Water Balance of Freeze-Tolerant Insect Larvae Inhabiting Arid

Total Page:16

File Type:pdf, Size:1020Kb

Water Balance of Freeze-Tolerant Insect Larvae Inhabiting Arid Евразиатский энтомол. журнал 14(1): 37–41 © EUROASIAN ENTOMOLOGICAL JOURNAL, 2015 Water balance of freeze-tolerant insect larvae inhabiting arid areas in Eastern Siberia (Yakutia, Russia) Âîäíûé áàëàíñ ìîðîçîòîëåðàíòíûõ íàñåêîìûõ, îáèòàþùèõ â óñëîâèÿõ ñóõîãî êëèìàòà Âîñòî÷íîé Ñèáèðè (ßêóòèÿ, Ðîññèÿ) N.G. Li Í.Ã. Ëè Institute for Biological Problems of Cryolithozone, Russian Academy of Sciences, Siberian Branch, Lenina Ave. 41, Yakutsk, Republic Sakha (Yakutia) 677980 Russia. E-mail: [email protected] Институт биологических проблем криолитозоны СО РАН, пр. Ленина 41, Якутск, Республика Саха (Якутия) 677980 Россия. Key words: Aporia crataegi, Upis ceramboides, Pieris rapae, Delia floralis Fallen, resistance to drought, cuticle water permeability, rates of water loss, metabolic rates, cocoon, Eastern Siberia. Ключевые слова: Aporia crataegi, Upis ceramboides, Pieris rapae, Delia floralis Fallen, устойчивость к засухе, водопроницаемость кутикулы, скорость потери воды, скорость метаболизма, кокон, Восточная Сибирь. Abstract. Climate in Yakutia is characterized by low winter лежащие к Dipera, характеризуются высокой проницае- and hot summer temperatures that cause extreme low air мостью клеточной стенки тела. Это связано с тем, что humidity dropping down to 30 % seasonally. Therefore, in- биологический цикл развития этих видов сопровождает- sects in Yakutia are seasonally faced with extremely dry air ся низкой степенью экспозиции по отношению к сухому which necessitated them to evolve special adaptation mecha- воздуху. Для них замерзание клеточной жидкости, иници- nisms. In this study the estimation of water balance for freeze- ированное лёд-нуклеирующими белками, вероятно, яв- tolerant insect larvae, Aporia crataegi L., Upis ceramboides ляется существенной частью водосохраняющего меха- L., Pieris rapae L., Delia floralis Fallen, was based on mea- низма в зимний период. В противоположность этим видам, surements of rates of water loss, respiration and total water гусеницы Aporia crataegi L. обитают в условиях высокой content. It would appear that Upis ceramboides, Pieris rapae степени экспозиции к сухому воздуху и поэтому имеют and Delia floralis larvae have a high permeability for their низкую кутикулярную водопроницаемость, сравнимую body wall that is associated with low degree of their resistance с таковой для африканских жуков. Этот механизм позво- to dry air. For these larvae, freezing of body liquid initiated by ляет данному виду сохранять до 70 % воды в организме, ice nucleating proteins seems to be a sufficient part of their несмотря на экстремально низкую влажность воздуха в water saving mechanism during winter. However, Aporia cra- окружающей их среде. В соответствии с данным исследо- taegi caterpillars highly exposed to dry environmental condi- ванием, другой механизм поддержания водного баланса в tions have low cuticular water permeability similar to that of зимний период, связанный с продукцией лёд-нуклеиру- African beetles. This mechanism allows the insect to retain ющих белков, не является существенным для данного significant amounts (up to 70 %) of water within their bodies вида. Наконец, кокон, в котором гусеницы находятся с despite the extreme dry conditions that surround them. This осени, всю зиму и весной, также защищают их от дегидра- study shows that the water balance of these larvae during тации в «сухие» сезоны года. winter associated with the production of ice-nucleating pro- teins transforming water into ice in an insect’s haemolymph is insufficient for the species investigated. Furthermore, the co- Introduction coon protects the caterpillars from desiccation from early One of the most important environmental factors autumn until spring. determining the performance of insects in dry areas is Резюме. Климат в Якутии характеризуется низкими the level of humidity. There are few general survival зимними и высокими летними температурами, что являет- strategies used by insects to be drought resistant. They ся причиной высокой степени сухости воздуха, достигаю- either may evolve ability to tolerate extensive loss of щей 30 % в отдельные периоды. Поэтому насекомые, оби- body water by means of anhydrobiosis [Cornette et al., тающие в таких условиях, выработали в процессе эволюции 2011] or they may develop drought tolerance by reduc- определенные механизмы адаптации. В данном исследова- ing transcuticular permeability of their body wall [Lund- нии оценка водного баланса для нескольких морозотоле- heim, Zachariassen, 1993]. Finally, they may use behav- рантных видов (Aporia crataegi L., Upis ceramboides L., ioral implications for avoiding excessive water loss such Pieris rapae L., Delia floralis Fallen, личинки, принадлежа- щие