Sporosarcina Pasteurii, Una Alternativa Sustentable Para Estabilizar Suelos Arenosos No Cohesivos De Chile

Total Page:16

File Type:pdf, Size:1020Kb

Sporosarcina Pasteurii, Una Alternativa Sustentable Para Estabilizar Suelos Arenosos No Cohesivos De Chile UNIVERSIDAD ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE OBRAS CIVILES SPOROSARCINA PASTEURII, UNA ALTERNATIVA SUSTENTABLE PARA ESTABILIZAR SUELOS ARENOSOS NO COHESIVOS DE CHILE Memoria para optar al Título de Ingeniero Constructor MARIANO SEBASTIAN GONZALEZ ORSINI Profesor Guía: Ramiro Eugenio Estrada Riquelme SANTIAGO-CHILE Diciembre, 2013 RESUMEN En base al estudio realizado por la doctora Ginger Krieg Dosier, de la Universidad Americana de Sharjah en los Emiratos Árabes (Patent US2011/0262640 A1), se ha llevado a cabo una investigación teórico-experimental de la capacidad de la bacteria Sporosarcina pasteurii para precipitar calcita y estabilizar dos muestras de suelo arenoso, la primera extraída del rio Maipo y la segunda muestra tomada de la playa de Pichicuy, Chile. con el objetivo de obtener el medio de cementación y método de aplicación necesario para la precipitación La consolidación de la arena utilizando la bacteria Sporosarcina pasteurii ha sido demostrada por Kantzas (1992), las bacterias se mezclaron con una suspensión de arena y la consolidación entre las partículas se produjo principalmente cerca de la superficie. Stocks-Fischer et al. (1999) mostraron que los microorganismos participaron directamente en la precipitación de calcita, proporcionando un sitio de nucleación y a causa de la formación de un ambiente alcalino se favorece la precipitación de calcita. Zhong y el Islam (1995) demostraron la consolidación de grietas en el granito utilizando una mezcla de bacteria, nutriente y un aglutinante. Entre los diferentes materiales que componen el aglutinante se encuentra el polvo de sílice (10%) y arena (90%) que otorgan una alta resistencia a la compresión y baja permeabilidad. El objetivo de esta tesis es establecer las características del medio necesarias para la cementación producto de la bacteria Sporosarcina pasteurii en suelos arenosos no cohesivos de Chile, utilizando para el desarrollo de los experimentos el sistema correspondiente al implementado en la mayoría de las bibliografías sobre MICP (microbial induced calcite precipitation). Esta técnica fue descrita de manera especial por Ismail (2000) quien utiliza columnas de acero en donde introduce la arena y hace pasar a través del ellos la bacteria y el medio para producir la cementación. Se utilizaron dos medios de cementación y dos tipos de arena diferentes para el desarrollo del experimento. Una extraída del río Maipo y otra desde Pichicuy (Chile), obteniéndose resultados favorables de precipitación de calcita y cementación sobre las columnas de arena. concluyendo que el medio de cementación utilizado sobre la bacteria Sporosarcina pasteurii es capaz de modificar las características de consolidación de suelos arenosos no cohesivos de Chile. Palabras clave: Sporosarcina Pasteurii, bacteria, calcita, urea, calcio. ÍNDICE Página 1. SUELOS COHESIVOS Y SPOROSARCINA PASTEURII 1.1 Efectos Contaminantes Producto e la Construcción 2 1.2 Los Suelos Estabilizados 4 1.2.1 Suelos no cohesivos 6 1.2.2 Estabilización con cal 7 1.2.3 Estabilización con cemento portland 7 1.2.4 Mejoramiento con productos asfálticos 8 1.3 Suelo Cemento 9 1.3.1 Contaminación producto del cemento 10 1.4 Suelos Expansivos 12 1.5 Descripción de Biotecnología Blanca 15 1.6 Objetivos 17 1.6.1 Objetivo general 17 1.6.2 Objetivos específicos 17 i 2. PRECIPITACIÓN DE CALCITA INDUCIDA POR SPOROSARSINA PASTEURII 2.1 Precipitación de Calcita Inducida por Microorganismos (MICP) 19 2.1.1 Microbial-induced calcite precipitation (MICP) 18 2.2 ¿Qué es el Carbonato Cálcico o CaCO3? 