Considerations for the Design of a Projection Plotter 763

Total Page:16

File Type:pdf, Size:1020Kb

Considerations for the Design of a Projection Plotter 763 HOW ACCURATE lS AERlAL SURVEY? 761 survey where the amount of levelling required areas where the cost of aerial photography is to control the photogrammetric survey is al­ disproportionately high to the size of the job. most equal to that required to provide a grid The undisputed field of the ground surveyor of spot levels dense enough to permit the in­ must lie however in practically all work which terpolation of contours by eye. involves setting out, including the running of (3) Again ground survey is essential for lines of precise engineering levels. small-scale mapping of dense areas of forest (6) As regards the reference to t inch ac­ or bush where trails, drainage, and even small curacy becoming "meaningless" this does villages may often be screened entirely from not, of course, refer to the many cases where the aerial view and can only be supplied by levels are referred to precise ground marks, running a traverse on the ground. but to level information read off a plan and (4) As the scale of the plan becomes large of which the accuracy is dependent on the so the work of the ground surveyor becomes scale of the plan. For instance, the nearest increasingly important. At very large scales, one can re-establish a given point on the say in excess of 30 ft. to the inch, it is usually ground from measurements taken on a advisable to do the whole survey on the 1/2,500 plan is ±3-4 feet. Within this circle ground, for the sake of both accuracy and of location on uneven or sloping ground it is economy. possible for the level to vary by an amount (5) Ground survey is also preferred for the far in excess of the precision with which it is preparation of large-scale plans of very small surveyed and its value marked on the plan. Considerations tor the Design of a Projection Plotter* J. A. EDEN, Directorate of Overseas Surveys, Kingston Bye-Pass, Tolworth, Surbiton, Surrey, England HE advantage of the projection plotter with regard to model clarity and definition, T compared with the more complicated and obviates the necessity for spectacles. binocular instruments is its extreme simplic- (2) The instrument should he nominally ity. distortion free and utilise full size 9/fX9/f dia- Having examined a number of projection positives. Optimum projection should be be- plotters of different makes, I am convinced tween X 5 and X 6. The working table should that a cheap projection plotter could be built be large enough to accommonate the whole of for plotting individual models with better a X 6 projection. Allowing margins at front performance and facilities than any existing and back to accommodate the tracing table projection plotters and with a working ac- supports when working close to the model curacy as good, if not better than any existing edge, the table width would need to be 62 first-order plotter, except of course, the in- inches. This is not too large to be convenient- strument would not measure machine coordi- Iy worked from both sines. nates or be convenient for air triangulation. (3) The projectors should be mounted so The design should feature the following that the diapositives are held in an approxi- points: mately vertical plane, and prisms should be (1) Rotating shutter viewing should be provided in front of each lens to reflect the employed. Compared with anaglyph viewing projections down vertically onto the horizon- this system presents enormous advantages tal working table. The advantage of this * This paper was included in The Photogrammetric Record (Vol. llI. o. 13. April 1959) published by the Photogrammetric Society. London, England. Permission to reprint in PHOTOGRAMMETRIC ENGI­ NEERING was requested provided credit be given to the JOURNAL, the Society and the author. This per­ mission was given. This publication extends thanks and gives credit as above stated-ED. 762 PHOTOGRAMMETRIC ENGINEERING would be to obtain a model without mirror re­ to move both projectors towards or away versal. In all existing instruments this is only from a central point, or alternatively only to achieved by one of the following methods, move one projector. Controls for all these ad­ each of which tends to introduce errors, or justments should be situated so that they can presents special difficul ties: be worked easily by the operator whilst he is (i) By placing the diapositives upside actually inspecting the model in any part of down in the projectors so that the the model area. They should move smoothly glass of the diapositive plant is inter­ and firmly without backlash.