February 1988
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
George C. Marshall Space Flight Center, Huntsville, Alabama NASA-GEORGE C
/ https://ntrs.nasa.gov/search.jsp?R=19650002710 2017-11-29T22:08:06+00:00Z / i i b el NASA TECHNICAL NASA TM X-53150 MEMORANDUM # OCTOBER 16o 1964 Lt_ GPO PRICE $ OTS PRICE(S) $ E'- Hard copy (Hc) _',/_, _ Micro_che_MFI_, g2) PROGRESS REPORT NO.6 ON STUDIES IN THE FIELD8 OF SPACE FLIGHT AND GUIDANCE THEORY Sponsored by .S,ero- _strodynamies Laboratory (ACCEIIBION NUMBER) (I*H RU) NASA i {PAGES) DE) INASA GR OR TMX OR AD NUMBER) ( GORY) George C. Marshall Space Flight Center, Huntsville, Alabama NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER TECHNICAL MEMORANDUM X-53150 PROGRESS REPORT NO. 6 on Studies in the Fields of SPACE FLIGHT AND GUIDANCE THEORY Sponsored by Aero-Astrodynamics Laboratory of Marshall Space Flight Center STmCT I ; This paper contains progress reports of NASA-sponsored studies in the areas of space flight and guidance theory. The studies are carried on by several universities and industrial companies. This progress report covers the period from December 18, 1963 to July 23, 1964. The technical supervisor of the contracts is W. E Miner, Deputy Chief of the Astrodynamics and Guidance Theory Division, Aero-Astrodynamics Laboratory, Marshall Space Flight Center. authors first derive some formulas of Keplerian motion involving their six elements, then the perturbation equations, and finally, present the first order solution. It is inter- esting to observe that no critical angles occur in the second order solution, but that they will appear in a third order solution. The tenth paper by R. E. Wheeler of Hayes International Corporation presents a statistical procedure for estimating the ,accuracy that can be expected of a given guidance func- tion. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
Elements of Astronomy
^ ELEMENTS ASTRONOMY: DESIGNED AS A TEXT-BOOK uabemws, Btminwcus, anb families. BY Rev. JOHN DAVIS, A.M. FORMERLY PROFESSOR OF MATHEMATICS AND ASTRONOMY IN ALLEGHENY CITY COLLEGE, AND LATE PRINCIPAL OF THE ACADEMY OF SCIENCE, ALLEGHENY CITY, PA. PHILADELPHIA: PRINTED BY SHERMAN & CO.^ S. W. COB. OF SEVENTH AND CHERRY STREETS. 1868. Entered, according to Act of Congress, in the year 1867, by JOHN DAVIS, in the Clerk's OlBce of the District Court of the United States for the Western District of Pennsylvania. STEREOTYPED BY MACKELLAR, SMITHS & JORDAN, PHILADELPHIA. CAXTON PRESS OF SHERMAN & CO., PHILADELPHIA- PREFACE. This work is designed to fill a vacuum in academies, seminaries, and families. With the advancement of science there should be a corresponding advancement in the facilities for acquiring a knowledge of it. To economize time and expense in this department is of as much importance to the student as frugality and in- dustry are to the success of the manufacturer or the mechanic. Impressed with the importance of these facts, and having a desire to aid in the general diffusion of useful knowledge by giving them some practical form, this work has been prepared. Its language is level to the comprehension of the youthful mind, and by an easy and familiar method it illustrates and explains all of the principal topics that are contained in the science of astronomy. It treats first of the sun and those heavenly bodies with which we are by observation most familiar, and advances consecutively in the investigation of other worlds and systems which the telescope has revealed to our view. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
ASTRONOMY and ASTROPHYSICS the Hipparcos Solar System Objects Catalogues?
