Biography of Veerabhadran Ramanathan BIOGRAPHY

Total Page:16

File Type:pdf, Size:1020Kb

Biography of Veerabhadran Ramanathan BIOGRAPHY Biography of Veerabhadran Ramanathan BIOGRAPHY tmospheric brown clouds— ment,’’ says Cess, now a distinguished wandering layers of air pollu- professor and distinguished service pro- tion as wide as a continent and fessor emeritus at the Marine Sciences deeper than the Grand Can- Research Center at Stony Brook Uni- Ayon—are enough to dim atmospheric versity. ‘‘The first task I gave him was a physicist Veerabhadran Ramanathan’s literature search on the atmosphere of innate optimism. In fact, studying the Venus. He took it in good stride. He’s effect of these clouds on the climate has very flexible.’’ The planetary atmo- landed him in the peculiar role of a sci- sphere work turned into a doctoral the- entist who wants to be wrong. ‘‘The sis, which Ramanathan defended in most pessimistic scenario for me would December 1973. be that what our model is suggesting for He then joined a small group of sci- the future turns out to be true,’’ he says. entists at NASA Langley in Hampton, Dark particles floating throughout VA, who were studying reentry physics. these brown clouds threaten to reduce While there, he visited the National rainfall, dry the planet’s surface, cool its Center for Atmospheric Research tropics, and stifle its sunlight. Yet Ra- (NCAR) in Boulder, CO, and learned manathan, who has spent most of his about research that Mario Molina and career studying the atmospheric checks Sherwood Rowland were conducting on and balances of the Earth, does not chlorofluorocarbons (CFCs) and the want to wait to see what will happen. Veerabhadran Ramanathan ozone hole. Ramanathan immediately ‘‘I’m hoping that our findings will be taken as an early warning, and correc- connected this research with two previ- SCIENCES ous experiences—his engineering job in tive measures taken now, so we don’t says. His normally stellar grades suf- ENVIRONMENTAL have to test the model.’’ Ramanathan India dealing with CFCs leaking from fered, ‘‘but it had a huge positive im- refrigerators and his graduate research and his coauthors discuss their most re- pact,’’ Ramanathan says. ‘‘I basically lost cent findings about atmospheric brown at Stony Brook studying the role of car- the habit of listening to my teachers and bon dioxide in trapping atmospheric in- clouds in his Inaugural Article in this had to figure out things on my own. I issue of PNAS (1). frared radiation on Mars and Venus. just lost the fear of the unknown.’’ After consulting with his former advi- Elected to the National Academy of Ramanathan studied engineering at sor, Cess, Ramanathan began investigat- GEOPHYSICS Sciences in 2002, Ramanathan is a dis- the Annamalai University in Bangalore, tinguished professor of atmospheric sci- ing how CFCs compare with carbon graduating with a bachelor’s degree in ences and the director of the Center for dioxide in their greenhouse effect on engineering in 1965. After spending a Atmospheric Sciences at the Scripps In- Earth’s climate. couple of unhappy years at a refrigera- stitution of Oceanography at University After a few months of calculations, tion manufacturing company, Ra- of California, San Diego (La Jolla, CA). Ramanathan found an answer that manathan joined the Indian Institute of He is a fellow of the American Acad- would change how scientists viewed cli- Science, also in Bangalore, for graduate emy of Arts and Sciences, American mate change. ‘‘Until 1975, we used to Association for the Advancement of Sci- school. Working mostly at night to avoid think the global warming problem was traffic vibrations, he painstakingly built ence, American Meteorological Society, mainly from carbon dioxide,’’ he says. India’s first Mach–Zehnder interferome- and American Geophysical Union. In His result suggested otherwise (2), ter, a sensitive piece of optical equipment 2004, he was elected to the Pontifical showing that ‘‘adding one molecule of used to measure minute temperature Academy of Sciences at the Vatican by CFC to the atmosphere would have the gradients in turbulence research. He set Pope John Paul II. Ramanathan is the same greenhouse effect as adding more his sights on eventually doing graduate current cochief scientist of the Atmo- than 10,000 molecules of carbon diox- work in the United States, though not spheric Brown Cloud Project, past co- ide.’’ That CFCs, which are relatively necessarily for the research opportuni- chief scientist of the Indian Ocean rare in the atmosphere, could be such a ties. ‘‘My interest at that time in coming Experiment, past chief scientist of the powerful force in global warming was to the U.S. was to enjoy the good life,’’ Central Equatorial Pacific Experiment, met with disbelief, not in the least from he says. ‘‘I wanted to drive big, fast and the principal investigator of the Na- Ramanathan himself. ‘‘I was surprised cars.’’ tional Aeronautics and Space Adminis- that even at a part per billion they can Ramanathan never bought his gas tration (NASA) Earth Radiation Budget have such a large impact,’’ he says. He Experiment. guzzler, because his global warming knowledge grew faster than his salary gave up his dream of fast cars and Opening a Pandora’s Box did. When he arrived at the State Uni- embraced his new field of research: of Greenhouse Gases versity of New York at Stony Brook, ‘‘For me, that was the turning point. I was shocked at the capacity of technol- Ramanathan’s first taste of independent now Stony Brook University (Stony ogy and human beings to change the research came at age 11, when he Brook, NY), in 1970 to work on the uni- environment.’’ moved from Madurai, India, to Banga- versity’s new interferometer, he found lore, a town in India where classes were his engineering career had been re- not taught in his native Tamil tongue routed into the atmospheric sciences. This is a Biography of a recently elected member of the because of lingering British influences. His advisor, Robert Cess, was no longer National Academy of Sciences to accompany the member’s ‘‘I didn’t understand what they were say- interested in interferometer research. ‘‘I Inaugural Article on page 5326. ing, because it was all in English,’’ he don’t think he ever even saw the equip- © 2005 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0501756102 PNAS ͉ April 12, 2005 ͉ vol. 102 ͉ no. 15 ͉ 5323–5325 Downloaded by guest on September 29, 2021 The scientific community balked, clouds, in what Ramanathan calls the cles of dust or pollution that could ab- too—one researcher reportedly called ‘‘Gordian knot of the climate problem,’’ sorb and scatter sunlight. the result ‘‘crazy,’’ but after a few years held his attention. ‘‘On the one hand, For studying atmospheric particulates, other groups reproduced and accepted water drops and ice crystals have an Ramanathan actually grew up in an Ramanathan’s estimates. The finding enormous greenhouse effect, so they ideal region. Every year, India and the opened a Pandora’s Box of greenhouse heat the planet,’’ he explains. ‘‘But rest of south Asia send clouds of air pol- gases, Ramanathan says, as he and other clouds also reflect sunlight, so they have lution to hover over the Indian Ocean researchers began to uncover additional a cooling effect. We didn’t know which during the dry winter months. To look trace greenhouse gases such as strato- of those two dominated.’’ further at this pollution and its effects spheric and tropospheric ozone, carbon To answer this question, Ramanathan on sunlight, Ramanathan and Paul J. tetrachloride, methane, and nitrous ox- needed data. In 1979, he collaborated Crutzen, a German atmospheric chemist ide. ‘‘It made the whole greenhouse ef- with NASA to design the Earth Radia- interested in air pollution, together de- fect and global warming problem much tion Budget Experiment (ERBE). Over signed the Indian Ocean Experiment larger and more urgent,’’ he says. His 14 years and with a budget of $150 mil- (INDOEX) in 1995 (9). Originally con- trace gas research contributed to the lion, the project collected observations ceived as a small experiment with only creation of the field of climate–chemistry from three satellites and provided a a few instruments on a ship, INDOEX interactions, culminating in the 1985 wealth of data for many studies. In eventually expanded to include six air- paper ‘‘Trace Gas Trends and Their Po- 1989, while a professor in the Depart- craft and 200 scientists from six countries. tential Role in Climate Change’’ with ment of Geophysical Sciences at the ‘‘The idea caught fire,’’ Ramanathan Jeffrey T. Kiehl, Hanwant B. Singh, and University of Chicago (Chicago, IL), says. ‘‘It’s probably one of the most current president-elect of the National Ramanathan authored a paper using comprehensive and detailed experiments Academy of Sciences, Ralph J. Cicerone wherein we can directly observe how (3). Ramanathan also chaired a 1987 humans are impacting the environment.’’ World Meteorological Organization re- The impacts were more worrisome port establishing the importance of trace ‘‘Air pollution has than expected. From their INDOEX gases other than carbon dioxide to to be reduced, if not observations, Ramanathan and his col- global warming (4). Much of this work leagues found that a haze of air pollu- was carried out at NCAR, which Ra- eliminated. It’s just a tion 3-km thick lies over most of the manathan joined in 1976 as a postdoc- Arabian Sea, Bay of Bengal, and the toral fellow. Faustian bargain we Indian subcontinent, spreading across an Ramanathan could not ignore his area larger than the continental United own compelling evidence for the power- have made without States. ‘‘The surprise was the vastness of ful contribution of trace gases to the it,’’ Ramanathan says, ‘‘and that it could greenhouse effect.
