Flexible Depth of Field Photography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Still Photography
Still Photography Soumik Mitra, Published by - Jharkhand Rai University Subject: STILL PHOTOGRAPHY Credits: 4 SYLLABUS Introduction to Photography Beginning of Photography; People who shaped up Photography. Camera; Lenses & Accessories - I What a Camera; Types of Camera; TLR; APS & Digital Cameras; Single-Lens Reflex Cameras. Camera; Lenses & Accessories - II Photographic Lenses; Using Different Lenses; Filters. Exposure & Light Understanding Exposure; Exposure in Practical Use. Photogram Introduction; Making Photogram. Darkroom Practice Introduction to Basic Printing; Photographic Papers; Chemicals for Printing. Suggested Readings: 1. Still Photography: the Problematic Model, Lew Thomas, Peter D'Agostino, NFS Press. 2. Images of Information: Still Photography in the Social Sciences, Jon Wagner, 3. Photographic Tools for Teachers: Still Photography, Roy A. Frye. Introduction to Photography STILL PHOTOGRAPHY Course Descriptions The department of Photography at the IFT offers a provocative and experimental curriculum in the setting of a large, diversified university. As one of the pioneers programs of graduate and undergraduate study in photography in the India , we aim at providing the best to our students to help them relate practical studies in art & craft in professional context. The Photography program combines the teaching of craft, history, and contemporary ideas with the critical examination of conventional forms of art making. The curriculum at IFT is designed to give students the technical training and aesthetic awareness to develop a strong individual expression as an artist. The faculty represents a broad range of interests and aesthetics, with course offerings often reflecting their individual passions and concerns. In this fundamental course, students will identify basic photographic tools and their intended purposes, including the proper use of various camera systems, light meters and film selection. -
Completing a Photography Exhibit Data Tag
Completing a Photography Exhibit Data Tag Current Data Tags are available at: https://unl.box.com/s/1ttnemphrd4szykl5t9xm1ofiezi86js Camera Make & Model: Indicate the brand and model of the camera, such as Google Pixel 2, Nikon Coolpix B500, or Canon EOS Rebel T7. Focus Type: • Fixed Focus means the photographer is not able to adjust the focal point. These cameras tend to have a large depth of field. This might include basic disposable cameras. • Auto Focus means the camera automatically adjusts the optics in the lens to bring the subject into focus. The camera typically selects what to focus on. However, the photographer may also be able to select the focal point using a touch screen for example, but the camera will automatically adjust the lens. This might include digital cameras and mobile device cameras, such as phones and tablets. • Manual Focus allows the photographer to manually adjust and control the lens’ focus by hand, usually by turning the focus ring. Camera Type: Indicate whether the camera is digital or film. (The following Questions are for Unit 2 and 3 exhibitors only.) Did you manually adjust the aperture, shutter speed, or ISO? Indicate whether you adjusted these settings to capture the photo. Note: Regardless of whether or not you adjusted these settings manually, you must still identify the images specific F Stop, Shutter Sped, ISO, and Focal Length settings. “Auto” is not an acceptable answer. Digital cameras automatically record this information for each photo captured. This information, referred to as Metadata, is attached to the image file and goes with it when the image is downloaded to a computer for example. -
Visual Tilt Estimation for Planar-Motion Methods in Indoor Mobile Robots
robotics Article Visual Tilt Estimation for Planar-Motion Methods in Indoor Mobile Robots David Fleer Computer Engineering Group, Faculty of Technology, Bielefeld University, D-33594 Bielefeld, Germany; dfl[email protected]; Tel.: +49-521-106-5279 Received: 22 September 2017; Accepted: 28 October 2017; Published: date Abstract: Visual methods have many applications in mobile robotics problems, such as localization, navigation, and mapping. Some methods require that the robot moves in a plane without tilting. This planar-motion assumption simplifies the problem, and can lead to improved results. However, tilting the robot violates this assumption, and may cause planar-motion methods to fail. Such a tilt should therefore be corrected. In this work, we estimate a robot’s tilt relative to a ground plane from individual panoramic images. This estimate is based on the vanishing point of vertical elements, which commonly occur in indoor environments. We test the quality of two methods on images from several environments: An image-space method exploits several approximations to detect the vanishing point in a panoramic fisheye image. The vector-consensus method uses a calibrated camera model to solve the tilt-estimation problem in 3D space. In addition, we measure the time required on desktop and embedded systems. We previously studied visual pose-estimation for a domestic robot, including the effect of tilts. We use these earlier results to establish meaningful standards for the estimation error and time. Overall, we find the methods to be accurate and fast enough for real-time use on embedded systems. However, the tilt-estimation error increases markedly in environments containing relatively few vertical edges. -
