Experimental Apparatus for Quantum Pumping with a Bose-Einstein Condensate." (2016)
Total Page:16
File Type:pdf, Size:1020Kb
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2016 Experimental Apparatus for Quantum Pumping with a Bose- Einstein Condensate. Megan K. Ivory College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Physics Commons Recommended Citation Ivory, Megan K., "Experimental Apparatus for Quantum Pumping with a Bose-Einstein Condensate." (2016). Dissertations, Theses, and Masters Projects. Paper 1593092109. https://dx.doi.org/doi:10.21220/m2-4bwj-8856 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Experimental Apparatus for Quantum Pumping with a Bose-Einstein Condensate Megan K. Ivory Sidman, Pennsylvania Master of Science, College of William and Mary, 2009 Bachelor of Science, Saint Vincent College, 2007 A Dissertation presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Doctor of Philosophy Department of Physics The College of William and Mary January 2016 ©2015 Megan K. Ivory All rights reserved. APPROVAL PAGE This Dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Approved by the Committee, September, 2015 Committee Chair Associate Professor Seth Aubin, Physics The (College of William and Mary Professor John B. Delos, Physics The College of William and Mary Associa^'Prcfessor Irina Novikova, Physics The College crf’William and Mary Professor Wftfiam Cooke,ook^plfysTC Physics The College of William and Mary A Professor Kunal Das, Physics Kutztown University ABSTRACT Quantum pumping is a method of transporting particles through a circuit without an external applied voltage or chemical potential, but instead with localized time-varying potentials. Ballistic quantum pumping has been theorized in mesoscopic solid state sys tems, but experimental verifications have been challenging due to the capacitive coupling and rectification inherent to electronic systems. Using ultracold neutral atoms to test and verify the theoretical predictions of quantum pumping reduces these challenges while providing the advantages of easy confinement and manipulation, a high degree of coher ence, and bosons as well as fermions. In addition, ultracold atoms allow smooth tunability between classical thermal gases and quantum gases. Here, we design, build, characterize, and optimize a dual-species experimental apparatus capable of quantum pumping exper iments with Bose-Einstein condensates on an atom chip. We produce quasi-pure 87Rb Bose-Einstein condensates of ~ 104 atoms and successfully laser-cool 39K. We lay the experimental groundwork for quantum pumping experiments with ultracold atoms and characterize the classical dynamics of the system. These classical dynamics are supported with theoretical modeling that we have developed to compare the dramatic differences between the classical and quantum results of a double barrier turnstile pump as well as its single barrier building blocks. TABLE OF CONTENTS Acknowledgments.................................................................................................................... v Dedication ................................................................................................................................ vii List of Tables ..............................................................................................................................viii List of Figures ....................................................................................................................... ix CHAPTER 1 Introduction ................................................................................................................ 1 1.1 Background and history ................................................................................. 3 1.2 A pplications ....................................................................................................... 5 1.3 Structure of the thesis .................................................................................... 7 2 Ultracold atom theory ............................................................................................. 9 2.1 Introduction ....................................................................................................... 9 2.2 Magneto-optical trapping ................................................................................. 11 2.2.1 Laser cooling ........................................................................................ 12 2.2.2 Spatial confinement with a magnetic field ........................................ 15 2.3 Optical molasses ................................................................................................. 16 2.4 Magnetic trapping .............................................................................................. 17 2.4.1 Optical p u m p in g .................................................................................. 19 2.4.2 Magnetic tra n s p o rt .............................................................................. 20 2.5 Atom chip tra p p in g ........................................................................................... 21 2.6 Evaporative cooling ........................................................................................... 24 2.7 Bose-Einstein condensate ................................................................................. 26 i 2.8 Im a g in g ............................................................................................................ 30 2.8.1 Absorption im aging .............................................................................. 31 2.8.2 Fluorescence imaging .......................................................................... 32 2.9 Temperature m easurem ent ............................................................................ 33 3 Optical dipole traps ................................................................................................... 36 3.1 Introduction ...................................................................................................... 36 3.2 Two-level atom theory for a dipole tr a p ....................................................... 37 3.3 Calculating dipole trap potentials ............................................................... 40 3.3.1 Calculating the frequency of oscillation .......................................... 42 3.4 Optical l a t t ic e s ............................................................................................... 43 4 Experimental apparatus ......................................................................................... 47 4.1 Lab la y o u t ......................................................................................................... 49 4.2 Vacuum s y s te m ............................................................................................... 51 4.3 Laser system and locks ................................................................................... 52 4.3.1 Rubidium laser s y s te m ...................................................................... 55 4.3.2 Potassium laser system ...................................................................... 59 4.3.3 Tapered amplifiers .............................................................................. 60 4.4 Experimental procedure ............................................................................... 62 4.4.1 Magneto-optical trap and molasses ................................................. 62 4.4.2 Optical pumping, magnetic trapping, and transport .................... 67 4.4.3 Chip t r a p.............................................................................................. 70 4.4.4 Dipole trapping at the atom c h ip .................................................... 71 4.5 Imaging system s ............................................................................................... 75 5 Production of Bose-Einstein condensates .............................................................. 79 5.1 Evaporative cooling ......................................................................................... 80 ii 5.2 Dimple t r a p ...................................................................................................... 84 5.3 Bose-Einstein condensate ................................................................................ 87 5.4 Image analysis ................................................................................................... 89 5.5 Conclusion ......................................................................................................... 92 6 Classical aspects of quantum pumping ................................................................ 94 6.1 Introduction ...................................................................................................... 94 6.2 M o d e l ................................................................................................................ 97 6.2.1 Scaled u n i t s ...............................................................................................100 6.2.2 M eth o d s ....................................................................................................