Recommended publications
  • A New Climate for Peace an Independent Report Commissioned by the G7 Members Submitted Under the German G7 Presidency
    1 A New Climate for Peace An independent report commissioned by the G7 members Submitted under the German G7 Presidency Disclaimer: The analysis, results, and recommendations are those of the authors only and do not represent the official position of the G7 or any of its member countries. Lead Authors: Lukas Rüttinger, Dan Smith, Gerald Stang, Dennis Tänzler, and Janani Vivekananda Contributing Authors: Oli Brown, Alexander Carius, Geoff Dabelko, Roger-Mark De Souza, Shreya Mitra, Katharina Nett, Meaghan Parker, and Benjamin Pohl Editor: Meaghan Parker Design: Lucid. Berlin Print: PRINTPRINZ GmbH Cover Picture: NASA / Johnson Space Center © adelphi, International Alert, Woodrow Wilson International Center for Scholars, European Union Institute for Security Studies, 2015 Contents Figures, Boxes, and Tables ..............................................................................iv Executive Summary ...................................................................................vii 1 Introduction . 1 1.1 The G7’s leadership on climate change and fragility .............................................. 1 1.2 What makes this report unique .................................................................2 1.3 Methodology ..................................................................................2 1.4 Structure of this report .........................................................................3 2 Compound Climate-Fragility Risks . 5 2.1 Climate change and fragility ....................................................................5
    [Show full text]
  • SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment
    EM AD IA C S A C I A E PONTIFICIAE ACADEMIAE SCIENTIARVM ACTA 24 I N C T I I F A I R T V N Edited by Werner Arber M O P Joachim von Braun Marcelo Sánchez Sorondo SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment Plenary Session | 25-29 November 2016 Casina Pio IV | Vatican City LIBRERIA EDITRICE VATICANA VATICAN CITY 2020 Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment Pontificiae Academiae Scientiarvm Acta 24 The Proceedings of the Plenary Session on Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment 25-29 November 2016 Edited by Werner Arber Joachim von Braun Marcelo Sánchez Sorondo EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA • MMXX The Pontifical Academy of Sciences Casina Pio IV, 00120 Vatican City Tel: +39 0669883195 • Fax: +39 0669885218 Email: [email protected] • Website: www.pas.va The opinions expressed with absolute freedom during the presentation of the papers of this meeting, although published by the Academy, represent only the points of view of the participants and not those of the Academy. ISBN 978-88-7761-113-0 © Copyright 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, recording, pho- tocopying or otherwise without the expressed written permission of the publisher. PONTIFICIA ACADEMIA SCIENTIARVM LIBRERIA EDITRICE VATICANA VATICAN CITY The climate is a common good, belonging to all and meant for all.
    [Show full text]
  • Acceptance Remarks (249 Words)
    FOR IMMEDIATE RELEASE June 16, 2021 2021 BLUE PLANET PRIZE: ANNOUNCEMENT OF PRIZE WINNERS This year marks the 30th awarding of the Blue Planet Prize, the international environmental award sponsored by the Asahi Glass Foundation, chaired by Takuya Shimamura. Every year, the Foundation selects two winners, individuals or organizations who have made significant contributions to the resolution of global environmental problems. The Board of Directors have selected the following 2021 Blue Planet Prize recipients. 1. Prof. Veerabhadran Ramanathan (USA) Born in India, Date of Birth: 24 November, 1944 Edward A. Frieman Endowed Presidential Chair in Climate Sustainability Scripps Institution of Oceanography, University of California, San Diego Professor Ramanathan has spent decades investigating the climate effects of non-CO2 pollutants, including the role of short-lived climate pollutants (SLCPs): methane, tropospheric ozone, halocarbons (HFCs*1), and black carbon*2. His contributions include the discovery of the super greenhouse effect of halocarbons (CFCs*3), and clarifying the climate effects of black carbon through an international field project he led on Atmospheric Brown Clouds (ABCs). He showed that reductions in SLCPs can rapidly reduce warming and significantly improve air pollution. He later took the initiative in global actions to reduce SLCPs. *1 Hydrofuorocarbons (CFC alternatives), no ozone depletion potential but much greater global warming potential than CO2. *2 Commonly known as soot; formed through the incomplete combustion of fossil fuels, biofuel, and biomass. *3 Chlorofluorocarbons, large ozone depletion potential and much greater global warming potential than CO2. 2. Prof. Mohan Munasinghe (Sri Lanka) Born in Sri Lanka, Date of Birth: 25 July, 1945 Founder Chairman, Munasinghe Institute for Development (MIND) Professor Munasinghe pioneered the integrative, transdisciplinary ‘Sustainomics’ framework which views development issues from environmental, social, and economic perspectives.