Astron. Astrophys. 334, 325–336 (1998) ASTRONOMY AND ASTROPHYSICS The Hipparcos solar system objects catalogues? D.Hestroffer1,2, B. Morando2??,E.Høg3, J. Kovalevsky4, L. Lindegren5, and F. Mignard4 1 Astrophysics Division, Space Science Department of ESA, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands 2 Bureau Des Longitudes, URA CNRS 707, 77 Avenue Denfert Rochereau, F-75014 Paris, France 3 Copenhagen University Observatory, Juliane Maries Vej 30, DK-2100 Copenhagen O., Denmark 4 Observatoire de la Coteˆ d’Azur, Departement´ CERGA, UMR CNRS 6527, Av. N. Copernic, F-06130 Grasse, France 5 Lund Observatory, Box 43, S-22100 Lund, Sweden Received 15 October 1997 / Accepted 28 January 1998 Abstract. Astrometric and photometric measurements of a Sun or major planets. Nonetheless, the theoretical precision esti- number of solar system objects were performed by the Hip- mated by Clemence (1948) has never been reached; hence such parcos satellite in both the Hipparcos main mission and the Ty- observations of minor planets enter for instance in the solution cho experiment. The results concern mainly asteroids but also derived by Fricke (1982) for the FK5 with a relatively modest the planetary satellites Europa, Ganymede, Callisto, Titan and weight. Hipparcos should dramatically improve the situation Iapetus, and the major planets Uranus and Neptune. The spe- (e.g. Hestroffer et al. 1995; Bec-Borsenberger et al. 1995), and cific aspects of the Tycho/Hipparcos observations and reduction yield a link between the dynamical system and the ICRS with process implemented for the solar system objects are presented. a precision of the same order of magnitude as the best result Special attention is paid to the error budget of the reduction obtained so far by other means (Folkner et al. -
Observer's Handbook 1980
OBSERVER’S HANDBOOK 1980 EDITOR: JOHN R. PERCY ROYAL ASTRONOMICAL SOCIETY OF CANADA CONTRIBUTORS AND ADVISORS A l a n H. B a t t e n , Dominion Astrophysical Observatory, Victoria, B.C., Canada V 8 X 3X3 (The Nearest Stars). Terence Dickinson, R.R. 3, Odessa, Ont., Canada K0H 2H0 (The Planets). M arie Fidler, Royal Astronomical Society of Canada, 124 Merton St., Toronto, Ont., Canada M4S 2Z2 (Observatories and Planetariums). V ictor Gaizauskas, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Sunspots). J o h n A. G a l t , Dominion Radio Astrophysical Observatory, Penticton, B.C., Canada V2A 6K3 (Radio Sources). Ian Halliday, Herzberg Institute of Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Miscellaneous Astronomical Data). H e le n S. H o g g , David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (Foreword). D o n a l d A. M a c R a e , David Dunlap Observatory, University of Toronto, Richmond Hill, Ont., Canada L4C 4Y6 (The Brightest Stars). B r ia n G. M a r s d e n , Smithsonian Astrophysical Observatory, Cambridge, Mass., U.S.A. 02138 (Comets). Janet A. M attei, American Association o f Variable Star Observers, 187 Concord Ave., Cambridge, Mass. U.S.A. 02138 (Variable Stars). P e t e r M. M illm a n , Herzberg Institute o f Astrophysics, National Research Council, Ottawa, Ont., Canada K1A 0R6 (Meteors, Fireballs and Meteorites). A n t h o n y F. J. M o f f a t , D épartement de Physique, Université de Montréal, Montréal, P.Q., Canada H3C 3J7 (Star Clusters). -
A Radar Survey of Main-Belt Asteroids: Arecibo Observations of 55 Objects During 1999–2003
