Can Microbially Induced Calcite Precipitation (MICP) Through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters?

Total Page:16

File Type:pdf, Size:1020Kb

Can Microbially Induced Calcite Precipitation (MICP) Through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? crystals Review Can Microbially Induced Calcite Precipitation (MICP) through a Ureolytic Pathway Be Successfully Applied for Removing Heavy Metals from Wastewaters? Álvaro Esteban Torres-Aravena 1,2,* , Carla Duarte-Nass 2, Laura Azócar 3, Rodrigo Mella-Herrera 2, Mariella Rivas 4,5 and David Jeison 6 1 Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile 2 Núcleo Científico y Tecnológico de Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile; [email protected] (C.D.-N.); [email protected] (R.M.-H.) 3 Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; [email protected] 4 Centro de Investigación Científico Tecnológico para la Minería CICITEM, Antofagasta 1240000, Chile; [email protected] 5 Laboratorio de Biotecnología Algal y Sustentabilidad, Facultad de Ciencias del Mar y recursos Biológicos, Universidad de Antofagasta, Antofagasta 1240000, Chile 6 Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362803, Chile; [email protected] * Correspondence: [email protected] Received: 11 October 2018; Accepted: 2 November 2018; Published: 21 November 2018 Abstract: Microbially induced calcite precipitation (MICP) through a ureolytic pathway is a process that promotes calcite precipitation as a result of the urease enzymatic activity of several microorganisms. It has been studied for different technological applications, such as soil bio-consolidation, bio-cementation, CO2 sequestration, among others. Recently, this process has been proposed as a possible process for removing heavy metals from contaminated soils. However, no research has been reported dealing with the MICP process for heavy metal removal from wastewater/waters. This (re)view proposes to consider to such possibility. The main characteristics of MICP are presented and discussed. The precipitation of heavy metals contained in wastewaters/waters via MICP is exanimated based on process characteristics. Moreover, challenges for its successful implementation are discussed, such as the heavy metal tolerance of inoculum, ammonium release as product of urea hydrolysis, and so on. A semi-continuous operation in two steps (cell growth and bio-precipitation) is proposed. Finally, the wastewater from some typical industries releasing heavy metals are examined, discussing the technical barriers and feasibility. Keywords: microbially induced calcite precipitation (MICP); heavy metals; wastewater treatment; bioprecipitation; calcium carbonate 1. Heavy Metals and Environmental Problems The contamination of watercourses by heavy metals is a serious environmental problem that has increased because of rapid industrial development. Indeed, several economic activities, such as metal plating, galvanization, the extraction and processing of minerals, tanning, battery production, paper manufacture, and pesticide synthesis, generate wastewaters that can contain pollutants [1]. Many of these metals are micronutrients, that is, they are essential for cell growth [2]. However, at high concentrations, they may turn toxic or carcinogenic, causing serious health problems. Moreover, when entering the food chain, these can accumulate in the human body [3]. In this sense, special attention has Crystals 2018, 8, 438; doi:10.3390/cryst8110438 www.mdpi.com/journal/crystals Crystals 2018, 8, 438 2 of 13 been paid to the most hazardous pollutants, such as zinc, copper, nickel, mercury, cadmium, lead, and chromium [4]. Their adverse effect on natural and human environments demands the development of efficient and cost-effective technologies in order to ensure the removal of these heavy metals from the environment. 