Depth-Aware Blending of Smoothed Images for Bokeh Effect Generation
1 Depth-aware Blending of Smoothed Images for Bokeh Effect Generation Saikat Duttaa,∗∗ aIndian Institute of Technology Madras, Chennai, PIN-600036, India ABSTRACT Bokeh effect is used in photography to capture images where the closer objects look sharp and every- thing else stays out-of-focus. Bokeh photos are generally captured using Single Lens Reflex cameras using shallow depth-of-field. Most of the modern smartphones can take bokeh images by leveraging dual rear cameras or a good auto-focus hardware. However, for smartphones with single-rear camera without a good auto-focus hardware, we have to rely on software to generate bokeh images. This kind of system is also useful to generate bokeh effect in already captured images. In this paper, an end-to-end deep learning framework is proposed to generate high-quality bokeh effect from images. The original image and different versions of smoothed images are blended to generate Bokeh effect with the help of a monocular depth estimation network. The proposed approach is compared against a saliency detection based baseline and a number of approaches proposed in AIM 2019 Challenge on Bokeh Effect Synthesis. Extensive experiments are shown in order to understand different parts of the proposed algorithm. The network is lightweight and can process an HD image in 0.03 seconds. This approach ranked second in AIM 2019 Bokeh effect challenge-Perceptual Track. 1. Introduction tant problem in Computer Vision and has gained attention re- cently. Most of the existing approaches(Shen et al., 2016; Wad- Depth-of-field effect or Bokeh effect is often used in photog- hwa et al., 2018; Xu et al., 2018) work on human portraits by raphy to generate aesthetic pictures. -
Understanding Jitter and Wander Measurements and Standards Second Edition Contents
Understanding Jitter and Wander Measurements and Standards Second Edition Contents Page Preface 1. Introduction to Jitter and Wander 1-1 2. Jitter Standards and Applications 2-1 3. Jitter Testing in the Optical Transport Network 3-1 (OTN) 4. Jitter Tolerance Measurements 4-1 5. Jitter Transfer Measurement 5-1 6. Accurate Measurement of Jitter Generation 6-1 7. How Tester Intrinsics and Transients 7-1 affect your Jitter Measurement 8. What 0.172 Doesn’t Tell You 8-1 9. Measuring 100 mUIp-p Jitter Generation with an 0.172 Tester? 9-1 10. Faster Jitter Testing with Simultaneous Filters 10-1 11. Verifying Jitter Generator Performance 11-1 12. An Overview of Wander Measurements 12-1 Acronyms Welcome to the second edition of Agilent Technologies Understanding Jitter and Wander Measurements and Standards booklet, the distillation of over 20 years’ experience and know-how in the field of telecommunications jitter testing. The Telecommunications Networks Test Division of Agilent Technologies (formerly Hewlett-Packard) in Scotland introduced the first jitter measurement instrument in 1982 for PDH rates up to E3 and DS3, followed by one of the first 140 Mb/s jitter testers in 1984. SONET/SDH jitter test capability followed in the 1990s, and recently Agilent introduced one of the first 10 Gb/s Optical Channel jitter test sets for measurements on the new ITU-T G.709 frame structure. Over the years, Agilent has been a significant participant in the development of jitter industry standards, with many contributions to ITU-T O.172/O.173, the standards for jitter test equipment, and Telcordia GR-253/ ITU-T G.783, the standards for operational SONET/SDH network equipment. -
DEPTH of FIELD CHEAT SHEET What Is Depth of Field? the Depth of Field (DOF) Is the Area of a Scene That Appears Sharp in the Image
