Embryology of Spathoglottis Plicata Blume: a Reinvestigation and Additional Data

Total Page:16

File Type:pdf, Size:1020Kb

Embryology of Spathoglottis Plicata Blume: a Reinvestigation and Additional Data Tropical Natural History 15(2): 97–115, October 2015 2015 by Chulalongkorn University Embryology of Spathoglottis plicata Blume: A Reinvestigation and Additional Data NARASAK SRIYOT1, ACHRA THAMMATHAWORN2 AND PIYADA THEERAKULPISUT1* 1 Applied Taxonomic Research Center, and Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, THAILAND 2 Office of General Education, Khon Kaen University, Khon Kaen 40002, THAILAND * Corresponding author. Piyada Theerakulpisut ([email protected]) Received: 16 May 2015; Accepted: 6 September 2015 ABSTRACT.– Spathoglottis plicata Blume is very popular among terrestrial orchids because it is attractive, easy to grow and can flower all year round. The aim of this study was to reinvestigate the embryological characters using classical paraffin embedding and sectioning, along with ovule clearing and scanning electron microscopy analyses. The simultaneous cytokinesis results in decussate, isobilateral, linear, T-shaped and tetrahedral microspore tetrads. Mature pollen grains are two-celled with perforate sculpturing. The anther wall is comprised of an epidermis, two to three layers of endothecium, one layer each of middle layer and one layer of binucleate glandular tapetal cells. At anthesis, the mature anther wall is composed of epidermis and fibrous endothecium. At 9 d after pollination (DAP), the mature ovules are anatropous, bitegmic and tenuinucellate. The megaspore tetrad is linear. Development of the embryo sac conformed to the Polygonum type. The pollen tube enters the embryo sac through the micropyle (porogamy), and double fertilization is observed at 15 DAP. The zygote divides transversely to form a two-celled proembryo. The basal cell becomes the suspensor initial cell, whereas the terminal cell divides transversely to form a linear three-celled proembryo. The proembryonal tetrad is T-shaped. Embryogenesis is of the Onagrad type. The suspensor is single-celled, hypertrophied and cap-, globular- or sac- like. Fruit opens at 30 DAP. Seeds are fusiform in shape with longitudinally oriented testa cells with a smooth periclinal seed surface and straight anticlinal walls. The mature globular embryo is acotyledonous and lacks differentiation. Furthermore, cleavage polyembryony gives rise to twin embryos. KEY WORDS: Spathoglottis plicata, ground orchid, embryology, Orchidaceae INTRODUCTION & Wood, 1992). In Thailand, five species have been recorded (Seidenfaden, 1986). The genus Spathoglottis Blume is a Orchidaceae is of interest for embryo- member of the subfamily Epidendroideae. logical studies because of the diversity in All members of this genus are terrestrial and the development and organization of the most grow at low to moderate altitudes, female gametophyte, characteristics of although a few taxa occur at high altitudes suspensor and different patterns of in grasslands and open forests in moist areas polyembryony (Sood, 1985). (Dressler, 1993; Beltrame, 2006). This The ground orchid (Spathoglottis genus is composed of 10 species distributed plicata) is one of the most commonly from Sri Lanka, India and the Andaman cultivated orchids in Southeast Asia and Islands through Indochina to southern could be found in gardens throughout the China, Malaysia and Indonesia east to the region. It is suitable as a potted orchid Philippines, New Guinea, Australia and the because it is very attractive, fast growing, Pacific islands as far as Samoa (Seidenfaden easy to grow and with rapid fruit 98 TROPICAL NATURAL HISTORY 15(2), OCTOBER 2015 maturation. At maturity, plants flower MATERIALS AND METHODS almost throughout the year (Kheawwongjun & Thammasiri, 2008). These attributes have Plant Materials also led to it being used as a model for The samples of S. plicata (Ground orchid studies. This taxon has already been orchid) were grown in the greenhouse at the studied in many aspects, including artificial Department of Biology, Faculty of Science, propagation (Teng et al., 1997; Minea et al., Khon Kaen University. The ground orchid 2004; Sinha et al., 2009; Thakur & (Fig. 1A) is a perennial plant with ovoid Dongarwar, 2012; Aewsakul et al., 2013; pseudobulbs covered with fibrous leaf Sebastinraj & Muhirkuzhali, 