21 2.2.1 Precipitación de carbonato cálcico 23 2.3 Referencias de Investigación 26 2.3.1 Referencia comercial y patentes 27 2.4 Medio de Cultivo para Bacteria Sporosarcina Pasateurii 27 2.5 Medios de Cementación aplicados a Bacteria Sporosarcina Pasteurii 30 2.5.1 Urea 31 2.5.2 Cloruro de amonio 31 2.5.3 Bicarbonato de sodio 32 2.5.4 Cloruro de calcio 32 2.5.5 Extracto de levadura 32 3. METODOS Y RESULTADOS 3.1 Descripción General del Sistema 34 3.1.1 columna experimental 34 3.1.2 columna aplicada en caso de estudio 36 ii 3.1.3 Granulometrías 37 3.2 Crecimiento Bacteriano 38 3.2.1 Cuantificación de la bacteria 39 3.2.2 Concentración de la bacteria 41 3.3 Preparación Medio de Cementación 42 3.4 Sistema de aplicación 43 3.4.1 Sistema de aplicación A 44 3.4.2 Sistema de aplicación B 45 3.5 Resultados 45 3.5.1 Resultado sistema de aplicación A 45 3.5.2 Resultado sistema de aplicación B 46 4. CONCLUSIONES 4.1 Conclusiones y Discusión 51 5. BIBLIOGRAFIA 55 6. ANEXOS 6.1 Costos 61 6.1.1 Costo del cultivo 61 6.1.2 Costo medio cementación A 61 6.1.2 Costo medio cementación B 62 iii ÍNDICE DE TABLAS Página Tabla 1.1: Descripción de las partículas de suelo según su tamaño 6 Tabla 1.2: Descripción de arcillas 13 Tabla 2.1: Especificación medio de cultivo S.Pasteurii 29 Tabla 2.2: Especificación medio de cementación (A) S.Pasteurii 30 Tabla 2.3: Especificación medio de cementación (B) S.Pasteurii 31 Tabla 3.1: Granulometría arena extraída del río Maipo 37 Tabla 3.2: Granulometría extraída de Pichicuy 38 Tabla 6.1: Costo total del cultivo para confección de una columna 61 Tabla 6.2: Costo total medio cementación A 61 Tabla 6.3: Costo total medio cementación B iv ÍNDICE FIGURAS Página Figura 1.1: Emisiones mundiales de CO2 periodo 1940-2000 2 Figura 1.2: Distribución de las emisiones de GEI por región 3 Figura 1.3: Esquema tetraedro de sílice 14 Figura 2.1: Representación CaCO3 inducido por S.Pasteurii 20 Figura 2.2: Representación acontecimiento (MICP) 21 Figura 2.3: Estalagmitas de CaCO3, cueva Lechuguilla, EE.UU. 22 Figura 2.4: Calcita precipitada microbiológicamente entre granos de arena 26 Figura 3.1: Piezas de la columna utilizada en bibliografía 35 Figura 3.2: Método experimental columna de arena 36 Figura 3.3: Columna de PVC 2"x4" 37 Figura 3.4: Mecanismos de Autoclave 39 Figura 3.5: Camara Neubauer 40 Figura 3.6: Centrifuga Thermo Scientific MR 23i 41 Figura 3.7: Pellet S.Pasteurii 42 Figura 3.8: Método aplicación con bomba peristáltica 43 Figura 3.9: VORTEX Thermolyne, Barnstead 44 v Figura 3.10: Resultado de la aplicación A 46 Figura 3.11: Resultado primera aplicación B 47 Figura 3.12: Aumento de la masa resultado B 48 Figura 3.13: Resultado segunda aplicación B 49 1. COHESION DE SUELOS Y SPOROSARCINA PASTEURII vi 1.1 EFECTOS CONTAMINANTES PRODUCTO DE LA CONSTRUCCIÓN El calentamiento global ha puesto en evidencia que se ha sobrepasado la capacidad de la atmósfera del planeta. En la actualidad las concentraciones de dióxido de carbono (CO2) vii .