Ms. Brown Photography One DEPTH OF FIELD CHEAT SHEET What is Depth of Field? The depth of field (DOF) is the area of a scene that appears sharp in the image. DOF refers to the zone of focus in a photograph or the distance between the closest and furthest parts of the picture that are reasonably sharp. Depth of field is determined by three main attributes: 1) The APERTURE (size of the opening) 2) The SHUTTER SPEED (time of the exposure) 3) DISTANCE from the subject being photographed 4) SHALLOW and GREAT Depth of Field Explained Shallow Depth of Field: In shallow depth of field, the main subject is emphasized by making all other elements out of focus. (Foreground or background is purposely blurry) Aperture: The larger the aperture, the shallower the depth of field. Distance: The closer you are to the subject matter, the shallower the depth of field. ***You cannot achieve shallow depth of field with excessive bright light. This means no bright sunlight pictures for shallow depth of field because you can’t open the aperture wide enough in bright light.*** SHALLOW DOF STEPS: 1. Set your camera to a small f/stop number such as f/2-f/5.6. 2. GET CLOSE to your subject (between 2-5 feet away). 3. Don’t put the subject too close to its background; the farther away the subject is from its background the better. 4. Set your camera for the correct exposure by adjusting only the shutter speed (aperture is already set). 5. Find the best composition, focus the lens of your camera and take your picture. -
Video Tripod Head
thank you for choosing magnus. One (1) year limited warranty Congratulations on your purchase of the VPH-20 This MAGNUS product is warranted to the original purchaser Video Pan Head by Magnus. to be free from defects in materials and workmanship All Magnus Video Heads are designed to balance under normal consumer use for a period of one (1) year features professionals want with the affordability they from the original purchase date or thirty (30) days after need. They’re durable enough to provide many years replacement, whichever occurs later. The warranty provider’s of trouble-free service and enjoyment. Please carefully responsibility with respect to this limited warranty shall be read these instructions before setting up and using limited solely to repair or replacement, at the provider’s your Video Pan Head. discretion, of any product that fails during normal use of this product in its intended manner and in its intended VPH-20 Box Contents environment. Inoperability of the product or part(s) shall be determined by the warranty provider. If the product has • VPH-20 Video Pan Head Owner’s been discontinued, the warranty provider reserves the right • 3/8” and ¼”-20 reducing bushing to replace it with a model of equivalent quality and function. manual This warranty does not cover damage or defect caused by misuse, • Quick-release plate neglect, accident, alteration, abuse, improper installation or maintenance. EXCEPT AS PROVIDED HEREIN, THE WARRANTY Key Features PROVIDER MAKES NEITHER ANY EXPRESS WARRANTIES NOR ANY IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED Tilt-Tension Adjustment Knob TO ANY IMPLIED WARRANTY OF MERCHANTABILITY Tilt Lock OR FITNESS FOR A PARTICULAR PURPOSE. -
Dof 4.0 – a Depth of Field Calculator
DoF 4.0 – A Depth of Field Calculator Last updated: 8-Mar-2021 Introduction When you focus a camera lens at some distance and take a photograph, the further subjects are from the focus point, the blurrier they look. Depth of field is the range of subject distances that are acceptably sharp. It varies with aperture and focal length, distance at which the lens is focused, and the circle of confusion – a measure of how much blurring is acceptable in a sharp image. The tricky part is defining what acceptable means. Sharpness is not an inherent quality as it depends heavily on the magnification at which an image is viewed. When viewed from the same distance, a smaller version of the same image will look sharper than a larger one. Similarly, an image that looks sharp as a 4x6" print may look decidedly less so at 16x20". All other things being equal, the range of in-focus distances increases with shorter lens focal lengths, smaller apertures, the farther away you focus, and the larger the circle of confusion. Conversely, longer lenses, wider apertures, closer focus, and a smaller circle of confusion make for a narrower depth of field. Sometimes focus blur is undesirable, and sometimes it’s an intentional creative choice. Either way, you need to understand depth of field to achieve predictable results. What is DoF? DoF is an advanced depth of field calculator available for both Windows and Android. What DoF Does Even if your camera has a depth of field preview button, the viewfinder image is just too small to judge critical sharpness. -
Logitech PTZ Pro Camera