Diptera) была основана на измерении скорости потери as migration to protected sites [Holmstrup, 2001]. воды, скорости метаболизма и содержания воды в орга- Climate in Yakutia is characterized by low winter and низме. В соответствии с полученными данными, Upis hot summer temperatures that cause extreme low air ceramboides, Pieris rapae, Delia floralis, личинки, принад- humidity reaching up to 30 % in varied periods [Shver, 38 N.G. Li ) r –2,0_ venting it from excessive water loss [Kristianssen et al., u o h 2009]. Interestingly, that this species is not only freeze _ / –2,5 g ( tolerant, but has also developed ability to supercool- s _ s –3,0 ing. The study was based on measurements of rates of o l _ water loss and metabolism of the larvae and data were r –3,5 e t then related to water balance curve of the African desert a _ w –4,0 beetles obtained by Zachariassen with co-authors [Za- f o y =0,902x –3,48 _ chariassen et al., 1987]. According to fig. 1, the regres- e –4,5 t a r sion line presents the rates of water loss of various _ g –5,0 o species of African beetles that linearly relate to their L –5,5 metabolic rate implying that the line provides an ap- _ _ _ _ _ –3 –2 –1 0 1 2 proximate measure of the rate of respiratory water loss. Log metabolic rate ( lO2 /min) It was concluded that due to low air humidity in the frozen pupal chambers under the bark in winter and Fig. 1. Rate of water loss and metabolic rate of Acanthocinus poor water diet in the combination with low humidity in aedilis larvae (redrawn after [Kristiansen et al., 2009]. Solid line summer, the Siberian timberman is likely to have the presents rate of transpiratory water loss of East African habitat similar water balance problems as African insects and carabids and tenebrionids, plotted as a function of their therefore their cuticular water permeability was close to metabolic rate [Zachariassen et al., 1987] that of African beetles. The study [Kristianssen et al., Ðèñ. 1. Ñêîðîñòü ïîòåðè âîäû è ñêîðîñòü ìåòàáîëèçìà 2009] apparently testifies that supercooled state of over- ëè÷èíîê Acanthocinus aedilis, ðèñ. âçÿò èç [Kristiansen et al., 2009]. Ðåãðåññèîííàÿ ëèíèÿ ïðåäñòàâëÿåò ñêîðîñòü ïîòåðè wintering insects seems to be the most critical factor òðàíñïèðàòîðíîé âîäû âîñòî÷íî-àôðèêàíñêèìè æóêàìè determining their low transcuticular permeability. More ñåìåéñòâà Carabidae è Tenebrionidae êàê ôóíêöèÿ èõ ñêîðîñòè data is required for understanding extent, to which wa- ìåòàáîëèçìà [Zachariassen et al., 1987]. ter balance depends from cold adaptation strategy. To fill a gap in this field, freeze tolerant Aporia crataegi L. Izumenko, 1982; Gavrilova, 2003]. Therefore, insects in caterpillars (Lepidoptera: Pieridae) were used in this Yakutia seasonally face extremely dry air conditions. research to learn the mechanism they use to adapt to Investigation of adaptation mechanisms to extreme con- dry air conditions in central Yakutia, as compared to ditions is a matter of significant interest but the problem other insects inhabiting this region. has not been yet systematically studied. As broadly known, insects inhabiting temperate and Materials and Methods cold regions evolve two general strategies to be cold hardy. They may seek to avoid freezing, in many cases Insects. Leaf nests, each containing a few caterpil- by allowing their body fluids to stay supercooled at low lars, were collected in the vicinity of the Russian city temperatures, or they may develop tolerance to freezing Yakutsk (62° N, 130° W) in different seasonal periods [Salt, 1961; Lee, 2010]. Usually, freeze-avoiding insects when experiments were planned to be conducted. Be- avoid freezing by removing or inactivating all particles fore the experiments the caterpillars were removed from that potentially may cause freezing. Insects surviving their nests and were kept at +4 °C during 2 hours for freezing establish a protective extracellular freezing at a cleaning their gut. high subzero temperature by the aid of potent extracel- Only overwintering specimens were used without pre- lular ice nucleating agents (INAs), produced for this incubation at +4 °C because their guts were empty. The function [Zachariassen et al., 2011]. mean initial body weight of the caterpillars was 8.3 mg. In their studies, Lundheim and Zachariassen stated Determination of seasonal variations in water con- that because the vapour pressure of ice is lower than tent. To determine water content the caterpillars were that of supercooled water at the same temperature the dried to constant weight at 60°C. Weight loss was hibernating freeze avoiding (supercooled) insects may determines by weighing the animals before and after lose substantial amounts of body water during winter desiccation on a Mettler AC88 balance. [Lundheim, Zachariassen, 1993]. Therefore, freeze avoid- Preparation of hemolymph samples.