2. Conventional Treatment of Wastewaters Containing Heavy Metals Nowadays, several processes such as flotation, chemical precipitation, adsorption, ion exchange, membrane filtration, coagulation, and electrochemical deposition are available to treat metal-containing water [1,3]. Although these processes can remove metals efficiently (metal removal exceeding 90%) [1], their main constraints are associated with high energy requirements, the use of chemicals, and the production of toxic metal sludge. All of these characteristics contribute to increase overall costs [5,6]. In recent years, biological processes have been proposed and developed for metal removal from waters and wastewaters, for example bio-sorption, bio-accumulation, phytoremediation, bio-coagulation, bio-leaching, and application of sulfate-reducing bacteria (SRB) [6,7]. These biological processes have relevant advantages when compared with their conventional counterparts, such as reduced energy and material consumption, possibilities for metal recycling or recovery, and lower sludge production [8]. These characteristics transform them into potentially more eco-friendly alternatives. However, there are disadvantages mainly related to the final waste disposal, which is often a metal-containing biomass [9]. Moreover, the bacterial immobilization of metals may not constitute a long-term solution, when it is the result of changes in the redox state, as conditions in the environment may re-mobilize them [10]. 3. Microbially Induced Calcite Precipitation (MICP) Process 3.1. Precipitation by Ureolytic MICP Process MICP is a biological process in which calcite (CaCO3) formation is achieved as a result of the active metabolism of bacteria, which generates a favorable micro-environment for precipitation [11,12]. In calcite formation in the MICP through ureolytic pathway, bacteria catalyze urea hydrolysis into carbonate and ammonium. The latter produces an alkalization of the micro-environment, favoring the binding of calcium and carbonate, and furthermore, calcite precipitation [13,14]. Moreover, bacteria also provide nucleation sites in which the calcite precipitation takes place. Four steps can be identified for biological calcite precipitation, as illustrated in Figure1. (a) Urea hydrolysis: The urease enzyme hydrolyzes urea into carbamic acid and ammonia (Equation (1)). Furthermore, a spontaneous chemical equilibrium takes place and carbamic acid is converted into carbonic acid and ammonia (Equation (2)) [10,15]. Urease CO(NH2)2 + H2O ! NH2COOH + NH3 (1) Spontaneous NH2COOH + H2O ! H2CO3 + NH3 (2) (b) Chemical equilibrium: Ammonia from the urea hydrolysis turns into ammonium, releasing hydroxide ions and increasing the micro-environmental pH, which generates favorable conditions for further precipitation [11] (Equation (3)). Hydroxide ions induce carbonate formation from carbonic acid (Equations (4) and (5)). + − 2NH3 + 2H2O $ 2NH4 + 2OH (3) − + H2CO3 $ HCO3 + H (4) − + − 2− HCO3 + H + 2OH $ CO3 + 2H2O (5) Crystals 2018, 8, 438 3 of 13 (c) Heterogeneous nucleation: Calcium ions are bound to the external cell surface because of the negatively charged functional groups in the cell wall (Equation (6)). Then, calcite formation occurs in the cell surface, once the calcium ion activity is sufficient and the saturation conditions areCrystals favorable 2018, 8, x FOR for PEER CaCO REVIEW3 precipitation (Equation (7)) [16]. 3 of 13 occurs in the cell surface, once theCa calcium2+ + Cell ion activity! Ca 2is+ sufficient− Cell and the saturation conditions (6) are favorable for CaCO3 precipitation (Equation (7)) [16]. 2+ 2− Ca Ca− Cell+Cell+ CO 3Ca !CellCell − CaCO3 (6) (7) (d) Successive stratification: SuccessiveCa Cell+CO calcite layers Cell are CaCO developed on the external cell(7) surface (stratification)(d) Successive [stratification:17]. The nutrients Successive transfer calcite layers is limited, are devel andoped the on cells the get external embedded cell surface by calcite crystals,(stratification) provoking [17]. cellular The nutrients death. transfer is limited, and the cells get embedded by calcite crystals, provoking cellular death. FigureFigure 1. Schematic 1. Schematic illustration illustration ofof calcitecalcite productionproduction through through the the microbially microbially induced induced calcite calcite precipitationprecipitation (MICP) (MICP) process: process: 1—urea 1—urea hydrolysis;hydrolysis; 2—chemical 2—chemical equilibrium; equilibrium; 3—heterogeneous 3—heterogeneous nucleation;nucleation; 4—successive 4—successive stratification. stratification. Crystals 2018, 8, 438 4 of 13 Calcite precipitation through MICP has been regarded as a promising technology for different applications, such as for the improvement of mechanical properties in soils (bio-consolidation) [18,19], bio-cementation [14,20], crack repair in concrete structures [21], CO2 sequestration [22], bio-composites [23], hydraulic control [10], and so on. For a detailed review about the engineering applications of the MICP process, the authors recommend viewing the following literature [10,19]. 