2014), bases. There are 4–8 linear-lanceolate leaves cytology (Ramesh & Ranganathan, 2008), per pseudobulb, each up to 35 cm long and physiology (Wang et al., 2002, 2003; Novak 2–6 cm wide, yellow-green to dark-green & Whitehouse, 2013), pollination biology and with prominent veins abaxially. The (Soguillon & Rosario, 2007; Thakur & inflorescences are lateral racemes, up to 25– Dongarwar, 2012) and molecular biology 130 cm long, bearing many successive and (Ranghavan & Goh, 1994; Yang & Loh, loosely spaced flowers. Flowering can occur 2004). from August to March, the peak period The embryology of S. plicata has been being November to February. examined by a few authors, where the work of Swamy (1943a, 1949a,b), Prakash & Lee- Microsporogenesis, Microgametogenesis Lee (1973), Veyret (1974) and Ansari and Anther Wall Anatomy (1977) have detailed aspects of the The floral buds and blooming flowers sporogenesis, gametogenesis and embryo- (Fig. 1B) were harvested at different stages genesis, but the information is rather of development, during the flowering period fragmentary. In addition, these researches (November 2013–March 2014). The length were documented only by line drawings and of each floral buds was measured from the have not been reinvestigated so far. The aim tip to the base of the perianth, and they were of this study was to reinvestigate the divided into different stages based on their microsporogenesis and microgametogenesis length and fixed in 70% (v/v) FAA (1:1:18 of S. plicata in relation to the floral (v/v/v) ratio of formalin: acetic acid: 70% developmental stages using the classical (v/v) ethanol). Dehydration, infiltration and paraffin embedded serial section analysis, as embedding were performed in the well as the post-pollination development of conventional way. Sections were cut at 5 megasporogenesis, megagametogenesis and µm thick with a steel knife on a sliding embryogenesis using ovule clearing and microtome. They were stained with safranin scanning electron microscopy (SEM) and fast-green combination, then mounted analyses. The data presented here will in DePeX mountant (Thammathaworn, provide valuable background knowledge for 1995) and observed by light microscopy. both conservation and molecular biology The anther squash was also prepared and studies of this species. stained with 1% (w/v) aceto-orcein to clarify the mitotic division of microspore nuclei. SRIYOT ET AL. — EMBRYOLOGY OF SPATHOGLOTTIS PLICATA 99 FIGURE 1. Flower morphology of S. plicata. A. The front view of a blooming flower. B. Flowers at different stages of development were prepared for anther transverse sections with paraffin method. Scale bar = 1 cm. To study the pollinium morphology and gently removed by a toothpick. The pollinia the pollen grain surface features, the pollen were displaced from the column by applying grains were fixed in 70% (v/v) FAA and a slight upward pressure to the bottom of the then transferred to 70% (v/v) alcohol. To anther cap and the pollinia adhered to the preserve the exine, no acetolysis was toothpick on contact. After removal, the performed. Dehydration was performed in a pollinia were transferred to the same flower series of increasing % (v/v) acetone. by placing them onto the stigmatic surface Specimens were then critical point dried (Kauth et al., 2008). The efficiency of using CO2, placed on specimen stubs with pollination was checked by flower double sided silver tape and sputter coated senescence and fruit development. The with gold. The samples were examined resulting fruits at different stages of under SEM (Philips, XL-20) at the Institute development were chosen at intervals of 3 d. of Botany, Faculty of Biology, University of Approximately 30 developing fruits were Innsbruck, Austria. Pollen terminology chosen and fixed in 50% (v/v) FAA. The followed that defined by Punt et al. (2007). ovules were carefully removed to a slide with a few drops of Herr’s 4 ½ clearing Megasporogenesis, Megagametogenesis solution (Herr, 1971), no dehydration was and Embryogenesis necessary, and a cover glass was then added. One of the unique characters of ovule Herr’s clearing solution made the samples development in Orchidaceae is that ovules transparent in a couple of minutes. normally do not appear at the time of Photographs were captured under Nomarski anthesis. The development of ovules is illumination using an Olympus BX51 activated by pollination and normally takes microscope coupled to an Olympus DP11 several weeks to complete (Swamy, 1949a, digital camera. 