* posed between the emulsion and the (7) The working table should be a com­ lens. This calls for an impossibly high pletely rigid block of material which should quality of glass diapositive plate with be machined flat. It should be rigidly sup­ both surfaces flat and of equal thick­ ported on levelling screws which would not ness and without optical blemishes, if be adjusted after initial installation of the in­ errors are to be avoided. strument. (ii) By contact printing with point source (8) The grid model when projected onto light with the thickness of the nega­ the plotting table should be as free as possible tive film interposed between the emul­ from plan and height errors which should not sion surfaces. This reduces resolution exceed 0.10 mm. and 0.17 mm. respectively. by scatter and multiple reflections in This requirement calls for projecting lenses the film thickness. with distortions smaller than 16 microns at (iii) By projection printing with a trans­ negative scale. forming printer which introduces pos­ (9) It is suggested that residual errors of sible errors from the transforming this order might then be removed in the plane printer and involves expenditure on of the projection by raising or lowering the this accessory. tracing table platen. This could be accom­ The above systems would be avoided if the plished in a manner somewhat similar to that method proposed was adopted, and diaposi­ employed in the Kelsh instrument for raising tives could be made by direct contact print­ or lowering the projector lenses except that ing, emulsion to emulsion, preferably in an the correction would be accomplished at the electronic printer. tracing table (instead of at the lens) where the (4) The lamp houses, and their connection errors would be larger and more easily by a rod, or rods, to the tracing table should handled. It is suggested that the correcting be supported by arrangements quite separate arm which would raise or lower the table top from the arrangements for supporting the should be motivated by a feeler bearing on a projectors so there could be no possibility of miniature surface which would be flat in the the movement of the tracing table disturbing absence of distortion but would depart from the projectors. flatness where corrections were desired by (5) The projectors should be supported in amounts equal to the required corrections a rigid frame, avoiding any cantilevering multiplied by an enlarging factor. This factor principle. This frame should be adjustable on would depend on the leverage employed. The three, and not four screws to provide facili­ shape of such a surface would be easy to de­ ties for absolute levelling. These three screws termine by empirical methods, and would not should bear on a second frame of particularly be difficult to manufacture. rigid construction which should bridge firmly (10) The tracing table should be operable between the main supports. Consideration from both front and back of the instrument should be given to the idea of casting the without the necessity for rotating the table or main supports in concrete, and it is suggested disconnecting and re-attaching the lamp that manufacturers might provide shuttering house guide rods. This is already possible on so that customers could cast their own sup­ the \Villiamson and Kelsh instruments and ports. The supporting arrangements of all ex­ the only necessity to rotate the tracing table isting instruments are considered to be noth­ on these instruments seems to be because the ing like rigid enough. heigh t scale can only be read from one side. (6) Each projector should be provided with adjustments for tip, tilt and swing, the former * Mr. Eden has called attention to a minor about the nodes of the projector lenses and error in paragraph 6. Clearly the adjustments for tip the latter about the optical axes. Adjustments and tilt would need to be about the images of the nodes of the projectors and not about the nodes of the projectors in (bz) and (by) are not themselves. He is also now of the opinion that it necessary and should not be provided. A would be necessary to employ mirrors, and not (bx) adjustment should be provided, either prisms, in front of the lenses.-EDIToR CONSIDERATIONS FOR THE DESIGN OF A PROJECTION PLOTTER 763 I t should be easy to arrange for the height tially avoided. It is considered that a resolu­ scale to be readable from both sides. tion performance should be obtainable which (11) The depth of focus should be as large approaches closely that of binocular in­ as possible without very adversely affecting struments provided the instrument is worked the model resolution. This is probably best close to its level of optimum projection. The achieved by employing small apertures and depth of focus provided should thus be used very bright lighting, with, if necessary, silent for accommodating the model relief and not running fans to effect cooling. as a means of changing model scale. (12) Resolution should be as high as pos­ (13) An accessory should be provided as an sible.