    [Show full text]
  • 2020 AMS Awards Brochure
    2020 Awards AMS Fellow Ping Chang Professor and Chair Texas A&M University, College Station, Texas Ping Chang is a professor and the Louis & Elizabath Scherck chair in oceanography and serves as the director of the International Laboratory for High-Resolution Earth System Prediction at Texas A&M University. He received his Ph.D. from Princeton University in 1988. His research focuses on climate dynamics and modeling. He is a contributing author of the fifth Assessment Report of the Intergovernmental Panel on Climate Change and an author of ~140 peer-reviewed scientific journal papers. AMS Fellow Donna J. Charlevoix Director UNAVCO, Boulder, Colorado Dr. Donna Charlevoix is director of Education and Community Engagement for UNAVCO and the NSF-supported GAGE facility. She worked for over a decade in academia as faculty after which she transitioned to work for non-profits that support federally-funded science facilities. She is actively involved in atmospheric science education research, co-authors university science textbooks, and serves in the leadership of the American Meteorological Society. She resides with her family in Colorado. AMS Fellow Jeffrey L. Collett, Jr. Professor Colorado State University, Fort Collins, Colorado Dr. Collett is a professor and head of Colorado State University’s Atmospheric Science Department. He studied at MIT (Chemical Engineering) and Caltech (Environmental Engineering Science), before completing a postdoc at ETH- Zurich. Principal research topics include emissions and air quality impacts from oil and gas development; the sources, transport and deposition of reactive nitrogen pollutants; air quality impacts of wild and prescribed fires; aerosol chemistry; and air pollution processing by clouds and fogs.
    [Show full text]
  • Linear Global Temperature Correlation to Carbon Dioxide Level, Sea Level, and Innovative Solutions to a Projected 6˚C Warming by 2100
    Journal of Geoscience and Environment Protection, 2021, 9, 84-135 https://www.scirp.org/journal/gep ISSN Online: 2327-4344 ISSN Print: 2327-4336 Linear Global Temperature Correlation to Carbon Dioxide Level, Sea Level, and Innovative Solutions to a Projected 6˚C Warming by 2100 Thomas F. Valone Integrity Research Institute, Beltsville, USA How to cite this paper: Valone, T. F. Abstract (2021). Linear Global Temperature Corre- lation to Carbon Dioxide Level, Sea Level, Too many climate committees, conferences, articles and publications contin- and Innovative Solutions to a Projected 6˚C ue to suggest a one and a half (1.5˚C) to two degrees (2˚C) Celsius as an Warming by 2100. Journal of Geoscience achievable global limit to climate changes without establishment of any causal and Environment Protection, 9, 84-135. https://doi.org/10.4236/gep.2021.93007 link to the proposed anti-warming mechanism. A comprehensive review has found instead that observationally informed projections of climate science Received: October 13, 2020 underlying climate change offer a different outlook of five to six-degree (5˚C Accepted: March 14, 2021 - 6˚C) increase as “most accurate” with regard to present trends, climate his- Published: March 17, 2021 tory and models, yielding the most likely outcome for 2100. The most causa- Copyright © 2021 by author(s) and tive triad for the present warming trend from 1950 to the present is identified Scientific Research Publishing Inc. in this paper: 1) the tripling (3×) of world population; 2) the quadrupling This work is licensed under the Creative (4×) of carbon emissions; and 3) the quintupling (5×) of the world energy Commons Attribution International License (CC BY 4.0).