1949b). In order to ensure a good fruit set, In order to study the morphological the stigma receptivity of the flower at characters of the seed coat, seeds at the fruit anthesis was tested using hydrogen dehiscence stage were prepared for SEM peroxide, where the appearance of bubbles analysis as described above. Measurements could be observed on receptive stigma were performed on the width and length of (Dafni & Maués, 1998). Flowers at similar the embryos and seeds using a minimum of stage were then artificially self-pollinated. 15 seeds. To this end the anther cap and pollinia were 100 TROPICAL NATURAL HISTORY 15(2), OCTOBER 2015 FIGURE 2. Anther anatomy, microsporogenesis and microgametogenesis. A. Transverse section of a young floral bud showing two rows
Recommended publications
  • 98. SPATHOGLOTTIS Blume, Bijdr. 400. 1825. 苞舌兰属 Bao She Lan Shu Chen Xinqi (陈心启 Chen Sing-Chi); Alexandra Bell Herbs, Terrestrial
    Flora of China 25: 287–288. 2009. 98. SPATHOGLOTTIS Blume, Bijdr. 400. 1825. 苞舌兰属 bao she lan shu Chen Xinqi (陈心启 Chen Sing-chi); Alexandra Bell Herbs, terrestrial. Pseudobulbs ovoid or globose, with a few leaves. Leaf blade plicate, narrow, base contracted into a long petiole-like stalk, not articulate, apex acuminate. Inflorescence terminal, erect, racemose, arising from base of pseudobulb; peduncle with several sheaths; rachis sparsely few flowered; floral bracts shorter than pedicel and ovary. Flowers opening widely, medium- sized. Sepals similar. Petals similar to sepals but usually wider; lip not spurred, adnate to base of column, 3-lobed; lateral lobes suberect; mid-lobe clawed at base; disk and claw of mid-lobe often with keels or other appendages. Column arcuate, slender, upper part enlarged, winged, without column foot; rostellum not lobed; pollinia 8, in 2 groups, narrowly obovoid, subequal in size, waxy, commonly adherent to a solitary triangular viscidium. About 46 species: tropical Asia to Australia and the Pacific islands; three species in China. 1a. Flowers purple; floral bracts and ovary glabrous ............................................................................................................. 1. S. plicata 1b. Flowers yellow; floral bracts and ovary hairy. 2a. Inflorescence 20–50 cm, densely pubescent; lateral lobes of lip oblong, mid-lobe distinctly clawed in basal half 3–6 mm ..........................................................................................................................................................
    [Show full text]
  • Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids
    Hindawi International Journal of Agronomy Volume 2020, Article ID 2795108, 12 pages https://doi.org/10.1155/2020/2795108 Review Article Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids Edy Setiti Wida Utami and Sucipto Hariyanto Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia Correspondence should be addressed to Sucipto Hariyanto; [email protected] Received 26 January 2020; Revised 9 May 2020; Accepted 23 May 2020; Published 11 June 2020 Academic Editor: Isabel Marques Copyright © 2020 Edy Setiti Wida Utami and Sucipto Hariyanto. ,is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In nature, orchid seed germination is obligatory following infection by mycorrhizal fungi, which supplies the developing embryo with water, carbohydrates, vitamins, and minerals, causing the seeds to germinate relatively slowly and at a low germination rate. ,e nonsymbiotic germination of orchid seeds found in 1922 is applicable to in vitro propagation. ,e success of seed germination in vitro is influenced by supplementation with organic compounds. Here, we review the scientific literature in terms of the contents and role of organic supplements in promoting seed germination, protocorm development, and seedling growth in orchids. We systematically collected information from scientific literature databases including Scopus, Google Scholar, and ProQuest, as well as published books and conference proceedings. Various organic compounds, i.e., coconut water (CW), peptone (P), banana homogenate (BH), potato homogenate (PH), chitosan (CHT), tomato juice (TJ), and yeast extract (YE), can promote seed germination and growth and development of various orchids.