3.2. Factors Governing the Ureolytic MICP Process Several factors govern the ureolytic MICP process, such as the bacteria type, urea and Ca2+ concentrations, nucleation sites, pH, and temperature. Several microorganisms presenting high levels of urease activity have been identified, such as Sporosarcina pasteurii, Bacillus spCR2, Lysinibacillus sphaericus CH5, Bacillus pasteurii NCIM 2477, Kocuria flava CR1, Bacillus megaterium SS3, Bacillus thuringiensis, and Halomonas ssp. [24]. S. pasteurii is a non-pathogenic bacterium that is able to tolerate extreme conditions [24], and is probably the most common species used for testing and studying
Recommended publications
  • The Role of Earthworm Gut-Associated Microorganisms in the Fate of Prions in Soil
    THE ROLE OF EARTHWORM GUT-ASSOCIATED MICROORGANISMS IN THE FATE OF PRIONS IN SOIL Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Taras Jur’evič Nechitaylo aus Krasnodar, Russland 2 Acknowledgement I would like to thank Prof. Dr. Kenneth N. Timmis for his guidance in the work and help. I thank Peter N. Golyshin for patience and strong support on this way. Many thanks to my other colleagues, which also taught me and made the life in the lab and studies easy: Manuel Ferrer, Alex Neef, Angelika Arnscheidt, Olga Golyshina, Tanja Chernikova, Christoph Gertler, Agnes Waliczek, Britta Scheithauer, Julia Sabirova, Oleg Kotsurbenko, and other wonderful labmates. I am also grateful to Michail Yakimov and Vitor Martins dos Santos for useful discussions and suggestions. I am very obliged to my family: my parents and my brother, my parents on low and of course to my wife, which made all of their best to support me. 3 Summary.....................................................………………………………………………... 5 1. Introduction...........................................................................................................……... 7 Prion diseases: early hypotheses...………...………………..........…......…......……….. 7 The basics of the prion concept………………………………………………….……... 8 Putative prion dissemination pathways………………………………………….……... 10 Earthworms: a putative factor of the dissemination of TSE infectivity in soil?.………. 11 Objectives of the study…………………………………………………………………. 16 2. Materials and Methods.............................…......................................................……….. 17 2.1 Sampling and general experimental design..................................................………. 17 2.2 Fluorescence in situ Hybridization (FISH)………..……………………….………. 18 2.2.1 FISH with soil, intestine, and casts samples…………………………….……... 18 Isolation of cells from environmental samples…………………………….……….
    [Show full text]
  • Bacillus Pycnus Spa Nov. and Bacillus Neidei Spa Nov., Round-Spored
    674 International Journal ofSystematic and Evolutionary Microbiology (2002),52,501-505 DOl: 10.1099/ijs.0.01836-0 Bacillus pycnus Spa nov. and Bacillus neidei Spa NOTE nov., round-spored bacteria from soil 1 Microbial Properties L. K. Nakamura,1 O. Shida/ H. Takagi2 and K. Komagata3 Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, Author for correspondence: L K. Nakamura. Tel: + 13096816395. Fax: + 13096816672. IL 61604, USA e-mail: nakamulki"mail.ncaur.usda.gov 2 Research Laboratory, Higeta Shoyu Co. Ltd, Bacillus sphaericus sensu lato currently consists of seven or more groups of Choshi, Chiba 288, Japan unrelated taxa, one of which is B. sphaericus sensu stricto and another of 3 Department of which is Bacillus fusiformis. Members of two groups (groups 6 and 7), in Agricultural Chemistry, Tokyo University of common with all other B. sphaericus-like organisms, are unable to grow Agriculture, Setagaya-ku, anaerobically or to use common hexoses, pentoses and hexitols as sources of Tokyo 156, Japan carbon, have G+C contents of 34-36 mol % and form round spores. Groups 6 and 7 can be differentiated from other B. sphaericus-like organisms by low DNA relatedness and by variations in whole-cell fatty acid composition. Unique characteristics of group 6 include the ability to oxidize fi-hydroxybutyrate, the non-requirement for biotin and thiamin and failure to grow in 5 % NaCI. Distinctive traits of group 7 include the inability to oxidize pyruvate and a requirement for biotin, thiamin and cystine for growth. These data show that groups 6 and 7 represent two novel species, for which the names Bacillus pycnus sp.