Recommended publications
  • Insect Cold Tolerance: How Many Kinds of Frozen?
    POINT OF VIEW Eur. J. Entomol. 96:157—164, 1999 ISSN 1210-5759 Insect cold tolerance: How many kinds of frozen? B rent J. SINCLAIR Department o f Zoology, University o f Otago, PO Box 56, Dunedin, New Zealand; e-mail: [email protected] Key words. Insect, cold hardiness, strategies, Freezing tolerance, Freeze intolerance Abstract. Insect cold tolerance mechanisms are often divided into freezing tolerance and freeze intolerance. This division has been criticised in recent years; Bale (1996) established five categories of cold tolerance. In Bale’s view, freezing tolerance is at the ex­ treme end of the spectrum o f cold tolerance, and represents insects which are most able to survive low temperatures. Data in the lit­ erature from 53 species o f freezing tolerant insects suggest that the freezing tolerance strategies o f these species are divisible into four groups according to supercooling point (SCP) and lower lethal temperature (LLT): (1) Partially Freezing Tolerant-species that survive a small proportion o f their body water converted into ice, (2) Moderately Freezing Tolerant-species die less than ten degrees below their SCP, (3) Strongly Freezing Tolerant-insects with LLTs 20 degrees or more below their SCP, and (4) Freezing Tolerant Species with Low Supercooling Points which freeze at very low temperatures, and can survive a few degrees below their SCP. The last 3 groups can survive the conversion of body water into ice to an equilibrium at sub-lethal environmental temperatures. Statistical analyses o f these groups are presented in this paper. However, the data set is small and biased, and there are many other aspects o f freezing tolerance, for example proportion o f body water frozen, and site o f ice nucleation, so these categories may have to be re­ vised in the future.
    [Show full text]
  • Terrestrial Insects and Climate Change: Adaptive Responses in Key Traits
    Physiological Entomology (2019), DOI: 10.1111/phen.12282 Terrestrial insects and climate change: adaptive responses in key traits VANESSA KELLERMANN andBELINDA VAN HEERWAARDEN School of Biological Sciences, Monash University, Melbourne, Victoria, Australia Abstract. Understanding and predicting how adaptation will contribute to species’ resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health-related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait-based models suggest that low- to mid-latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species’ distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments.
    [Show full text]
  • A Note on the Recent Distribution of Aporia Crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2000 Band/Volume: 31 Autor(en)/Author(s): Fric Zdenek Flatynek, Hula Vladimir, Konvicka Martin, Pavlicko Alois Artikel/Article: A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (December 2000) 31 (3/4):453-454, Würzburg, ISSN 0171-0079 A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) by Z d e n e k Fr ic, V l a d im ír H u la , M a r t in K o n v ic k a & A lo is Pa v l ic k o received 20.X.2000 Eitschberger & Steiniger (2000), in their overview of records of Aporia crataegi in Germany, mentioned an interesting occurrence of this species in Wellertal, Silberbach and between Hohenberg, Fichtelgebirge and Dubina, closely to the German-Czech Republic border. The au­ thors speculated that the individuals originated from Czech territory. To understand the con­ text of their records, it is necessary to take into account the recent distribution of this species in the Czech Republic. Approximately since the 1950s, this butterfly species had been declining and gradually disap­ peared from both Bohemia and Moravia (Novak & Liska, 1997; Lastuvka, 1998; Beun, 1999), although there were occasional invasions followed by establishments of transient populations, such as near Pribram in the 1970s (Zeleny, 1977).