Recommended publications
  • Biocementation Mediated by Stimulated Ureolytic Microbes from Brahmaputra Riverbank for Mitigation of Soil Erosion
    Biocementation Mediated By Stimulated Ureolytic Microbes From Brahmaputra Riverbank For Mitigation of Soil Erosion Anant Aishwarya Dubey Indian Institute of Technology Guwahati K Ravi Indian Institute of Technology Guwahati Abhijit Mukherjee Curtin University Lingaraj Sahoo Indian Institute of Technology Guwahati Abiala Moses Akindele Mountain top University Navdeep Kaur Dhami ( [email protected] ) Curtin University Research Article Keywords: Riverbank erosion, Microbially induced carbonate precipitation (MICP), Sporosarcina pasteurii, Pseudogracilibacillus auburnensis Posted Date: February 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-235959/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 27th, 2021. See the published version at https://doi.org/10.1038/s41598-021-94614-6. Page 1/24 Abstract Riverbank erosion is a global problem with signicant socio-economic impacts. Microbially induced carbonate precipitation (MICP) has recently emerged as a promising technology for improving the mechanical properties of soils. The presented study investigates the potential of native calcifying bacterial communities of the Brahmaputra riverbank for the rst time via biostimulation and explores its effect on the mitigation of soil erosion. The ureolytic and calcium carbonate cementation ability of the enriched cultures were investigated with reference to the standard calcifying culture of Sporosarcina pasteurii (ATCC 11859). 16S rRNA analysis revealed Firmicutes to be the most predominant calcifying class with Sporosarcina pasteurii and Pseudogracilibacillus auburnensis as the prevalent strains. The morphological and mineralogical characterization of carbonate crystals conrmed the calcite precipitation potential of these communities.
    [Show full text]
  • Beneficial Factors for Biomineralization by Ureolytic Bacterium Sporosarcina Pasteurii
    Ma et al. Microb Cell Fact (2020) 19:12 https://doi.org/10.1186/s12934-020-1281-z Microbial Cell Factories RESEARCH Open Access Benefcial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii Liang Ma, Ai‑Ping Pang, Yongsheng Luo, Xiaolin Lu* and Fengming Lin* Abstract Background: The ureolytic bacterium Sporosarcina pasteurii is well‑known for its capability of microbially induced calcite precipitation (MICP), representing a great potential in constructional engineering and material applications. However, the molecular mechanism for its biomineralization remains unresolved, as few studies were carried out. Results: The addition of urea into the culture medium provided an alkaline environment that is suitable for S. pasteurii. As compared to S. pasteurii cultivated without urea, S. pasteurii grown with urea showed faster growth and urease production, better shape, more negative surface charge and higher biomineralization ability. To survive the unfavorable growth environment due to the absence of urea, S. pasteurii up‑regulated the expression of genes involved in urease production, ATPase synthesis and fagella, possibly occupying resources that can be deployed for MICP. As compared to non‑mineralizing bacteria, S. pasteurii exhibited more negative cell surface charge for binding calcium ions and more robust cell structure as nucleation sites. During MICP process, the genes for ATPase synthesis in S. pasteurii was up‑regulated while genes for urease production were unchanged. Interestingly, genes involved in fagella were down‑regulated during MICP, which might lead to poor mobility of S. pasteurii. Meanwhile, genes in fatty acid degradation pathway were inhibited to maintain the intact cell structure found in calcite precipitation. Both weak mobility and intact cell structure are advantageous for S.
    [Show full text]
  • A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes
    Polish Journal of Microbiology 2018, Vol. 67, No 1, 59–65 ORIGINAL PAPER A Low-Tech Bioreactor System for the Enrichment and Production of Ureolytic Microbes MASATAKA AOKI1*, TAKUYA NOMA1, HIROSHI YONEMITSU2, NOBUO ARAKI3, TAKASHI YAMAGUCHI4 and KAZUYUKI HAYASHI1 1 Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan 2 Department of Applied Chemistry and Biochemistry, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan 3 Department of Civil Engineering, National Institute of Technology, Nagaoka College, Nagaoka, Niigata, Japan 4 Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan Submitted 16 May 2017, revised 15 September 2017, accepted 27 September 2017 Abstract Ureolysis-driven microbially induced carbonate precipitation (MICP) has recently received attention for its poten- tial biotechnological applications. However, information on the enrichment and production of ureolytic microbes by using bioreactor systems is limited. Here, we report a low-tech down-flow hanging sponge (DHS) bioreac- tor system for the enrichment and production of ureolytic microbes. Using this bioreactor system and a yeast extract-based medium containing 0.17 M urea, ureolytic microbes with high potential urease activity (> 10 µmol urea hydrolyzed per min per ml of enrichment culture) were repeatedly enriched under non-sterile conditions. In addition, the ureolytic enrichment obtained in this study showed in vitro calcium carbonate precipitation. Fluorescence in situ hybridization analysis showed the existence of bacteria of the phylum Firmicutes in the bio- reactor system. Our data demonstrate that this DHS bioreactor system is a useful system for the enrichment and production of ureolytic microbes for MICP applications.