    [Show full text]
  • Biocementation Mediated by Stimulated Ureolytic Microbes from Brahmaputra Riverbank for Mitigation of Soil Erosion
    Biocementation Mediated By Stimulated Ureolytic Microbes From Brahmaputra Riverbank For Mitigation of Soil Erosion Anant Aishwarya Dubey Indian Institute of Technology Guwahati K Ravi Indian Institute of Technology Guwahati Abhijit Mukherjee Curtin University Lingaraj Sahoo Indian Institute of Technology Guwahati Abiala Moses Akindele Mountain top University Navdeep Kaur Dhami ( [email protected] ) Curtin University Research Article Keywords: Riverbank erosion, Microbially induced carbonate precipitation (MICP), Sporosarcina pasteurii, Pseudogracilibacillus auburnensis Posted Date: February 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-235959/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 27th, 2021. See the published version at https://doi.org/10.1038/s41598-021-94614-6. Page 1/24 Abstract Riverbank erosion is a global problem with signicant socio-economic impacts. Microbially induced carbonate precipitation (MICP) has recently emerged as a promising technology for improving the mechanical properties of soils. The presented study investigates the potential of native calcifying bacterial communities of the Brahmaputra riverbank for the rst time via biostimulation and explores its effect on the mitigation of soil erosion. The ureolytic and calcium carbonate cementation ability of the enriched cultures were investigated with reference to the standard calcifying culture of Sporosarcina pasteurii (ATCC 11859). 16S rRNA analysis revealed Firmicutes to be the most predominant calcifying class with Sporosarcina pasteurii and Pseudogracilibacillus auburnensis as the prevalent strains. The morphological and mineralogical characterization of carbonate crystals conrmed the calcite precipitation potential of these communities.
    [Show full text]
  • Beneficial Factors for Biomineralization by Ureolytic Bacterium Sporosarcina Pasteurii
    Ma et al. Microb Cell Fact (2020) 19:12 https://doi.org/10.1186/s12934-020-1281-z Microbial Cell Factories RESEARCH Open Access Benefcial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii Liang Ma, Ai‑Ping Pang, Yongsheng Luo, Xiaolin Lu* and Fengming Lin* Abstract Background: The ureolytic bacterium Sporosarcina pasteurii is well‑known for its capability of microbially induced calcite precipitation (MICP), representing a great potential in constructional engineering and material applications. However, the molecular mechanism for its biomineralization remains unresolved, as few studies were carried out. Results: The addition of urea into the culture medium provided an alkaline environment that is suitable for S. pasteurii. As compared to S. pasteurii cultivated without urea, S. pasteurii grown with urea showed faster growth and urease production, better shape, more negative surface charge and higher biomineralization ability. To survive the unfavorable growth environment due to the absence of urea, S. pasteurii up‑regulated the expression of genes involved in urease production, ATPase synthesis and fagella, possibly occupying resources that can be deployed for MICP. As compared to non‑mineralizing bacteria, S. pasteurii exhibited more negative cell surface charge for binding calcium ions and more robust cell structure as nucleation sites. During MICP process, the genes for ATPase synthesis in S. pasteurii was up‑regulated while genes for urease production were unchanged. Interestingly, genes involved in fagella were down‑regulated during MICP, which might lead to poor mobility of S. pasteurii. Meanwhile, genes in fatty acid degradation pathway were inhibited to maintain the intact cell structure found in calcite precipitation. Both weak mobility and intact cell structure are advantageous for S.