    [Show full text]
  • Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A
    Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou To cite this version: Julien Thézé, Carlos Lopez-Vaamonde, Jenny Cory, Elisabeth Herniou. Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, MDPI, 2018, 10 (7), pp.366. 10.3390/v10070366. hal-02140538 HAL Id: hal-02140538 https://hal.archives-ouvertes.fr/hal-02140538 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License viruses Article Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research Julien Thézé 1,2, Carlos Lopez-Vaamonde 1,3 ID , Jenny S. Cory 4 and Elisabeth A. Herniou 1,* ID 1 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS—Université de Tours, 37200 Tours, France; [email protected] (J.T.); [email protected]
    [Show full text]
  • Coleoptera: Tenebrionidae) from Australia, Southeast Asia and the Pacific Region, with Comments on Phylogenetic Relationships and Antipredator Adaptations
    Systematic Entomology (2004) 29, 101–114 First descriptions of Coelometopini pupae (Coleoptera: Tenebrionidae) from Australia, Southeast Asia and the Pacific region, with comments on phylogenetic relationships and antipredator adaptations PATRICE BOUCHARD1,2 andWARREN E. STEINER Jr3 1Canadian Museum of Nature, Ottawa, Ontario, Canada, 2Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Que´bec, Canada and 3Department of Systematic Biology – Entomology, Smithsonian Institution, Washington, DC, U.S.A. Abstract. The pupal stage of ten Coelometopini species occurring in Australia, New Guinea, Southeast Asia and the Pacific region are described and a key for their identification is provided. The species are Chrysopeplus expolitus Broun, Derosphaerus hirtipes Kaszab, Hypaulax crenata (Boisduval), Leprocaulus borneensis Kaszab, Metisopus purpureipennis Bates, Promethis carteri Kaszab, P. nigra (Blessig), P. quadraticollis (Gebien), P. quadricollis Pascoe and P. sulcigera (Boisduval). The gin trap structures of D. hirtipes and P. quadraticollis are described in detail using scanning electron micrographs. A summary of anti- predator structures of all known Coelometopini pupae is given. The phylogenetic value of pupal characters is assessed at intra- and intergeneric levels within the tribe. Introduction tribe Coelometopini (Tenebrionidae: Coelometopinae) to address this question. The evolution of a pupal stage in the life history of holo- metabolous insects has been of great importance for the success of insects. This critical transformation stage has Antipredator adaptations in insect pupae enabled members of Holometabola to dissociate the larval and adult stages and, as a consequence, promoted the Hinton (1955) identified two main types of antipredator exploitation of a wide variety of environments. Although device in pupae of holometabolous insects: passive and most insect pupae are immotile, a small number of clades nonpassive.
    [Show full text]
  • Land-Use Changes, Farm Management and the Decline of Butterflies Associated with Semi-Natural Grasslands in Southern Sweden
    A peer-reviewed open-access journal Nature Conservation Land-use6: 31–48 (2013) changes, farm management and the decline of butterflies.... 31 doi: 10.3897/natureconservation.6.5205 APPLIED ECOLOGY http://www.pensoft.net/natureconservation Launched to accelerate biodiversity conservation Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden Sven G. Nilsson1, Markus Franzén1,2, Lars B. Pettersson1,3 1 Biodiversity Unit, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden 2 UFZ Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser- Straße 4, D-06120 Halle, Germany 3 Swedish Butterfly Monitoring Scheme, Lund University, Ecology Buil- ding, SE-223 62 Lund, Sweden Corresponding author: Lars B. Pettersson ([email protected]) Academic editor: L. Penev | Received 26 March 2013 | Accepted 30 October 2013 | Published 18 November 2013 Citation: Nilsson SG, Franzén M, Pettersson LB (2013) Land-use changes, farm management and the decline of butterflies associated with semi-natural grasslands in southern Sweden. Nature Conservation 18: 31–48. doi: 10.3897/ natureconservation.6.5205 Abstract Currently, we are experiencing biodiversity loss on different spatial scales. One of the best studied taxo- nomic groups in decline is the butterflies. Here, we review evidence for such declines using five systematic studies from southern Sweden that compare old butterfly surveys with the current situation. Additionally, we provide data on butterfly and burnet moth extinctions in the region’s counties. In some local areas, half of the butterfly fauna has been lost during the last 60–100 years.