Recommended publications
  • Still Photography
    Still Photography Soumik Mitra, Published by - Jharkhand Rai University Subject: STILL PHOTOGRAPHY Credits: 4 SYLLABUS Introduction to Photography Beginning of Photography; People who shaped up Photography. Camera; Lenses & Accessories - I What a Camera; Types of Camera; TLR; APS & Digital Cameras; Single-Lens Reflex Cameras. Camera; Lenses & Accessories - II Photographic Lenses; Using Different Lenses; Filters. Exposure & Light Understanding Exposure; Exposure in Practical Use. Photogram Introduction; Making Photogram. Darkroom Practice Introduction to Basic Printing; Photographic Papers; Chemicals for Printing. Suggested Readings: 1. Still Photography: the Problematic Model, Lew Thomas, Peter D'Agostino, NFS Press. 2. Images of Information: Still Photography in the Social Sciences, Jon Wagner, 3. Photographic Tools for Teachers: Still Photography, Roy A. Frye. Introduction to Photography STILL PHOTOGRAPHY Course Descriptions The department of Photography at the IFT offers a provocative and experimental curriculum in the setting of a large, diversified university. As one of the pioneers programs of graduate and undergraduate study in photography in the India , we aim at providing the best to our students to help them relate practical studies in art & craft in professional context. The Photography program combines the teaching of craft, history, and contemporary ideas with the critical examination of conventional forms of art making. The curriculum at IFT is designed to give students the technical training and aesthetic awareness to develop a strong individual expression as an artist. The faculty represents a broad range of interests and aesthetics, with course offerings often reflecting their individual passions and concerns. In this fundamental course, students will identify basic photographic tools and their intended purposes, including the proper use of various camera systems, light meters and film selection.
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]
  • Depth of Field and Depth of Focus Explained
    1 Reference: Queries. Vol. 31 /1 Proceedings RMS March 1996 pp64-66 Depth of Field and depth of Focus Explained What is the difference between 'depth of field' and 'depth of focus'? - I have seen both terms used in textbooks This is a good question, which prompts an answer that encompasses more than simply terminology. In the past there has been some confusion about these terms, and they have been used rather indiscriminately. Recently, usage has become more consistent, and when we published the RMS Dictionary of light Microscopy in 1989, we felt able to make an unambiguous distinction in our somewhat ponderous definitions: • Depth of field is the axial depth of the space on both sides of the object plane within which the object can be moved without detectable loss of sharpness in the image, and within which features of the object appear acceptably sharp in the image while the position of the image plane is maintained. • Depth of focus is the axial depth of the space on both sides of the image plane within which the image appears acceptably sharp while the positions of the object plane and of the objective are maintained. The essential distinction between the terms is clear: depth of field refers to object space and depth of focus to image space. A possibly useful mnemonic is that the field of view is that part of the object that is being examined, and the focus is the point at which parallel rays converge after passing through a lens. These definitions contain two rather imprecise terms: detectable loss of sharpness, and acceptably sharp; clearly it all depends on what can be detected and what is considered acceptable.
    [Show full text]
  • Digital Light Field Photography
    DIGITAL LIGHT FIELD PHOTOGRAPHY a dissertation submitted to the department of computer science and the committee on graduate studies of stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy Ren Ng July © Copyright by Ren Ng All Rights Reserved ii IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Patrick Hanrahan Principal Adviser IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Marc Levoy IcertifythatIhavereadthisdissertationandthat,inmyopinion,itisfully adequateinscopeandqualityasadissertationforthedegreeofDoctorof Philosophy. Mark Horowitz Approved for the University Committee on Graduate Studies. iii iv Acknowledgments I feel tremendously lucky to have had the opportunity to work with Pat Hanrahan, Marc Levoy and Mark Horowitz on the ideas in this dissertation, and I would like to thank them for their support. Pat instilled in me a love for simulating the flow of light, agreed to take me on as a graduate student, and encouraged me to immerse myself in something I had a passion for.Icouldnothaveaskedforafinermentor.MarcLevoyistheonewhooriginallydrewme to computer graphics, has worked side by side with me at the optical bench, and is vigorously carrying these ideas to new frontiers in light field microscopy. Mark Horowitz inspired me to assemble my camera by sharing his love for dismantling old things and building new ones. I have never met a professor more generous with his time and experience. I am grateful to Brian Wandell and Dwight Nishimura for serving on my orals commit- tee. Dwight has been an unfailing source of encouragement during my time at Stanford. I would like to acknowledge the fine work of the other individuals who have contributed to this camera research. Mathieu Brédif worked closely with me in developing the simulation system, and he implemented the original lens correction software.