    [Show full text]
  • Orchid Historical Biogeography, Diversification, Antarctica and The
    Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the
    [Show full text]
  • Do Orchids Grow in Hawaii? and How!
    Do Orchids Grow in Hawaii? And How! SYNOPSIS This is an historical sketch of the Saga of Orchids in Hawaii. The sequence of events from the incidental introduction of species by the Agriculturists for the Sugar Industry; to their efforts in propagation and culture, hybridizing and germination; to the development of personal nurseries to commercial ranges; and ultimately to the creation of a viable orchid industry, re­ cognized world wide; to the natural formation of orchid societies staging of orchid shows; and finally to the introduction of a system of orchid judging , should bring interesting reading to orchidists, amateur and professional alike. In fact, this could serve as a reference syllabus to keep. DO ORCHIDS GROW IM HAWAII? AMD HOW i Compiled and Edited by Dr. T. David Woo and Wallace K. Nakamoto Published under the auspices of The Hawaii Orchid Foundation for the American Orchid Society, Inc. Hawaii Regional Judging Center 1990 i TABLE OF CONTE NTS TABLE OF CONTENTS.................................................................................... i PREFACE........................................................................................................ vii PART I. INTRODUCTION OF ORCHIDS TO HAWAII.............................................. 1 The History of Orchids in Hawaii by Dr. T. David Woo ................................................................... 3 Development of Floriculture in Hawaii by J. H. Beaumont ................................................ 10 A Short History of Orchids in Hawaii by Loraine
    [Show full text]
  • Chromosome Numbers and Cross-Compatibility in the Genus Cymbidium and Some Related Tropical Genera (Orchidaceae)
    CHROMOSOME NUMBERS AND CROSS-COMPATIBILITY IN THE GENUS CYMBIDIUM AND SOME RELATED TROPICAL GENERA (ORCHIDACEAE) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN HORTICULTURE AUGUST 1977 By Kenneth W. Leonhardt Dissertation Committee: Yoneo Sagawa, Chairman Haruyuki Kamemoto Henry Y. Nakasone Philip E. Parvin William L. Theobald We certify that we have read this dissertation and that in our opinion it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Horticulture. DISSERTATION COMMITTEE (7 'Cry^o , w A Chairman Chromosome Numbers and Cross-Compatibility in the Genus Cymbidium and Some Related Tropical Genera (Orchidaceae) Abstract Investigations on chromosome numbers and cross-compatibility were made with species and hybrids of Cymbidium and other tropical genera of the family Orchidaceae. Chromosome number determinations were made of 163 plants. One hundred nineteen counts of Cymbidium clones were made of which 92 are reported for the first time. Diploid, triploid, tetraploid, hexaploid and aneuploid individuals were determined. Triploid cultivars of two species, C. insigne 'Bierii' and C. pumilum 'Yashima' were found. Forty- four counts of intergeneric hybrids and genera other than Cymbidium were made. The hybrid status of 17 progenies of intergeneric pollinations was determined by analysis of somatic chromosome numbers. Nine plants derived from colchicine treated protocorms were identified as polyploids; 8 being euploid and 1 a mixoploid. The origin of the polyploid nature of some of the hybrids not subjected to colchicine treatments is dis­ cussed. It was verified cytologically that Cymbidium did hybridize with Ansellia and Catasetum.