    [Show full text]
  • A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes
    Polish Journal of Microbiology 2018, Vol. 67, No 1, 59–65 ORIGINAL PAPER A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes MASATAKA AOKI1*, TAKUYA NOMA1, HIROSHI YONEMITSU2, NOBUO ARAKI3, TAKASHI YAMAGUCHI4 and KAZUYUKI HAYASHI1 1 Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan 2 Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan 3 Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Niigata, Japan 4 Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan Submitted 16 May 2017, revised 15 September 2017, accepted 27 September 2017 Abstract Ureolysis-driven microbially induced carbonate precipitation (MICP) has recently received attention for its poten- tial biotechnological applications. However, information on the enrichment and production of ureolytic microbes by using bioreactor systems is limited. Here, we report a low-tech down-flow hanging sponge (DHS) bioreac- tor system for the enrichment and production of ureolytic microbes. Using this bioreactor system and a yeast extract-based medium containing 0.17 M urea, ureolytic microbes with high potential urease activity (> 10 µmol urea hydrolyzed per min per ml of enrichment culture) were repeatedly enriched under non-sterile conditions. In addition, the ureolytic enrichment obtained in this study showed in vitro calcium carbonate precipitation. Fluorescence in situ hybridization analysis showed the existence of bacteria of the phylum Firmicutes in the bio- reactor system. Our data demonstrate that this DHS bioreactor system is a useful system for the enrichment and production of ureolytic microbes for MICP applications.
    [Show full text]
  • Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: a Review
    crystals Review Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review Dayana Arias 1,2 ID , Luis A. Cisternas 2,3 ID and Mariella Rivas 1,3,* 1 Laboratory of Algal Biotechnology & Sustainability, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta 1240000, Chile; [email protected] 2 Department of Chemical Engineering and Mineral Process, University of Antofagasta, Antofagasta 1240000, Chile; [email protected] 3 Science and Technology Research Center for Mining CICITEM, Antofagasta 1240000, Chile * Correspondence: [email protected] Academic Editor: Jolanta Prywer Received: 6 October 2017; Accepted: 4 November 2017; Published: 17 November 2017 Abstract: The formation of minerals such as calcite and struvite through the hydrolysis of urea catalyzed by ureolytic bacteria is a simple and easy way to control mechanisms, which has been extensively explored with promising applications in various areas such as the improvement of cement and sandy materials. This review presents the detailed mechanism of the biominerals production by ureolytic bacteria and its applications to the wastewater, groundwater and seawater treatment. In addition, an interesting application is the use of these ureolytic bacteria in the removal of heavy metals and rare earths from groundwater, the removal of calcium and recovery of phosphate from wastewater, and its potential use as a tool for partial biodesalination of seawater and saline aquifers. Finally, we discuss the benefits of using biomineralization processes in water treatment as well as the challenges to be solved in order to reach a successful commercialization of this technology. Keywords: biomineralization; calcite; seawater; wastewater; heavy metals removal; biodesalination 1.
    [Show full text]
  • Sporosarcina Pasteurii, Una Alternativa Sustentable Para Estabilizar Suelos Arenosos No Cohesivos De Chile
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional Académico Universidad Andrés Bello UNIVERSIDAD ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE OBRAS CIVILES SPOROSARCINA PASTEURII, UNA ALTERNATIVA SUSTENTABLE PARA ESTABILIZAR SUELOS ARENOSOS NO COHESIVOS DE CHILE Memoria para optar al Título de Ingeniero Constructor MARIANO SEBASTIAN GONZALEZ ORSINI Profesor Guía: Ramiro Eugenio Estrada Riquelme SANTIAGO-CHILE Diciembre, 2013 RESUMEN En base al estudio realizado por la doctora Ginger Krieg Dosier, de la Universidad Americana de Sharjah en los Emiratos Árabes (Patent US2011/0262640 A1), se ha llevado a cabo una investigación teórico-experimental de la capacidad de la bacteria Sporosarcina pasteurii para precipitar calcita y estabilizar dos muestras de suelo arenoso, la primera extraída del rio Maipo y la segunda muestra tomada de la playa de Pichicuy, Chile. con el objetivo de obtener el medio de cementación y método de aplicación necesario para la precipitación La consolidación de la arena utilizando la