    [Show full text]
  • Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: a Review
    crystals Review Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review Dayana Arias 1,2 ID , Luis A. Cisternas 2,3 ID and Mariella Rivas 1,3,* 1 Laboratory of Algal Biotechnology & Sustainability, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta 1240000, Chile; [email protected] 2 Department of Chemical Engineering and Mineral Process, University of Antofagasta, Antofagasta 1240000, Chile; [email protected] 3 Science and Technology Research Center for Mining CICITEM, Antofagasta 1240000, Chile * Correspondence: [email protected] Academic Editor: Jolanta Prywer Received: 6 October 2017; Accepted: 4 November 2017; Published: 17 November 2017 Abstract: The formation of minerals such as calcite and struvite through the hydrolysis of urea catalyzed by ureolytic bacteria is a simple and easy way to control mechanisms, which has been extensively explored with promising applications in various areas such as the improvement of cement and sandy materials. This review presents the detailed mechanism of the biominerals production by ureolytic bacteria and its applications to the wastewater, groundwater and seawater treatment. In addition, an interesting application is the use of these ureolytic bacteria in the removal of heavy metals and rare earths from groundwater, the removal of calcium and recovery of phosphate from wastewater, and its potential use as a tool for partial biodesalination of seawater and saline aquifers. Finally, we discuss the benefits of using biomineralization processes in water treatment as well as the challenges to be solved in order to reach a successful commercialization of this technology. Keywords: biomineralization; calcite; seawater; wastewater; heavy metals removal; biodesalination 1.
    [Show full text]
  • Sporosarcina Pasteurii, Una Alternativa Sustentable Para Estabilizar Suelos Arenosos No Cohesivos De Chile
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional Académico Universidad Andrés Bello UNIVERSIDAD ANDRÉS BELLO FACULTAD DE INGENIERÍA ESCUELA DE OBRAS CIVILES SPOROSARCINA PASTEURII, UNA ALTERNATIVA SUSTENTABLE PARA ESTABILIZAR SUELOS ARENOSOS NO COHESIVOS DE CHILE Memoria para optar al Título de Ingeniero Constructor MARIANO SEBASTIAN GONZALEZ ORSINI Profesor Guía: Ramiro Eugenio Estrada Riquelme SANTIAGO-CHILE Diciembre, 2013 RESUMEN En base al estudio realizado por la doctora Ginger Krieg Dosier, de la Universidad Americana de Sharjah en los Emiratos Árabes (Patent US2011/0262640 A1), se ha llevado a cabo una investigación teórico-experimental de la capacidad de la bacteria Sporosarcina pasteurii para precipitar calcita y estabilizar dos muestras de suelo arenoso, la primera extraída del rio Maipo y la segunda muestra tomada de la playa de Pichicuy, Chile. con el objetivo de obtener el medio de cementación y método de aplicación necesario para la precipitación La consolidación de la arena utilizando la bacteria Sporosarcina pasteurii ha sido demostrada por Kantzas (1992), las bacterias se mezclaron con una suspensión de arena y la consolidación entre las partículas se produjo principalmente cerca de la superficie. Stocks-Fischer et al. (1999) mostraron que los microorganismos participaron directamente en la precipitación de calcita, proporcionando un sitio de nucleación y a causa de la formación de un ambiente alcalino se favorece la precipitación de calcita. Zhong y el Islam (1995) demostraron la consolidación de grietas en el granito utilizando una mezcla de bacteria, nutriente y un aglutinante. Entre los diferentes materiales que componen el aglutinante se encuentra el polvo de sílice (10%) y arena (90%) que otorgan una alta resistencia a la compresión y baja permeabilidad.