    [Show full text]
  • Lenses and Depth of Field
    Lenses and Depth of Field Prepared by Behzad Sajadi Borrowed from Frédo Durand’s Lectures at MIT 3 major type of issues • Diffraction – ripples when aperture is small • Third-order/spherical aberrations – Rays don’t focus – Also coma, astigmatism, field curvature • Chromatic aberration – Focus depends on wavelength References Links • http://en.wikipedia.org/wiki/Chromatic_aberration • http://www.dpreview.com/learn/?/key=chromatic+aberration • http://hyperphysics.phy- astr.gsu.edu/hbase/geoopt/aberrcon.html#c1 • http://en.wikipedia.org/wiki/Spherical_aberration • http://en.wikipedia.org/wiki/Lens_(optics) • http://en.wikipedia.org/wiki/Optical_coating • http://www.vanwalree.com/optics.html • http://en.wikipedia.org/wiki/Aberration_in_optical_systems • http://www.imatest.com/docs/iqf.html • http://www.luminous-landscape.com/tutorials/understanding- series/understanding-mtf.shtml Other quality issues Flare From "The Manual of Photography" Jacobson et al Example of flare "bug" • Some of the first copies of the Canon 24-105 L had big flare problems • http://www.the-digital-picture.com/Reviews/Canon- EF-24-105mm-f-4-L-IS-USM-Lens-Review.aspx • Flare and Ghosting source: canon red book Flare/ghosting special to digital source: canon red book Use a hood! (and a good one) Flare ray Hood is to short Flare Good hood Adapted from Ray's Applied Photographic Optics Lens hood From Ray's Applied Photographic Optics Coating • Use destructive interferences • Optimized for one wavelength From "The Manual of Photography" Jacobson et al Coating for digital source: canon red book Vignetting • The periphery does not get as much light source: canon red book Vignetting • http://www.photozone.de/3Technology/lenstec3.htm Lens design Optimization software • Has revolutionized lens design • E.g.
    [Show full text]
  • Understanding Extended Depth of Focus (EDOF)
    ADVERTORIAL Understanding Extended Depth of Focus (EDOF) Depth of Focus Defined Depth of focus (DOF) is the range of distance along the visual axis, over which an image may be focused and perceived as a clear image. Simply, it is the range of clear vision. (Figure 1) Depth of focus (DOF) is relative to the aperture that allows light into the eye. If the aperture is large, the DOF is narrow; if the aperture is small, the DOF is large. (Figure 2) Extended depth of focus (EDOF) allows uninterrupted visual correction, from Peg Achenbach, OD, FAAO Vice President, Professional Services near to distance, across a larger range. and Clinical Science for VTI Figure 1 Figure 2 Narrow Depth of Focus Light Extended Focus Light Aperture Wide Depth of Focus Light Focal Length Pinhole Optics – Optics 101 To see an image clearly, light rays must fall on the fovea. Aberrant light rays fall on the retina outside the fovea and on the peripheral retina. These rays are not clear and can cause blur. A pinhole limits aberrant light rays inside the eye. The pinhole, whether an occluder type or ‘induced aperture’ pinhole, limits the aberrant rays that hit other parts of the retina so that only the light rays coming straight through and directly hitting the fovea enter the eye. This creates a clear image at near, intermediate and distance. The clarity of the image is independent of the distance away from the eye. These principles will help you better understand the optics behind the NaturalVue® (etafilcon A) Multifocal 1 Day Contact Lens design.1 The NaturalVue® Multifocal uses the principle of pinhole optics in its design.