bacteria Sporosarcina pasteurii ha sido demostrada por Kantzas (1992), las bacterias se mezclaron con una suspensión de arena y la consolidación entre las partículas se produjo principalmente cerca de la superficie. Stocks-Fischer et al. (1999) mostraron que los microorganismos participaron directamente en la precipitación de calcita, proporcionando un sitio de nucleación y a causa de la formación de un ambiente alcalino se favorece la precipitación de calcita. Zhong y el Islam (1995) demostraron la consolidación de grietas en el granito utilizando una mezcla de bacteria, nutriente y un aglutinante. Entre los diferentes materiales que componen el aglutinante se encuentra el polvo de sílice (10%) y arena (90%) que otorgan una alta resistencia a la compresión y baja permeabilidad.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Soil Bacteria That Precipitate Calcium Carbonate
    Funcionamiento Biológico, Químico y Físico del Suelo / Biological, Chemical and Physical Soil Functioning Acta Agron. (2018) 67 (2) p 277-288 ISSN 0120-2812 | e-ISSN 2323-0118 https://doi.org/10.15446/acag.v67n2.66109 Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process Bacterias del suelo que precipitan carbonato de calcio: mecanismo y aplicaciones del proceso Sandra Patricia Chaparro-Acuña*, Mónica Liliana Becerra-Jiménez, José Jobanny Martínez-Zambrano and Hugo Alfonso Rojas-Sarmiento Research Group on Catalysis. Universidad Pedagógica y Tecnológica de Colombia. Tunja-Boyacá, Colombia. Author for correspondence: [email protected] Rec.: 05.06.2017 Accep.: 16.09.2017 Abstract Bacteria with ureasic activity are microorganisms found in soil that in presence of urea and calcium, they can produce calcium carbonate, a process known as microbiologically induced calcium carbonate precipitation (MICP). This article discusses this process and its mechanism, as well as bacterial urease, calcium carbonate crystals formed, and factors that affect the efficiency of MICP, as type of bacteria, bacterial cell concentrations, pH, temperature and calcium and urea concentrations. In addition, applications as removal of heavy metals in water, bioconsolidation, biocement and CO2 sequestration are also discussed. Keywords: Biomineralization; Bacillus; urease; carbonates; heavy metals; bioconsolidation; biocementation. Resumen Las bacterias con actividad ureásica son microorganismos que se encuentran en el suelo, y que en presencia de urea y calcio, pueden producir carbonato de calcio, proceso conocido como precipitación de calcio inducida microbiológicamente (PCIM). Este artículo trata este proceso y su mecanismo, además de las ureasas de origen bacteriano, los cristales de carbonato de calcio formado, los factores que afectan la eficiencia la PCIM, como el tipo de bacteria, las concentraciones de células bacterianas, el pH, la temperatura y las concentraciones de calcio y urea.
    [Show full text]
  • 12092016 Ni Xiang Phd Dissertation.Pdf
    Biological Control Potential of Spore-forming Plant Growth-Promoting Rhizobacteria Suppressing Meloidogyne incognita on Cotton and Heterodera glycines on Soybean by Ni Xiang A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 10, 2016 Keywords: biological control, Plant Growth-Promoting Rhizobacteria (PGPR), Meloidogyne incognita, cotton, Heterodera glycines, soybean Copyright 2016 by Ni Xiang Approved by Kathy S. Lawrence, Chair, Professor of Entomology and Plant Pathology Joseph W. Kloepper, Professor of Entomology and Plant Pathology Edward J. Sikora, Professor of Entomology and Plant Pathology David B. Weaver, Professor of Crop, Soil, and Environmental Sciences Dennis P. Delaney, Extension Specialist of Crop, Soil, and Environmental Sciences Abstract The objective of this study was to screen a library of PGPR strains to determine activity to plant-parasitic nematodes with the ultimate goal of identifying new PGPR strains that could be developed into biological nematicide products. Initially a rapid assay was needed to distinguish between live and dead second stage juveniles (J2) of H. glycines and M. incognita. Once the assay was developed, PGPR strains were evaluated in vitro and selected for further evaluation in greenhouse, microplot, and field conditions. Three sodium solutions, sodium carbonate (Na2CO3), sodium bicarbonate (NaHCO3), and sodium hydroxide (NaOH) were evaluated to distinguish between viable live and dead H. glycines and M. incognita J2. The sodium solutions applied to the live J2 stimulated the J2 to twist their bodies in a curling shape and increased movement activity. Optimum movement of H. glycines was observed with the application of 1 µl of Na2CO3 (pH =10) added to the 100 µl suspension.