    [Show full text]
  • Soil Bacteria That Precipitate Calcium Carbonate
    Funcionamiento Biológico, Químico y Físico del Suelo / Biological, Chemical and Physical Soil Functioning Acta Agron. (2018) 67 (2) p 277-288 ISSN 0120-2812 | e-ISSN 2323-0118 https://doi.org/10.15446/acag.v67n2.66109 Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process Bacterias del suelo que precipitan carbonato de calcio: mecanismo y aplicaciones del proceso Sandra Patricia Chaparro-Acuña*, Mónica Liliana Becerra-Jiménez, José Jobanny Martínez-Zambrano and Hugo Alfonso Rojas-Sarmiento Research Group on Catalysis. Universidad Pedagógica y Tecnológica de Colombia. Tunja-Boyacá, Colombia. Author for correspondence: [email protected] Rec.: 05.06.2017 Accep.: 16.09.2017 Abstract Bacteria with ureasic activity are microorganisms found in soil that in presence of urea and calcium, they can produce calcium carbonate, a process known as microbiologically induced calcium carbonate precipitation (MICP). This article discusses this process and its mechanism, as well as bacterial urease, calcium carbonate crystals formed, and factors that affect the efficiency of MICP, as type of bacteria, bacterial cell concentrations, pH, temperature and calcium and urea concentrations. In addition, applications as removal of heavy metals in water, bioconsolidation, biocement and CO2 sequestration are also discussed. Keywords: Biomineralization; Bacillus; urease; carbonates; heavy metals; bioconsolidation; biocementation. Resumen Las bacterias con actividad ureásica son microorganismos que se encuentran en el suelo, y que en presencia de urea y calcio, pueden producir carbonato de calcio, proceso conocido como precipitación de calcio inducida microbiológicamente (PCIM). Este artículo trata este proceso y su mecanismo, además de las ureasas de origen bacteriano, los cristales de carbonato de calcio formado, los factores que afectan la eficiencia la PCIM, como el tipo de bacteria, las concentraciones de células bacterianas, el pH, la temperatura y las concentraciones de calcio y urea.
    [Show full text]
  • Characterization of Ureolytic Bacteria Isolated from Limestone Caves of Sarawak and Evaluation of Their Efficiency in Biocementation
    CHARACTERIZATION OF UREOLYTIC BACTERIA ISOLATED FROM LIMESTONE CAVES OF SARAWAK AND EVALUATION OF THEIR EFFICIENCY IN BIOCEMENTATION By ARMSTRONG IGHODALO OMOREGIE A thesis presented in fulfilment of the requirements for the degree of Master of Science (Research) Faculty of Engineering, Computing and Science SWINBURNE UNIVERSITY OF TECHNOLOGY 2016 ABSTRACT The aim of this study was to isolate, identify and characterise bacteria that are capable of producing urease enzyme, from limestone cave samples of Sarawak. Little is known about the diversity of bacteria inhabiting Sarawak’s limestone caves with the ability of hydrolyzing urea substrate through urease for microbially induced calcite precipitation (MICP) applications. Several studies have reported that the majority of ureolytic bacterial species involved in calcite precipitation are pathogenic. However, only a few non-pathogenic urease-producing bacteria have high urease activities, essential in MICP treatment for improvement of soil’s shear strength and stiffness. Enrichment culture technique was used in this study to target highly active urease- producing bacteria from limestone cave samples of Sarawak collected from Fairy and Wind Caves Nature Reserves. These isolates were subsequently subjected to an increased urea concentration for survival ability in conditions containing high urea substrates. Urea agar base media was used to screen for positive urease producers among the bacterial isolates. All the ureolytic bacteria were identified with the use of phenotypic and molecular characterizations. For determination of their respective urease activities, conductivity method was used and the highly active ureolytic bacteria isolated comparable with control strain used in this study were selected and used for the next subsequent experiments in this study.