    [Show full text]
  • Depth of Field & Circle of Confusion
    Advanced Photography Topic 6 - Optics – Depth of Field and Circle Of Confusion Learning Outcomes In this lesson, we will learn all about depth of field and a concept known as the Circle of Confusion. By the end of this lesson, you will have a much better understanding of what each of these terms mean and how they impact your photography. Page | 1 Advanced Photography Depth of Field Depth of field refers to the range of distance that appears acceptably sharp. It varies depending on camera type, aperture and focusing distance. The depth of field isn’t something that abruptly changes from sharp to unsharp/soft. It happens as a gradual transition. Everything immediately in front of or behind the focusing distance begins to lose sharpness, even if this is not perceived by our eyes or by the resolution of the camera. Circle of Confusion (CoF) The term called the "circle of confusion" is used to define how much a point needs to be blurred in order to be perceived as unsharp, due to the fact that there is no obvious sharp point in transition. When the circle of confusion becomes perceptible to our eyes, this region is said to be outside the depth of field and thus no longer "acceptably sharp." The circle of confusion in this example has been exaggerated for clarity; in reality this would only be a tiny portion of the camera sensor's area. When does this circle of confusion become perceptible to our eyes? Well, an acceptably sharp circle of confusion is loosely defined as one which would go unnoticed when enlarged to a standard 8x10 inch print, and observed from a standard viewing distance of about 1 foot.
    [Show full text]
  • Depth of Field and Scheimpflug's Rule
    Depth of field and Scheimpflug’s rule : a “minimalist” geometrical approach Emmanuel BIGLER September 6, 2002 ENSMM, 26 chemin de l’Epitaphe, F-25030 Besancon cedex, FRANCE, e-mail : [email protected] Abstract We show here how pure geometrical considerations with an absolute minimum of algebra will yield the solution for the position of slanted planes defining the limits of acceptable sharp- ness (an approximation valid for distant objects) for Depth-of-Field (DOF) combined with SCHEIMPFLUG’s rule. The problem of Depth-of-Focus is revisited using a similar approach. General formulae for Depth-Of-Field (DOF) are given in appendix, valid in the close-up range. The significance of the circle of least confusion, on which all DOF computations are based, even in the case of a tilted view camera lens and the choice of possible numerical values are also explained in detail in the appendix. Introduction We address here the question that immediately follows the application of SCHEIMPFLUG’s rule: when a camera is properly focused for a pair of object/image conjugated slanted planes (satisfying “SCHEIMPFLUG’s rules of 3 intersecting planes”), what is actually the volume in object space that will be rendered sharp, given a certain criterion of acceptable sharpness in the (slanted) image/film plane? Again the reader interested in a comprehensive, rigorous, mathematical study based on the ge- ometrical approach of the circle of confusion should refer to Bob WHEELER’S work [1] or the comprehensive review by Martin TAI [2]. A nice graphical explanation is presented by Leslie STROEBEL in his reference book [5], but no details are given.
    [Show full text]
  • Some Thoughts on View Camera Calculations
    Some Thoughts on View Camera Calculations Leonard Evens Department of Mathematics Northwestern University [email protected] February 9, 2003 The purpose of this article is to explore how simple geometric optics may help a large format photographer. It is aimed at readers who are comfortable with formulas and simple algebra and are familiar with the basics of how to use a view camera, but it doesn’t require anything beyond that. I wrote it to clarify the basic principles in my own mind, and I hope it may be useful for some others. I explore how certain simple formulas can enhance one’s technique, but of course one must always keep in mind the primacy of the image on the ground glass and what it says. This is also a work in progress, and it may very well contain mistakes or misconceptions. If you find anything like that, please report it to me. I was inspired in part by Bob Wheeler’s notes, and the reader who wants to learn more should look there. (www.bobwheeler.com/photo). Very little of this is original with me, and that part may be wrong, but I’ve found that some of it doesn’t seem universally known. 1 Measuring along the rail I used a Horseman Technical Camera (6 x 7 format) for many years before finally getting a Toho 4 x 5 view camera in 2002. The Horseman has limited front and back movements, so I had mastered the basics of view camera technique. But I found there were some significant differences between what worked for the Horseman and what I now do.