    [Show full text]
  • New Or Little Known Butterflies from China
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2016 Band/Volume: 47 Autor(en)/Author(s): Huang Hao Artikel/Article: New or little known butterflies from China - 2 (Lepidoptera: Pieridae, Nymphalidae, Lycaenidae et Hesperiidae) 161-173 Atalanta 47 (1/2): 161-173, Marktleuthen (Juli 2016), ISSN 0171-0079 New or little known butterflies from China - 2 (Lepidoptera: Pieridae, Nymphalidae, Lycaenidae et Hesperiidae) by HAO HUANG received 12.II.2016 Abstract: Aporia tayiensis siyaoi subspec. nov. is described from southern Gansu. Aporia wolongensis YOSHINO, 1995 stat. nov. (= A. acraea wolongensis YOSHINO, 1995) is raised to full specific rank, with A. wolongensis koiwayai DELLA BRUNA et al. comb. nov. (= A. acraea koiwayai DELLA BRUNA et al., 2003) regarded as its subspecies. Euaspa zhengi spec. nov. is described from Motuo, SE Tibet. Ussuriana fani zihaoi subspec. nov. is described from Lixian and Heishui, northwestern Sichuan. Coladenia vitrea LEECH is reported from Shaanxi, with ‡‡ figured for the first time.Sovia fangi HUANG & WU, 2003 and Limenitis dubernardi OBERTHÜR, 1903 are rediscovered and discussed. Introduction: Most of the butterflies reported in this paper were collected by the author and his friends from the Chi- nese Provinces of Sichuan, Yunnan, Tibet, Gansu and Shaanxi in 2014-2015. Abbrevitions: BSNU: Biological laboratory of Shanghai Normal University, Shanghai, P.R. China. CHH: Collection of HAO HUANG. CLYF: Collection of YU-FEI LI. HT: Holotype. IZAS: Institute of Zoology, Chinese Academy of Science, Beijing, P.R. China. PT: Paratype. TL: Type locality. Pieridae Aporia tayiensis s i y a o i subspec.
    [Show full text]
  • Insect Diversity on Clearcuts in Boreal Forest Landscapes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Epsilon Open Archive Insect Diversity on Clearcuts in Boreal Forest Landscapes Diana Rubene Faculty of Forest Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2014 Acta Universitatis agriculturae Sueciae 2014:50 Cover: Boreal forest with clearcuts and retention trees in Dalarna (photo: D. Rubene) ISSN 1652-6880 ISBN (print version) 978-91-576-8048-8 ISBN (electronic version) 978-91-576-8049-5 © 2014 Diana Rubene, Uppsala Print: SLU Service/Repro, Uppsala 20114 Insect diversity on clearcuts in boreal forest landscapes Abstract Intensive management and loss of natural disturbance dynamics in boreal forests leads to habitat loss and degradation for forest dwelling species. As a consequence, many species have become threatened, especially those dependent on dead wood. Integration of conservation in forest management is therefore essential for protecting boreal forest species diversity. To optimise conservation efforts, we need to understand species habitat requirements and diversity patterns in managed forests. This thesis aims to increase our understanding of insect species diversity patterns on clearcuts in boreal forest landscapes. I have surveyed beetles, bees and wasps on clearcuts in two boreal forest regions in Sweden and assessed the importance of clearcut properties and composition of surrounding landscape for species occurrence and diversity. Locally, amount of dead wood was positively associated with high species richness and individual species occurrence of certain wood-dependent beetles. Bee and wasp species richness increased with high local flower richness and clearcut size. Landscape composition was at least as important as local habitat characteristics for shaping diversity patterns.
    [Show full text]
  • The European Grassland Butterfly Indicator: 1990–2011
    EEA Technical report No 11/2013 The European Grassland Butterfly Indicator: 1990–2011 ISSN 1725-2237 EEA Technical report No 11/2013 The European Grassland Butterfly Indicator: 1990–2011 Cover design: EEA Cover photo © Chris van Swaay, Orangetip (Anthocharis cardamines) Layout: EEA/Pia Schmidt Copyright notice © European Environment Agency, 2013 Reproduction is authorised, provided the source is acknowledged, save where otherwise stated. Information about the European Union is available on the Internet. It can be accessed through the Europa server (www.europa.eu). Luxembourg: Publications Office of the European Union, 2013 ISBN 978-92-9213-402-0 ISSN 1725-2237 doi:10.2800/89760 REG.NO. DK-000244 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Fax: +45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Acknowledgements .................................................................................................... 6 Summary .................................................................................................................... 7 1 Introduction .......................................................................................................... 9 2 Building the European Grassland Butterfly Indicator ........................................... 12 Fieldwork .............................................................................................................. 12 Grassland butterflies .............................................................................................