    [Show full text]
  • Forum on Religion and Ecology at Yale Religion
    Forum on Religion and Ecology at Yale http://fore.yale.edu/ Religion and Ecology News Articles 2013 January 2013 Sacred Sites Research Newsletter (SSIREN) To read the SSIREN Newsletter, visit: http://fore.research.yale.edu/files/SSIREN_January_2013.pdf January 2, 2013 Playing offense It’s time to divest from the oil industry By Bill McKibben The Christian Century The pipeline blockaders in the piney woods of East Texas that Kyle Childress describes ("Protesters in the pews," Christian Century, January 9, 2013) are American exemplars—the latest incarnation of John Muir, Rachel Carson, John Lewis or Fannie Lou Hamer. They’re playing defense with verve and creativity—blocking ugly and destructive projects that wreck landscapes and lives. And defense is crucial. As generations of sports coaches have delighted in pointing out, defense wins games. But we’re very far behind in the global warming game, so we need some offense too. And here’s what offense looks like: going directly after the fossil fuel industry and holding it accountable for the rapid warming of the planet. It’s the richest and most arrogant industry the world has ever seen. Call it Powersandprincipalities, Inc. And where once it served a real social need—energy— it now stands squarely in the way of getting that energy from safe, renewable sources. Its business plan—sell more coal, gas and oil—is at odds with what every climate scientist now says is needed for planetary survival. If that sounds shocking, sorry: a lifetime of Exxon ads haven’t prepared us for the reality that Exxon is a first-class villain, any more than a lifetime of looking at the Marlboro Man prepared us to understand lung cancer.
    [Show full text]
  • Changes in Atmospheric Constituents and in Radiative Forcing
    2 Changes in Atmospheric Constituents and in Radiative Forcing Coordinating Lead Authors: Piers Forster (UK), Venkatachalam Ramaswamy (USA) Lead Authors: Paulo Artaxo (Brazil), Terje Berntsen (Norway), Richard Betts (UK), David W. Fahey (USA), James Haywood (UK), Judith Lean (USA), David C. Lowe (New Zealand), Gunnar Myhre (Norway), John Nganga (Kenya), Ronald Prinn (USA, New Zealand), Graciela Raga (Mexico, Argentina), Michael Schulz (France, Germany), Robert Van Dorland (Netherlands) Contributing Authors: G. Bodeker (New Zealand), O. Boucher (UK, France), W.D. Collins (USA), T.J. Conway (USA), E. Dlugokencky (USA), J.W. Elkins (USA), D. Etheridge (Australia), P. Foukal (USA), P. Fraser (Australia), M. Geller (USA), F. Joos (Switzerland), C.D. Keeling (USA), R. Keeling (USA), S. Kinne (Germany), K. Lassey (New Zealand), U. Lohmann (Switzerland), A.C. Manning (UK, New Zealand), S. Montzka (USA), D. Oram (UK), K. O’Shaughnessy (New Zealand), S. Piper (USA), G.-K. Plattner (Switzerland), M. Ponater (Germany), N. Ramankutty (USA, India), G. Reid (USA), D. Rind (USA), K. Rosenlof (USA), R. Sausen (Germany), D. Schwarzkopf (USA), S.K. Solanki (Germany, Switzerland), G. Stenchikov (USA), N. Stuber (UK, Germany), T. Takemura (Japan), C. Textor (France, Germany), R. Wang (USA), R. Weiss (USA), T. Whorf (USA) Review Editors: Teruyuki Nakajima (Japan), Veerabhadran Ramanathan (USA) This chapter should be cited as: Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz and R. Van Dorland, 2007: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis.