Icarus 186 (2007) 126–151 www.elsevier.com/locate/icarus A radar survey of main-belt asteroids: Arecibo observations of 55 objects during 1999–2003 Christopher Magri a,∗, Michael C. Nolan b,StevenJ.Ostroc, Jon D. Giorgini d a University of Maine at Farmington, 173 High Street—Preble Hall, Farmington, ME 04938, USA b Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612, USA c 300-233, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA d 301-150, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109-8099, USA Received 3 June 2006; revised 10 August 2006 Available online 24 October 2006 Abstract We report Arecibo observations of 55 main-belt asteroids (MBAs) during 1999–2003. Most of our targets had not been detected previously with radar, so these observations more than double the number of radar-detected MBAs. Our bandwidth estimates constrain our targets’ pole directions in a manner that is geometrically distinct from optically derived constraints. We present detailed statistical analyses of the disk-integrated properties (radar albedo and circular polarization ratio) of the 84 MBAs observed with radar through March 2003; all of these observations are summarized in the online supplementary information. Certain conclusions reached in previous studies are strengthened: M asteroids have higher mean radar albedos and a wider range of albedos than do other MBAs, suggesting that both metal-rich and metal-poor M-class objects exist; and C- and S-class MBAs have indistinguishable radar albedo distributions, suggesting that most S-class objects are chondritic. Also in accord with earlier results, there is evidence that primitive asteroids from outside the C taxon (F, G, P, and D) are not as radar-bright as C and S objects, but a convincing statistical test must await larger sample sizes. -
THE ASTEROIDS and THEIR DISCOVERERS Rock Legends
PAUL MURDIN THE ASTEROIDS AND THEIR DISCOVERERS Rock Legends The Asteroids and Their Discoverers More information about this series at http://www.springer.com/series/4097 Paul Murdin Rock Legends The Asteroids and Their Discoverers Paul Murdin Institute of Astronomy University of Cambridge Cambridge , UK Springer Praxis Books ISBN 978-3-319-31835-6 ISBN 978-3-319-31836-3 (eBook) DOI 10.1007/978-3-319-31836-3 Library of Congress Control Number: 2016938526 © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover design: Frido at studio escalamar Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland Acknowledgments I am grateful to Alan Fitzsimmons for taking and supplying the picture in Fig. -
Familias De Asteroides Y Otros Cuerpos Menores
Familias de Asteroides y otros cuerpos menores Familias de Asteroides y otros cuerpos menores ÍNDICE - Introducción - Clasificación espectral de los asteroides - Clasificación de Tholen - Clasificación SMASS - Cuadro resumen - Clasificación según parámetros orbitales - Huecos de Kirkwood - Cinturón principal de asteroides (Principales familias) - Familia Flora - Familia Vesta - Familia Nysa - Familia Maria - Familia Eunomia - Familia Koronis - Familia Eos - Familia Hygiea - Familia Themis Familias de Asteroides y otros cuerpos menores ÍNDICE - Cinturón principal de asteroides (Familias menores) - Familia Hungaria - Familia Focea - Familia Massalia - Familia “Mars-Crossers” y Troyanos marcianos - Familia Gefion - Familia Pallas - Cúmulos: Hansa, Karin, Adeona - Familia Cibeles - Familia Hilda - Más allá del cinturón principal de asteroides - Troyanos de Júpiter - Familia Centauros - Familia “Resonants KBOs” - Familia Plutinos - Familia Cubewanos - Disco difuso - “Detached Objects” - “Oort Cloud Objects” - Objetos próximos a la Tierra (NEOs) - Familia Atón - Familia Apohele - Familia Apolo - Familia Amor - Epílogo y enlaces Familias de Asteroides INTRODUCCIÓN Cuando uno se aproxima por primera vez al mundo de los asteroides, tiene la impresión de que se trata de un mundo anodino, plano y repetitivo. Pero la realidad, después de dedicarle un poco de atención y estudio, es que la fauna de los asteroides y otros cuerpos menores es tan diversa que desmontan cualquier creencia o prejuicio que se tenga sobre este grupo que convive en el ecosistema solar. Con esta pequeña presentación queremos desmontar esa creencia infundada sobre el supuesto tedio en el que viven los asteroides y otros cuerpos menores. Para ello, veremos primeramente cómo se clasifican los asteroides desde el punto de vista espectral, para luego pasar a las familias propiamente dichas de asteroides y otros cuerpos menores. -