    [Show full text]
  • Journal 48(1)
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 48, No. 1 (2008) DOI: 10.2478/v10045-008-0007-8 TEMPERATURE-DEPENDENT DEVELOPMENT AND DEGREE-DAY MODEL OF EUROPEAN LEAF ROLLER, ARCHIPS ROSANUS Oguzhan Doganlar* Ahi Evran University, Vocational School, Department of Technical Programs, Entomology Section, 40200, Kırşehir, Turkey Received: January 29, 2008 Accepted: February 28, 2008 Abstract: The effect of temperature on the duration of larval, prepupal, and pupal development of the European leaf roller, Archips rosanus L. (Lepidoptera: Tortricidae) was studied at four constant tempera- tures (18, 22, 26, and 30°C) where Malus communis L. (apple, Stark Crimson) was used as food. Signifi- cant positive linear relationships were observed between development rate and temperature for all life stages. Minimum developmental threshold temperatures were estimated as 5.5–6.7°C for first stages, 5.8–5.7°C for second stages, 5.1–6.3°C for prepupae, and 8.1–6.3°C for pupae, male and female, respec- tively. Lower threshold of complete development of adult was estimated as 6.05°C (male) and 6.0°C (fe- male). Median development values of degree-days (DD) for first stages, second stages, prepupae, pupae and complete preimaginal development were 57.5–55.2, 55.2–66.2, 33.1–33.9, 137–175.4 and 476.2–526 for male and female, respectively. A degree-day model was developed using from the laboratory data for predicting the first emergence of the pest and spray application time. Estimated degree-day model predicted the emergence within 3–7 days of that observed at the field site in both 2001 and 2002.
    [Show full text]
  • Where Do the Bugs Go in Winter? by Matt Bowser
    Refuge Notebook • Vol. 7, No. 2 • January 14, 2005 Where do the Bugs go in winter? by Matt Bowser As you enjoy the warmth of your home this Jan- ter. As the nights become cooler, their bodies increase uary and the apparent absence of mosquitoes, have the concentrations of solutes in their body fluids, in- you ever wondered what the bugs are up to or how creasing their resistance to freezing. Under an insu- they are getting along out there in the cold? Theylack lating layer of snow, where temperatures are warmer the ability to make warm shelter as we do, and they and much more stable than the air temperatures yel- are much too small to generate much heat and hold it low jackets can endure winter temperatures down to in as birds and mammals do. Insects and other cold- about 3º F before they freeze. Birch bugs, spruce bark blooded, minute animals make it through the long, beetles, and many other insects supercool similarly. If cold winter in either of two ways: avoidance of cold temperatures continue to drop, though, these super- or physiological adaptations to cope with the cold. cooling critters will freeze and die. This is why ex- Some invertebrates are able to find warm places to tremely cold winters, especially when there is little spend the winter, such as streams, mammal nests and snow cover, may significantly reduce some insect pop- human houses. Most aquatic insects avoid freezing by ulations. spending the winter in water bodies where only the Some of the hardiest insects can actually withstand surface freezes.
    [Show full text]
  • Clear-Cut and Substrate Characteristics Important for the Occurrence of the Beetle Upis Ceramboides
    Department of Ecology Clear-cut and substrate characteristics important for the occurrence of the beetle Upis ceramboides Ronny Naalisvaara Master’s thesis Uppsala 2013 Independent project/Degree project / SLU, Department of Ecology 2013:3 Clear-cut and substrate characteristics important for the occurrence of the beetle Upis ceramboides Ronny Naalisvaara Supervisor: Thomas Ranius, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Erik Öckinger, Swedish University of Agricultural Sciences, Department of Ecology Credits: 30 hec Level: A1E Course title: Degree project in Biology/Examensarbete i biologi Course code: EX0009 Place of publication: Uppsala Year of publication: 2013 Cover picture: Ronny Naalisvaara Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2013:3 Online publication: http://stud.epsilon.slu.se Keywords: Upis ceramboides, dead wood, clear-cut, prescribed burning Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 1 Abstract Disturbances, such as fire and wind, are important for saproxylic beetles (= beetles depending on decaying wood) to gain substrate in boreal forests. Clear-cutting is an example of a man-made disturbance. Measures such as prescribed burning have been made to resemble natural disturbances. The aim of this study was to see which clear-cut characteristics are important for the occurrence of the saproxylic beetle Upis ceramboides. This is a species favored by open habitats and is said to respond positively to forest fires. The distribution area in Sweden for this species has decreased during the last two centuries and I wanted to see if there were differences between clear-cuts in Hälsingland, where it is very rare and decreasing, and Norrbotten where this study was conducted.
    [Show full text]