    [Show full text]
  • Scientists Plan to Bury CO2 in Kern County Power Plant Aims to Avoid Smokestack, Release Into Air
    Scientists plan to bury CO2 in Kern County Power plant aims to avoid smokestack, release into air. By Mark Grossi / The Fresno Bee Sunday, May 11, 2008 Scientists plan to pump 1 million tons of greenhouse gas more than a mile beneath a Kern County power plant in one of the nation's largest experiments to slow global warming. The power plant's exhaust will go directly into a 7,000-foot-deep well. No climate-warming carbon dioxide or anything else will get into the air. There won't be a smokestack. It's a "double positive" because it will prevent the release of both greenhouse gas and ozone- making pollution, said James Boyd, vice chairman of the California Energy Commission, which is leading the experiment. "This is extremely relevant in the San Joaquin Valley, where air quality is such a big issue," he said. The four-year experiment, scheduled to begin in 2011, received a $65 million Department of Energy grant last week. Federal officials have funded a half-dozen such efforts nationally to capture carbon dioxide and trap it below ground. The Kern project, 18 miles north of Bakersfield, attracted federal money partly because it involves a power plant that uses aerospace technology to produce electricity and very little air pollution. The power plant is privately owned by Clean Energy Systems Inc. of Rancho Cordova. But geology is the main reason to pour money into this project. Nature has demonstrated over millions of years that oil and natural gas stay put in the rock formations below the Valley floor.
    [Show full text]
  • Energy and Climate Change
    WELCOME CONTENTS Human energy use accounts for three quarters AGENDA of greenhouse gas emissions globally and an even higher share in the United States. Tuesday, January 27 5 Transitioning to new energy systems lies at Wednesday, January 28 7 the core of any response to climate change. Thursday, January 29 9 We will need to reduce emissions from our current energy sources and practices, deploy BIOGRAPHIES new low carbon energy sources at scale, make Keynotes 10 our energy systems resilient to the effects of Plenaries 12 climate change, sustain prosperity in many Lifetime Achievement Award 18 countries, and lift many out of poverty around John H. Chafee Memorial Lecture 19 the world. SYMPOSIA AND BREAKOUT th The 15 National Conference and Global WORKSHOPS Forum on Science, Policy and the Sessions by Track 21 Environment: Energy and Climate Change Symposia A 22 will develop and advance partnerships that Symposia B 27 focus on transitioning the world to a new “low Symposia C 37 carbon” and “climate resilient” energy system. Breakout Workshops 44 It will emphasize putting ideas into action – moving forward on policy and practice. EXHIBITION AND POSTERS You are leaders in science and engineering, Energy and Climate Change Exhibition 54 policy and governance, businesses and civil Poster Titles and Authors 55 society, and education. I invite you to network across traditional boundaries, collaborate, and Collaborating Organizations 59 advance technologies, policies, and practices Satellite Conferences 59 to accelerate the needed transition. Staff and Volunteers 60 NCSE Board of Directors 61 This is a conference designed to challenge your thinking and spur your creativity.
    [Show full text]
  • Årsberättelse 2020
    RYGG 9 MM KUNGL. VETENSKAPSAKADEMIEN BOX 50005 LILLA FRESCATIVÄGEN 4 A, SE104 05 STOCKHOLM, SWEDEN VETENSKAPSAKADEMIEN KUNGL. TEL +46 8 673 95 00, [email protected], WWW.KVA.SE KUNGL. VETENSKAPSAKADEMIEN, stiftad år 1739, är en oberoende organisation som har till uppgift att främja vetenskaperna och stärka deras inflytande i samhället. Akademien tar särskilt ansvar för naturvetenskap och matematik, men strävar efter att öka utbytet mellan olika discipliner. THE ROYAL SWEDISH ACADEMY OF SCIENCES , founded in 1739, is an independent organisation whose overall objective is to promote the sciences and strengthen their influence in society. The Academy takes special responsibility for the natural sciences and mathematics, but endeavours to promote the exchange of ideas between various disciplines. ÅRSBERÄTTELSE 2020 é ÅRSBERÄTTELSE 2020 ÅRSBERÄTTELSE The Royal Swedish Academy of Sciences’ annual report, including a presentation in English of the Academy’s activities in 2020 by the Secretary General, Göran K. Hansson. DOCUMENTA NO 94 KUNGL. VETENSKAPSAKADEMIEN © 2021 REDAKTION: Sara Gustafsson TEXTER: Om svarta hål och Vintergatans mörkaste hemlighet, Joanna Rose Gensaxen: ett redskap för att förändra livets kod, Ann Fernholm GRAFISK FORM OCH PRODUKTION: Christina Ajax, Fräulein Design ÖVERSÄTTNING: Clare Barnes TRYCK: Åtta45, Järfälla 2021 ISSN: 0347-5719 ISBN: 978-91-7190-200-9 OMSLAGSBILDER: Från den digitala presskonferensen med Nobel- och Ekonomipristagare den 9 december 2020. På skärmen syns Andrea Ghez, Nobelpristagare i fysik, Emmanuelle Charpentier, Nobelpristagare i kemi och Paul Milgrom, Ekonomipristagare. På scenen står Akademiens ständige sekreterare Göran K. Hansson. Foto: Janerik Henriksson/TT Berättelse över Kungl. Vetenskapsakademiens verksamhet 2020, framlagd av ständige sekreteraren Göran K. Hansson. é XXXXXXX KUNGL.