    [Show full text]
  • Topic 85 Depth of Field & Depth of Focus
    Camera Basics, Principles & Techniques- MCD 401 VU Topic 85 Depth of Field & Depth of Focus Due to similarities in name and nature, depth of field and depth of focus are commonly confused concepts. To simplify the definitions for our purposes, depth of field concerns the image quality of a stationary lens as an object is repositioned, whereas depth of focus concerns a stationary object and a sensor’s ability to maintain focus for different sensor positions, including tilt. When a lens focuses on a subject at a distance, all subjects at that distance are sharply focused. Subjects that are not at the same distance are out of focus and theoretically are not sharp. However, since human eyes cannot distinguish very small degree of un-sharpness, some subjects that are in front of and behind the sharply focused subjects can still appear sharp. The zone of acceptable sharpness is referred to as the depth of field. Thus, increasing the depth of field increases the sharpness of an image. We can use smaller apertures for increasing the depth of field.The following shows an example. The lens focuses at the middle between the 3 inch and 4 inch marks. Thus, the 3 inch and 4 inch marks are sharp in all images. The 5 inch mark is not very sharp at F3.2, and is improved as the lens closes down to F3.6. Then, it becomes sharp in all subsequent images. The 6 inch and 7 inch marks are not sharp until F5.0 and F6.4, respectively. The 8 inch mark becomes reasonably sharp when the lens closes down to F8.0.
    [Show full text]
  • Still Photography
    STILL PHOTOGRAPHY Paper Code: 108 Second semester Course Code : BJ(MC) 108 L : 4 T/P : 0 CREDITS : 4 Unit-I [Introduction to Photography] L- 10 1. What is photography? 2. Brief History of photography. 3. How Camera works? 4. The role & importance of photography. 5. Principles of Camera Obscura Unit-II [Camera] L- 18 1. What is Camera? 2. Basic Parts of single lens reflex (SLR) [film & digital] : 1. Lens 2. Film Chamber (CCD & CMOS) 3. Aperture 4. Shutter 5. View finder 6. Pentaprism 7. Memory (Internal & External) 3. Camera formats – 35mm, medium format, large format 4. Camera design & its working – simple camera, compact camera, view camera, range finder & reflex camera TLR, SLR, POLOROID, UNDERWATER CAMERA & DIGITAL CAMERA 5. Lenses – controlling the image 1. Photographic lenses – prime & zoom lens, angle of view (Narrow & Wide Angle Lens) 2. Aperture, Focal No. & Focal Length 3. Depth of focus, Depth of Field and How they work 4. Lens care 1. Lens perspective, film speed, flash gun, light meter 2. Exposure 1. Measurement of light – exposure metering system 2. Exposure control – relationship between shutter speed and aperture 3. Camera accessories: Tripod, monopod, filters, Lens hood UNIT-III [Lighting And Visual Communication] L- 10 1. Lighting 1. Sources of light : Natural & Artificial 2. Nature and physical properties of light 3. Direction & angle of light : Front, side, top & back 4. Lighting contrast and its control by fill in lights 5. One, two & three point lighting : Key, fill and back light 2. Principles of Photographic composition 3. Various types of photography: Portrait, Wildlife, Nature, Photo Journalism, Advertising and Night photography UNIT-IV [Printing of Photograph] L- 10 1.
    [Show full text]
  • FOCUSING the VIEW CAMERA
    FOCUSING the VIEW CAMERA A Scientific Way to focus the View Camera and Estimate Depth of Field J by Harold M. Merklinger FOCUSING the VIEW CAMERA A Scientific Way to focus the View Camera and Estimate Depth of Field by Harold M. Merklinger Published by the author This version exists in electronic (PDF) format only. ii Published by the author: Harold M. Merklinger P. O. Box 494 Dartmouth, Nova Scotia Canada, B2Y 3Y8. v. 1.0 1 March 1993. 2nd Printing 29 March 1996. 3rd Printing 27 August 1998. Internet Edition (v. 1.6.1) 8 Jan 2007 ISBN 0-9695025-2-4 © All rights reserved. No part of this book may be reproduced or translated without the express written permission of the author. ‘Printed’ in electronic format, by the author, using Adobe Acrobat. Dedicated to view camera users everywhere. FOCUSING THE VIEW CAMERA iii CONTENTS Page Preface ...............................................................................................................iv CHAPTER 1: Introduction ............................................................................1 CHAPTER 2: Getting Started .......................................................................3 CHAPTER 3: Definitions .............................................................................11 The Lens ...................................................................................................11 The Film and the Image Space .................................................................19 The Plane of Sharp Focus and the Object Space .....................................23
    [Show full text]