    [Show full text]
  • Improving the Strength of Sandy Soils Via Ureolytic Caco3 Solidification by Sporosarcina Ureae
    Improving the Strength of Sandy Soils via Ureolytic CaCO3 Solidification by Sporosarcina ureae Justin Michael Whitaker1, Sai Vanapalli2, and Danielle Fortin1; 5 1Department of Earth and Environmental Sciences (413-ARC). University of Ottawa, K1N 6N5, Ottawa, ON, Canada 2Department of Civil Engineering (A015-CBY). University of Ottawa, K1N 6N5, Ottawa, ON, Canada 10 Correspondence to: D. Fortin ([email protected]) Key words: Urease, calcite precipitation, MICP, Sporosarcina, Bacillus, biomineralisation, biofilm Comment [L1]: Typographical error corrected Abstract 15 'Microbial induced carbonate precipitation' (MICP) is a biogeochemical process that can be applied to strengthen materials. The hydrolysis of urea by microbial catalysis to form carbonate is a commonly studied example of MICP. In this study, Sporosarcina ureae, a ureolytic organism, was compared to other ureolytic and non-ureolytic organisms of Bacillus and Sporosarcina in the assessment of its ability to produce carbonates by ureolytic MICP for 20 ground reinforcement. It was found that S. ureae grew optimally in alkaline (pH ~9.0) conditions which favoured MICP and could degrade urea (U/mL = µmol/min.mL.OD600) at levels (30.28 U/mL) similar to S. pasteurii (32.76 U/mL), Comment [L2]: L21 modification Alternative units: umol/min.mL.OD600 the model ureolytic MICP organism. When cells of S. ureae were concentrated (OD600 ~15-20) and mixed with cementation medium containing 0.5 M calcium chloride (CaCl2) and urea into a model sand, repeated treatments (3 x 24 h) were able to improve the confined direct shear strength of samples from 15.77 kPa to as much as 135.80 kPa. This was more than Comment [L3]: Typographical error corrected 25 any other organism observed in the study.
    [Show full text]
  • A Feasibility Study to Scale-Up the Production of Sporosarcina Pasteurii, Using Industrial-Grade Reagents, for Cost-Effective In-Situ Biocementation
    A Feasibility Study to Scale-Up The Production of Sporosarcina pasteurii, Using Industrial-Grade Reagents, For Cost-Effective In-Situ Biocementation Armstrong Ighodalo Omoregie Doctor of Philosophy (Science) September 2020 School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science i A Feasibility Study to Scale-Up The Production of Sporosarcina pasteurii, Using Industrial-Grade Reagents, For Cost-Effective In-Situ Biocementation Armstrong Ighodalo Omoregie MSc. (Res.), BSc. (Biotech.) A thesis by publication submitted to the School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus in total fulfilment of the requirement for the degree of Doctor of Philosophy September 2020 ii ABSTRACT Biocementation is a relatively new biotechnological technology which utilizes ureolytic bacterial cells (e.g. Sporosarcina pasteurii) to stimulate insoluble biominerals (i.e. calcium carbonate) precipitation for soil improvement through ureolysis-drive microbially induced carbonate precipitation (MICP). The MICP technology serves as a suitable alternative to several chemical and mechanical methods to improve the mechanical properties of soil specifically due to its less ecological risks or environmental hazard. Soil solidification via MICP occurs when calcium carbonate is precipitated within the soil matrix, which fills the pores and cements soil particles, thereby enhancing the engineering properties such as compressive strength and permeability. MICP permits calcium carbonate precipitation to occur from dissolved calcium ions under urea hydrolysis through the catalysis of urease by ureolytic bacterial cells. The versatility of MICP technology is promising but its practicality on a commercial- scale still faces vehement economic impediments. This is because most investigations on MICP typically use expensive analytical-grade reagents (i.e.
    [Show full text]
  • EGU2013-9275, 2013 EGU General Assembly 2013 © Author(S) 2013
    Geophysical Research Abstracts Vol. 15, EGU2013-9275, 2013 EGU General Assembly 2013 © Author(s) 2013. CC Attribution 3.0 License. A quantitative analysis of microbially-induced calcite precipitation employing artificial and naturally-occurring sediments Stephen Lokier (1) and Ginger Krieg Dosier (2) (1) The Petroleum Institute, Petroleum Geosciences, Abu Dhabi, United Arab Emirates ([email protected]), (2) bioMason Inc. Research Triangle Park, North Carolina, USA Microbially-induced calcite precipitation is a strong candidate for the production of sustainable construction mate- rials. The process employs the microbe Sporosarcina pasteurii as an agent to microbially mediate the precipitation of calcium carbonate to bind unconsolidated sediment. As this process can be achieved under ambient temperature conditions and can utilise a wide variety of easily-available sediments, potentially including waste materials, it is envisioned that this procedure could significantly reduce carbon-dioxide emissions in the construction industry. This study describes and quantifies the precipitation of calcite cement in a range of naturally-occurring sediments compared with a control matrix. The study establishes the optimum treatment time for effective cement precipitation in order to produce a material that meets the standards required for construction whilst keeping economic and environmental outlays at a minimum. The ‘control sediment’ employed industrial-grade glass beads with a grain size range of 595-1180 microns (16-30 US mesh). Sporosarcina pasteurii were mixed in a solution of urea and calcium chloride and then inoculated into the control sediment. The microbes attach to the surface of the sediment grains and employ urea as a source of energy to produce ammonia and carbon dioxide.