    [Show full text]
  • Characterization of Ureolytic Bacteria Isolated from Limestone Caves of Sarawak and Evaluation of Their Efficiency in Biocementation
    CHARACTERIZATION OF UREOLYTIC BACTERIA ISOLATED FROM LIMESTONE CAVES OF SARAWAK AND EVALUATION OF THEIR EFFICIENCY IN BIOCEMENTATION By ARMSTRONG IGHODALO OMOREGIE A thesis presented in fulfilment of the requirements for the degree of Master of Science (Research) Faculty of Engineering, Computing and Science SWINBURNE UNIVERSITY OF TECHNOLOGY 2016 ABSTRACT The aim of this study was to isolate, identify and characterise bacteria that are capable of producing urease enzyme, from limestone cave samples of Sarawak. Little is known about the diversity of bacteria inhabiting Sarawak’s limestone caves with the ability of hydrolyzing urea substrate through urease for microbially induced calcite precipitation (MICP) applications. Several studies have reported that the majority of ureolytic bacterial species involved in calcite precipitation are pathogenic. However, only a few non-pathogenic urease-producing bacteria have high urease activities, essential in MICP treatment for improvement of soil’s shear strength and stiffness. Enrichment culture technique was used in this study to target highly active urease- producing bacteria from limestone cave samples of Sarawak collected from Fairy and Wind Caves Nature Reserves. These isolates were subsequently subjected to an increased urea concentration for survival ability in conditions containing high urea substrates. Urea agar base media was used to screen for positive urease producers among the bacterial isolates. All the ureolytic bacteria were identified with the use of phenotypic and molecular characterizations. For determination of their respective urease activities, conductivity method was used and the highly active ureolytic bacteria isolated comparable with control strain used in this study were selected and used for the next subsequent experiments in this study.
    [Show full text]
  • Improving the Strength of Sandy Soils Via Ureolytic Caco3 Solidification by Sporosarcina Ureae
    Improving the Strength of Sandy Soils via Ureolytic CaCO3 Solidification by Sporosarcina ureae Justin Michael Whitaker1, Sai Vanapalli2, and Danielle Fortin1; 5 1Department of Earth and Environmental Sciences (413-ARC). University of Ottawa, K1N 6N5, Ottawa, ON, Canada 2Department of Civil Engineering (A015-CBY). University of Ottawa, K1N 6N5, Ottawa, ON, Canada 10 Correspondence to: D. Fortin ([email protected]) Key words: Urease, calcite precipitation, MICP, Sporosarcina, Bacillus, biomineralisation, biofilm Comment [L1]: Typographical error corrected Abstract 15 'Microbial induced carbonate precipitation' (MICP) is a biogeochemical process that can be applied to strengthen materials. The hydrolysis of urea by microbial catalysis to form carbonate is a commonly studied example of MICP. In this study, Sporosarcina ureae, a ureolytic organism, was compared to other ureolytic and non-ureolytic organisms of Bacillus and Sporosarcina in the assessment of its ability to produce carbonates by ureolytic MICP for 20 ground reinforcement. It was found that S. ureae grew optimally in alkaline (pH ~9.0) conditions which favoured MICP and could degrade urea (U/mL = µmol/min.mL.OD600) at levels (30.28 U/mL) similar to S. pasteurii (32.76 U/mL), Comment [L2]: L21 modification Alternative units: umol/min.mL.OD600 the model ureolytic MICP organism. When cells of S. ureae were concentrated (OD600 ~15-20) and mixed with cementation medium containing 0.5 M calcium chloride (CaCl2) and urea into a model sand, repeated treatments (3 x 24 h) were able to improve the confined direct shear strength of samples from 15.77 kPa to as much as 135.80 kPa. This was more than Comment [L3]: Typographical error corrected 25 any other organism observed in the study.
    [Show full text]