    [Show full text]
  • Comparative Climatology of Terrestrial Planets June 26-28, 2012 Program
    Comparative Climatology of Terrestrial Planets June 26-28, 2012 Program LUNAR AND PLANETARY I NST I TUTE Comparative Climatology of Terrestrial Planets June 25-28, 201.2 Boulder, Colorado SPONSORS National Aeronautics and Space Administration Universities Space Research Association NASA Science Mission Directorate Divisions: Earth Science Heliophysics Astrophysics Planetary Science Lunar and Planetary Institute Southwest Research Institute International Commission on Planetary Atmospheres and Their Evolution International Association of Meteorology and Atmospheric Sciences International Union of Geodesy and Geophysics Venus Exploration Analysis Group (VEXAG) Mars Exploration Program Analysis Group (MEPAG) Outer Planets Assessment Group (OPAG) The Planetary Society CONVENERS Mark A. Bullock, Department of Space Studies, Southwest Research Institute Waleed Abdalati, Chief Scientist, NASA Richard S. Eckman, Earth Science Division, NASA LoriS. Glaze, Planetary Geodynamics Laboratory, NASA Goddard Space Flight Center Jim Green, Planetary Science Division, NASA David H. Grinspoon, Denver Museum of Nature and Science Madhulika Guhathakurta, Heliophysics Division, NASA James E. Hansen, NASA Goddard Institute for Space Studies San jayS. Lim aye, Space Science and Engineering Center, University of Wisconsin Stephen Mackwell, Lunar and Planetary Institute Adriana Ocampo, Planetary Science Division, NASA Mario R. Perez, Astrophysics Division, NASA Suzanne E. Smrekar, Jet Propulsion Laboratory Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Guide to Technical Sessions Sunday, June 24, 2012 6:00p.m. Boulderado Foyer Reception and Registration Monday, June 25,2012 8: 15 a.m. Boulderado Ballroom Climate Change on Earth and the Terrestrial Planets 11 :00 a.m. Boulderado Ballroom Terrestrial Planet Climate Models 1:30 p.m. Boulderado Ballroom Exoplanet Atmospheres 4:00 p.m.
    [Show full text]
  • Bending the Curve
    BENDING THE CURVE executive summary Ten scalable solutions for carbon neutrality and climate stability “We must combine rigor and imagination to confront climate change: the rigor of scientific facts with the imagination to perceive what is now unseen – the dangers that lie ahead if we do not act.” Honorable Edmund G. Brown, Jr. Speech given at the UN Foundation Governor of California dinner in New York City in honor September 25, 2015 of the Vatican’s Pontifical Academy of Sciences for its role in shaping the Vatican’s position on climate change as espoused in Pope Francis’ encyclical, Laudato Si’ “We are the University of California, and there is no reason that UC can’t lead the world in this quest, as it has in so many others.” President Janet Napolitano Statement issued during the University of California announcement of the Carbon 2013 Neutrality Initiative of the University of California This Executive Summary should be cited as follows: Veerabhadran Ramanathan, Juliann E. Allison, Maximilian Auffhammer, David Auston, Anthony D. Barnosky, Lifang Chiang, William D. Collins, Steven J. Davis, Fonna Forman, Susanna B. Hecht, Daniel Kammen, C.-Y. Cynthia Lin Lawell, Teenie Matlock, Daniel Press, Douglas Rotman, Scott Samuelsen, Gina Solomon, David G. Victor, Byron Washom, 2015: Executive Summary of the Report, Bending the Curve: 10 scalable solutions for carbon neutrality and climate stability. Published by the University of California, October 27, 2015. The authors acknowledge senior editor Jon Christensen of UCLA, for help with editing and for improving the readability of this executive summary. UNIVERSITY OF CALIFORNIA Bending the Curve: Executive Summary TABLE OF CONTENTS PART ONE FOREWORD 2 I.
    [Show full text]