The Lorenzoni-Tacchini Correspondence at Padova Observatory Archives:The "True" History of Italian Astronomy of the Second Half of the Nineteenth Century
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259300597 The Lorenzoni-Tacchini Correspondence at Padova Observatory Archives:the "True" History of Italian Astronomy of the Second Half of the Nineteenth Century Article in The Journal of Astronomical Data · December 2004 CITATIONS READS 0 27 3 authors, including: Valeria Zanini National Institute of Astrophysics 21 PUBLICATIONS 18 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: History of Astronomy View project All content following this page was uploaded by Valeria Zanini on 08 November 2018. The user has requested enhancement of the downloaded file. ASTRONOMICAL HERITAGES: Astronomical Archives and Historic Transits of Venus Journal of Astronomical Data, Vol. 10, 7, 2004 Christiaan Sterken, Hilmar W. Duerbeck, eds. The Lorenzoni-Tacchini Correspondence at Padova Observatory Archives: the “True” History of Italian Astronomy of the Second Half of the Nineteenth Century Luisa Pigatto1, Maurizio Salmaso2 and Valeria Zanini1 1INAF-Astronomical Observatory of Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 2Istituto Statale Istruzione Superiore J.F. Kennedy, Via De Gasperi 20, 35043 Monselice, Italy Abstract The correspondence between Giuseppe Lorenzoni and Pietro Tac- chini covers the period from 1870 to 1905. Two hundred and ninety original letters written by Tacchini to Lorenzoni and 177 rough copies of letters by Lorenzoni to Tacchini are preserved at the Padova Observatory Archives. Their friendship, which started in 1870 during the expedition to the total solar eclipse in Sicily, as well as their astronomical ability, were of great impor- tance for many events in Italian astronomy during the second half of the 19th century. -
I(NASA-CR-154510') ASTEROID SURFACE
REFLECTANCE S PECV A By Michael J. Gaffey Thomas B. McCord (NASA-CR-154510') ASTEROID SURFACE N8-'10992 iMATERIALS: MINERALOGICAL.CHARACTERIZATIONS FROM REFLECTANCE SPECTRA (Hawaii Univ.), 147 p HC -A07/MF A01 CSCL 03B Unclas G , to University of Hawaii at Manoa Institute for Astronomy 2680 Woodlawn Drive * Honolulu, Hawaii 96822 Telex: 723-8459 * UHAST HR November 18, 1977 NASA Scientific and Technical Information Facility P.O. Box 8757 Baltimore/Washington Int. Airport Maryland 21240 Gentlemen: RE: Spectroscopy of Asteroids, NSG 7310 Enclosed are two copies of an article entitled "Asteroid Surface Materials: Mineralogical Characterist±cs from Reflectance Spectra," by Dr. Michael J. Gaffey and Dr. Thomas B. McCord, which we have recently submitted for publication to Space Science Reviews. We submit these copies in accordance with the requirements of our NASA grants. Sincerely yours, Thomas B. McCord Principal Investigator TBM:zc Enclosures AN EQUAL OPPORTUNITY EMPLOYER ASTEROID SURFACE MATERIALS: MINERALOGICAL CHARACTERIZATIONS FROM REFLECTANCE SPECTRA By Michael J. Gaffey Thomas B. McCord Institute for Astronomy University of Hawaii at Manoa 2680 Woodlawn Drive Honolulu, Hawaii 96822 Submitted to Space Science Reviews Publication #151 of the Remote Sensing Laboratory Abstract The interpretation of diagnostic parameters in the spectral reflectance data for asteroids provides a means of characterizing the mineralogy and petrology of asteroid surface materials. An interpretive technique based on a quantitative understanding of the functional relationship between the optical properties of a mineral assemblage and its mineralogy, petrology and chemistry can provide a considerably more sophisticated characterization of a surface material than any matching or classification technique. for those objects bright enough to allow spectral reflectance measurements. -
Cumulative Index to Volumes 1-45
The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................