministry for Environment, Land and Sea Protection (IMELS). Table of Contents 1 Introduction ................................................................................................................................................................................ 1 1.1 Scope
    [Show full text]