    [Show full text]
  • New Spathoglottis in Cuba, Terrestrial Orchid of Great Adaptability to the Tropics
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Mini Review Dairy and Vet Sci J Volume 12 Issue 3 - June 2019 Copyright © All rights are reserved by Lorenzo Suárez Guerra DOI: 10.19080/JDVS.2019.12.555839 New Spathoglottis in Cuba, Terrestrial Orchid of Great Adaptability to the Tropics Lorenzo Suárez Guerra*, María Margarita Hernández Espinosa and Georvis Téllez Beltrán National Institute of Agricultural Sciences (INCA), Cuba Submission: June 05, 2019; Published: June 14, 2019 *Corresponding author: Lorenzo Suárez Guerra, National Institute of Agricultural Sciences (INCA), Gaveta Postal No. 1, San José de las Lajas, Mayabeque, C. P. 32700, Cuba Summary Spathoglottis is a genus of orchid that has assigned 47 species, naturalized in Cuba, originally from Southeast Asia and is a plant considered easy to grow. After several years of work, new cultivars of Spathoglottis are proposed, all results of artificial crosses carried out in the National Institute Abstract of Agricultural Sciences (INCA). It is registered in the database of the Royal Horticultural Society of England, Sander’s List. Spathoglottis plicata is non-epiphytic orchids with 47 species, naturalized in Cuba, it is original from the southwest of Asia and it is considered as a plant of an easy growth. After several years of study to propose new Spathoglottis all result of cross pollination artificial for Institute National ofKeywords Agricultural: Sciences. They are registered in the database of the Royal Horticultural Society of England, Sander´s List. Hybrids; Ornamental plant; Flower; New genotype Introduction Since 2009, the records made by the National Institute of cylindrical scape, up to 3per bulb, 50-60cm long, erect, distally Agricultural Sciences (INCA) constitute an important contribution floral escape.
    [Show full text]
  • The Plants Are Pseudobulbous Terrestrials, with Large Plicate Year's
    Taxonomic revision of the genus Acanthephippium (Orchidaceae) S.A. Thomas Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, England (Drawings by the author) Summary This is revision of the Blume. Eleven Seven a genus Acanthephippium species are recognised. names are time A. A. A. A. here for the first reduced to synonymy (A. lycaste, odoratum, papuanum, pictum, sim- plex, A. sinense, and A. thailandicum). Introduction Acanthephippium is a genus of eleven species distributedin Southeast Asia from Sri Lanka to Nepal and north to Japan, all over the Malesian Archipelago and in many islands in the Pacific. The genus was established by Blume in 1825 with one species, Acanthephippium javanicum. The generic name is derived from two Greek roots: acantha (thorn) and ephippion (sad- dle), the former referring to the long slender column, and the latter to the saddle-shaped lip. Blume (1825) first published the generic name as Acanthophippium, an orthographi- his cal error which he corrected in the preface of Flora Javae (1828). The older spelling authors. I have followed who stated: "Since was followed by several Sprague (1928) the spelling Acanthophippium contains a definite (and apparently unintentional) orthographic the of the initial letter of and the alteration error, namely missing ephippium (a saddle) to Acanthephippium involves no risk of confusion or error, the latter spelling should be adopted." The plants are pseudobulbous terrestrials, with large plicate leaves. The inflorescence is lateral from the new year's growth, and much shorter than the leaves so that the flowers are mostly displayed low downon the plant. The flowers are large and fleshy, usually 3-4 lesser fused into cm long.