THE USB 1080P PTZ CAMERA THAT BRINGS EVERY COLLABORATION TO LIFE Logitech PTZ Pro Camera The Logitech PTZ Pro Camera is a premium USB-enabled HD Set-up is a snap with plug-and-play simplicity and a single USB cable- 1080p PTZ video camera for use in conference rooms, education, to-host connection. Leading business certifications—Certified for health care and other professional video workspaces. Skype for Business, Optimized for Lync, Skype® certified, Cisco Jabber® and WebEx® compatible2—ensure an integrated experience with most The PTZ camera features a wide 90° field of view, 10x lossless full HD business-grade UC applications. zoom, ZEISS optics with autofocus, smooth mechanical 260° pan and 130° tilt, H.264 UVC 1.5 with Scalable Video Coding (SVC), remote control, far-end camera control1 plus multiple presets and camera mounting options for custom installation. Logitech PTZ Pro Camera FEATURES BENEFITS Premium HD PTZ video camera for professional Ideal for conference rooms of all sizes, training environments, large events and other professional video video collaboration applications. HD 1080p video quality at 30 frames per second Delivers brilliantly sharp image resolution, outstanding color reproduction, and exceptional optical accuracy. H.264 UVC 1.5 with Scalable Video Coding (SVC) Advanced camera technology frees up bandwidth by processing video within the PTZ camera, resulting in a smoother video stream in applications like Skype for Business. 90° field of view with mechanical 260° pan and The generously wide field of view and silky-smooth pan and tilt controls enhance collaboration by making it easy 130° tilt to see everyone in the camera’s field of view. -
Depth of Focus (DOF)
Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle. -
Surface Tilt (The Direction of Slant): a Neglected Psychophysical Variable
Perception & Psychophysics 1983,33 (3),241-250 Surface tilt (the direction of slant): A neglected psychophysical variable KENT A. STEVENS Massachusetts InstituteofTechnology, Cambridge, Massachusetts Surface slant (the angle between the line of sight and the surface normal) is an important psy chophysical variable. However, slant angle captures only one of the two degrees of freedom of surface orientation, the other being the direction of slant. Slant direction, measured in the image plane, coincides with the direction of the gradient of distance from viewer to surface and, equivalently, with the direction the surface normal would point if projected onto the image plane. Since slant direction may be quantified by the tilt of the projected normal (which ranges over 360 deg in the frontal plane), it is referred to here as surfacetilt. (Note that slant angle is mea sured perpendicular to the image plane, whereas tilt angle is measured in the image plane.) Com pared with slant angle's popularity as a psychophysical variable, the attention paid to surface tilt seems undeservedly scant. Experiments that demonstrate a technique for measuring ap parent surface tilt are reported. The experimental stimuli were oblique crosses and parallelo grams, which suggest oriented planes in SoD. The apparent tilt of the plane might beprobed by orienting a needle in SoD so as to appear normal, projecting the normal onto the image plane, and measuring its direction (e.g., relative to the horizontal). It is shown to be preferable, how ever, to merely rotate a line segment in 2-D, superimposed on the display, until it appears nor mal to the perceived surface. -
Motion Denoising with Application to Time-Lapse Photography
IEEE Computer Vision and Pattern Recognition (CVPR), June 2011 Motion Denoising with Application to Time-lapse Photography Michael Rubinstein1 Ce Liu2 Peter Sand Fredo´ Durand1 William T. Freeman1 1MIT CSAIL 2Microsoft Research New England {mrub,sand,fredo,billf}@mit.edu [email protected] Abstract t Motions can occur over both short and long time scales. We introduce motion denoising, which treats short-term x changes as noise, long-term changes as signal, and re- Input renders a video to reveal the underlying long-term events. y We demonstrate motion denoising for time-lapse videos. One of the characteristics of traditional time-lapse imagery t is stylized jerkiness, where short-term changes in the scene x t (Time) appear as small and annoying jitters in the video, often ob- x Motion-denoised fuscating the underlying temporal events of interest. We ap- ply motion denoising for resynthesizing time-lapse videos showing the long-term evolution of a scene with jerky short- term changes removed. We show that existing filtering ap- proaches are often incapable of achieving this task, and present a novel computational approach to denoise motion without explicit motion analysis. We demonstrate promis- InputDisplacement Result ing experimental results on a set of challenging time-lapse Figure 1. A time-lapse video of plants growing (sprouts). XT sequences. slices of the video volumes are shown for the input sequence and for the result of our motion denoising algorithm (top right). The motion-denoised sequence is generated by spatiotemporal rear- 1. Introduction rangement of the pixels in the input sequence (bottom center; spa- tial and temporal displacement on top and bottom respectively, fol- Short-term, random motions can distract from the lowing the color coding in Figure 5).