    [Show full text]
  • Low-Cost Cultivation of Sporosarcina Pasteurii Strain in Food-Grade Yeast Extract Medium for Microbially Induced Carbonate Preci
    Biocatalysis and Agricultural Biotechnology 17 (2019) 247–255 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: www.elsevier.com/locate/bab Low-cost cultivation of Sporosarcina pasteurii strain in food-grade yeast extract medium for microbially induced carbonate precipitation (MICP) T application ⁎ Armstrong Ighodalo Omoregiea, , Lock Hei Ngua, Dominic Ek Leong Ongb, Peter Morin Nissoma a School of Chemical Engineering and Science, Swinburne University of Technology, Sarawak Campus, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia b School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia ARTICLE INFO ABSTRACT Keywords: Sporosarcina pasteurii is a well-known ureolytic microbial species that proficiently induces the deposition of Bacterial cultivation calcium carbonate through microbially induced carbonate precipitation (MICP) process for various biotechno- Sporosarcina pasteurii logical and engineering purposes. In view to resolving the concern on high-cost bacterial cultivation due to the Urease activity conventional use of laboratory-grade growth medium for MICP studies, an inexpensive food-grade yeast medium Media optimization was investigated in this current study for its feasibility to serve as a suitable alternative media for bacterial Microbially induced carbonate precipitation growth, urease activity and calcium carbonate precipitation. The effect of different media concentration and (MICP) initial pH medium on biomass production and urease activity were determined. The performance of this low-cost media was also compared with eight laboratory-grade media (nutrient broth, yeast extract, tryptic soy broth, luria broth, fluid thioglycollate medium, cooked meat medium, lactose broth and marine broth). Results in this − current study showed cultivation in low-cost media at 15 g L 1 (w/v) and initial pH 8.5 of the food-grade yeast media both constituted the highest biomass concentration and urease activity when supplemented with urea (4%, w/v).
    [Show full text]
  • Improving the Strength of Sandy Soils Via Ureolytic Caco3 Solidification by Sporosarcina Ureae
    Improving the Strength of Sandy Soils via Ureolytic CaCO3 Solidification by Sporosarcina ureae Justin Michael Whitaker1, Sai Vanapalli2, and Danielle Fortin1; 5 1Department of Earth and Environmental Sciences (413-ARC). University of Ottawa, K1N 6N5, Ottawa, ON, Canada 2Department of Civil Engineering (A015-CBY). University of Ottawa, K1N 6N5, Ottawa, ON, Canada 10 Correspondence to: D. Fortin ([email protected]) Key words: Urease, calcite precipitation, MICP, Sporosarcina, Bacillus, biomineralisation, biofilm Abstract 15 'Microbial induced carbonate precipitation' (MICP) is a biogeochemical process that can be applied to strengthen materials. The hydrolysis of urea by microbial catalysis to form carbonate is a commonly studied example of MICP. In this study, Sporosarcina ureae, a ureolytic organism, was compared to other ureolytic and non-ureolytic organisms of Bacillus and Sporosarcina in the assessment of its ability to produce carbonates by ureolytic MICP for 20 ground reinforcement. It was found that S. ureae grew optimally in alkaline (pH ~9.0) conditions which favoured MICP and could degrade urea (units [U] /mL = µmol/min.mL.OD600) at levels (30.28 U/mL) similar to S. pasteurii (32.76 U/mL), the model ureolytic MICP organism. When cells of S. ureae were concentrated (OD600 ~15-20) and mixed with cementation medium containing 0.5 M calcium chloride (CaCl2) and urea into a model sand, repeated treatments (3 x 24 h) were able to improve the confined direct shear strength of samples from 15.77 kPa to as much as 135.80 kPa. This was more 25 than any other organism observed in the study. Imaging of the reinforced samples with scanning electron microscopy and energy dispersive spectroscopy confirmed the successful precipitation of calcium carbonate (CaCO3), across sand particles by S.
    [Show full text]