    [Show full text]
  • Buy Ground Orchid, Spathoglottis Plicata (Purple) - Plant Online at Nurserylive | Best Plants at Lowest Price
    Buy ground orchid, spathoglottis plicata (purple) - plant online at nurserylive | Best plants at lowest price Ground Orchid, Spathoglottis Plicata (Purple) - Plant Spathoglottis plicata or Ground orchid, native of South-eastern Asia to the Philippines, is the common species of Orchid which blooms round the year. Rating: Not Rated Yet Price Variant price modifier: Base price with tax Price with discount ?499 Salesprice with discount Sales price ?499 Sales price without tax ?499 Discount Tax amount Ask a question about this product Description With this purchase you will get: 01 Ground Orchid, Spathoglottis Plicata (Purple) Plant 01 5 inch Grower Round Plastic Pot (Black) Description for Ground Orchid, Spathoglottis Plicata (Purple) 1 / 3 Buy ground orchid, spathoglottis plicata (purple) - plant online at nurserylive | Best plants at lowest price Plant height: 5 - 9 inches (12 - 23 cm) Plant spread: 4 - 8 inches (10 - 21 cm) This easily grown terrestrial herb has pretty, arching broad leaves with prominent parallel veins and a few or large cluster of small flowers at the end of a long stalk as tall as 1 metre arising from a basal leaf axil. The leaves emerge from round pseudo bulbs that become increasingly multiple and larger as the orchid matures. Common name(s): Ground Orchid Flower colours: White, Violet/Lavender, Light pink, Orange-Yellow. Bloom time: Round the year. Max reachable height: 2 feet. Difficulty to grow: Easy. Planting and care Sunlight: Full sun to partial shade. Soil: Orchid mixes or a combination of orchid mix and soil-less potting mix for general potted plants. Water: Water thoroughly, then allow the surface and top layer of the planting media to dry out before you water it again.
    [Show full text]
  • SGAP Cairns Home Page
    Newsletter SGAP Cairns October 2013 Society for Growing Australian Plants, Cairns Branch this issue The long awaited Fitzroy Island trip is at hand! The beautiful continental island is just 45 minutes boat ride from Cairns. If you haven’t been there for a couple of years, you’re in for a surprise. The resort has been completely rebuilt. Perhaps somewhat too large and ostentatious for its surroundings, the redeveloped resort covers a large area. Beer and snacks are still available to casual visitors, and Getting there and home - Fitzroy Island Resort Fast A small but elite group met for lunch at the Cat services depart from of the dray road which is quite clear – a weir at the end of Stoney Creek Road, Cairns Reef Fleet Terminal wide open patch now studded with large at 8:00 am and 11:00 am. accompanied by the pleasant sound of the trees. A giant, canopy-emergent mango creek flow and the invigorating scene. We set tree was a sure marker of former human Services returning from off on the short walk to the old water intake habitation and a similarly large Cairns Fitzroy to Cairns depart (see photo above) but, having done it before, Pencil Cedar ( Palaqium galactoxylum) may Fitzroy's jetty at 12:15pm decided to take the link track that meets the and 5pm. have witnessed the busy site when still a Douglas Track that eventually goes past seedling. John Robb also established a Book for the Fitzroy island Kuranda to Speewah “Trailhead”. Pauline and hospital on this site in 1887 since the Fast Cat on 40446700.
    [Show full text]
  • Inventory of Vascular Plants of the Kahuku Addition, Hawai'i
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarSpace at University of Hawai'i at Manoa PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 157 INVENTORY OF VASCULAR PLANTS OF THE KAHUKU ADDITION, HAWAI`I VOLCANOES NATIONAL PARK June 2008 David M. Benitez1, Thomas Belfield1, Rhonda Loh2, Linda Pratt3 and Andrew D. Christie1 1 Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 2 National Park Service, Hawai`i Volcanoes National Park, Resources Management Division, PO Box 52, Hawai`i National Park, HI 96718 3 U.S. Geological Survey, Pacific Island Ecosystems Research Center, PO Box 44, Hawai`i National Park, HI 96718 TABLE OF CONTENTS ABSTRACT.......................................................................................................................1 INTRODUCTION...............................................................................................................1 THE SURVEY AREA ........................................................................................................2 Recent History- Ranching and Resource Extraction .....................................................3 Recent History- Introduced Ungulates...........................................................................4 Climate ..........................................................................................................................4
    [Show full text]
  • Spathoglottis
    Spathoglottis RASHTRIYA KRISHI Volume 11 Issue 1 June, 2016 73-74 e ISSN–2321–7987 | Article |Visit us : www.researchjournal.co.in| Spathoglottis- A beautiful garden orchids Syamali Chakrabarti National Research Centre for Orchids, PAKYONG (SIKKIM) INDIA Spathoglottis commonly known as “ground orchid’is make excellent container plants for the summer garden a genus of beautiful tropical, terrestrial orchids with more as well as the home. With just a few simple tricks any than 40 species which can be grower can grow these beautiful orchids that can last for grown as potted plants or can be a lifetime.The Spathoglottis orchid can be grown planted directly in beds and anywhere in indoors and also does well in outdoors in borders as landscape plants. warmer climates.As Spathoglottisare ground dwelling These orchids add considerable orchids, plants can tolerate a moist potting mix without quality to the garden when harming the roots and flower easily as long as plants get grown in a small cluster and are enough light. In warm places, partial shade is ideal to grow Fig. 1 : Spathoglottisplicata ‘Berry banana’ often planted in beds in tropical these orchids.For better growth and flowering , plants need Asia or in botanical gardens sunlight for part of the day, well-drained loamy soil and located in tropical zone. regular water.Even maintaining the plants in full soil in a The genus is allied to the genus Calanthe and Phaius. tropical climate is possible. When the plants are grown in The species are widespread from southern China to the a greenhouse better to place in a spot where ventilation is Himalayas, throughout Malaysia, Indonesia, New Guinea, good as plants don’tsurvive well in stagnant air.
    [Show full text]
  • Lampiran 1. DOKUMENTASI Gambar 1A. Guest House Danau Ranamese Gambar 1B. Kantor Danau Ranamesse Gambar 1C. Danau Ranamese
    Lampiran 1. DOKUMENTASI Gambar 1a. Guest House Danau Ranamese Gambar 1b. Kantor Danau Ranamesse Gambar 1c. Danau Ranamese 37 Lampiran 2. CONTOH TALLY SHEET Jalur Petak Jenis Pohon Jenis Anggrek 1 1 A B 2 A B 3 A B 2 1 A B 2 A B 3 A B 3 1 A B 2 A B 3 A B 4 1 A B 2 A B 3 A B 38 Lampiran 3. JENIS-JENIS ANGGREK DI SEKITAR DANAU RANAMESE No Jenis Anggrek Klasifikasi Anggrek Gambar Anggrek Bunga Anggrek 1 Anoectochillus Kingdom : Plantae reindwartii Subkingdom : Tracheobionta (Blume)* Super Divisi : Spermatophyta Divisi : Magnoliophyta Kelas : Liliopsida Sub Kelas : Liliidae Ordo : Orchidales Famili : Orchidaceae Genus : Spathoglottis Spesies : Spathoglottis plicata Blume http://tissuecultureandorchidologi.bl ogspot.com/2017/06/mengenal- keanekaragaman-anggrek-di.htm 2 Macodes petola Kingdom : Plantae (Bl). Lind* Subkingdom : Tracheobionta Super Divisi : Spermatophyta Divisi : Magnoliophyta Kelas : Liliopsida Sub Kelas : Liliidae Ordo : Orchidales Famili : Orchidaceae Genus : Macodes Spesies : Macodes petola (Bl). Lindl 39 https://alchetron.com/Macodes- petola 3 Phaius Kingdom : Plantae tancarvilleae Unranked : Angiosperms (Bank) Blume* Unranked : monocots Ordo : Asparagales Family : Orchidaceae Subfamily : Orchidaceae Tride : Arethuseae Genus : Phaius Spesies : Phaius tancarvilleae (Bank) Blume 4 Spathoglottis Kingdom : Plantae plicata Sub kingdom : Tracheobionta (Blume)* Super divisi : Spermatophyta Divisi : Magnoliophyta Ordo : Orchidales Famili : Orchidaceae Genus : Spathoglottis Spesies : Spathoglottis plicata Blume 40 5 Calanthe Kingdom
    [Show full text]