Biogeographical Diffusion of Aporia Hippia (Lepidoptera: Pieridae) Obtained from Morphological Comparison
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Terrestrial Insects and Climate Change: Adaptive Responses in Key Traits
Physiological Entomology (2019), DOI: 10.1111/phen.12282 Terrestrial insects and climate change: adaptive responses in key traits VANESSA KELLERMANN andBELINDA VAN HEERWAARDEN School of Biological Sciences, Monash University, Melbourne, Victoria, Australia Abstract. Understanding and predicting how adaptation will contribute to species’ resilience to climate change will be paramount to successfully managing biodiversity for conservation, agriculture, and human health-related purposes. Making predictions that capture how species will respond to climate change requires an understanding of how key traits and environmental drivers interact to shape fitness in a changing world. Current trait-based models suggest that low- to mid-latitude populations will be most at risk, although these models focus on upper thermal limits, which may not be the most important trait driving species’ distributions and fitness under climate change. In this review, we discuss how different traits (stress, fitness and phenology) might contribute and interact to shape insect responses to climate change. We examine the potential for adaptive genetic and plastic responses in these key traits and show that, although there is evidence of range shifts and trait changes, explicit consideration of what underpins these changes, be that genetic or plastic responses, is largely missing. Despite little empirical evidence for adaptive shifts, incorporating adaptation into models of climate change resilience is essential for predicting how species will respond under climate change. We are making some headway, although more data are needed, especially from taxonomic groups outside of Drosophila, and across diverse geographical regions. Climate change responses are likely to be complex, and such complexity will be difficult to capture in laboratory experiments. -
A Note on the Recent Distribution of Aporia Crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2000 Band/Volume: 31 Autor(en)/Author(s): Fric Zdenek Flatynek, Hula Vladimir, Konvicka Martin, Pavlicko Alois Artikel/Article: A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) 453-454 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (December 2000) 31 (3/4):453-454, Würzburg, ISSN 0171-0079 A note on the recent distribution of Aporia crataegi (Linnaeus, 1758) in the Czech Republic (Lepidoptera, Pieridae) by Z d e n e k Fr ic, V l a d im ír H u la , M a r t in K o n v ic k a & A lo is Pa v l ic k o received 20.X.2000 Eitschberger & Steiniger (2000), in their overview of records of Aporia crataegi in Germany, mentioned an interesting occurrence of this species in Wellertal, Silberbach and between Hohenberg, Fichtelgebirge and Dubina, closely to the German-Czech Republic border. The au thors speculated that the individuals originated from Czech territory. To understand the con text of their records, it is necessary to take into account the recent distribution of this species in the Czech Republic. Approximately since the 1950s, this butterfly species had been declining and gradually disap peared from both Bohemia and Moravia (Novak & Liska, 1997; Lastuvka, 1998; Beun, 1999), although there were occasional invasions followed by establishments of transient populations, such as near Pribram in the 1970s (Zeleny, 1977). -
New Or Little Known Butterflies from China
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2016 Band/Volume: 47 Autor(en)/Author(s): Huang Hao Artikel/Article: New or little known butterflies from China - 2 (Lepidoptera: Pieridae, Nymphalidae, Lycaenidae et Hesperiidae) 161-173 Atalanta 47 (1/2): 161-173, Marktleuthen (Juli 2016), ISSN 0171-0079 New or little known butterflies from China - 2 (Lepidoptera: Pieridae, Nymphalidae, Lycaenidae et Hesperiidae) by HAO HUANG received 12.II.2016 Abstract: Aporia tayiensis siyaoi subspec. nov. is described from southern Gansu. Aporia wolongensis YOSHINO, 1995 stat. nov. (= A. acraea wolongensis YOSHINO, 1995) is raised to full specific rank, with A. wolongensis koiwayai DELLA BRUNA et al. comb. nov. (= A. acraea koiwayai DELLA BRUNA et al., 2003) regarded as its subspecies. Euaspa zhengi spec. nov. is described from Motuo, SE Tibet. Ussuriana fani zihaoi subspec. nov. is described from Lixian and Heishui, northwestern Sichuan. Coladenia vitrea LEECH is reported from Shaanxi, with ‡‡ figured for the first time.Sovia fangi HUANG & WU, 2003 and Limenitis dubernardi OBERTHÜR, 1903 are rediscovered and discussed. Introduction: Most of the butterflies reported in this paper were collected by the author and his friends from the Chi- nese Provinces of Sichuan, Yunnan, Tibet, Gansu and Shaanxi in 2014-2015. Abbrevitions: BSNU: Biological laboratory of Shanghai Normal University, Shanghai, P.R. China. CHH: Collection of HAO HUANG. CLYF: Collection of YU-FEI LI. HT: Holotype. IZAS: Institute of Zoology, Chinese Academy of Science, Beijing, P.R. China. PT: Paratype. TL: Type locality. Pieridae Aporia tayiensis s i y a o i subspec. -
Butterfly-Fauna of Gulmarg, Kashmir, J&K State
IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 2, Issue 5 (Mar. - Apr. 2013), PP 40-45 www.iosrjournals.org Butterfly-fauna of Gulmarg, Kashmir, J&K State. Aijaz Ahmad Qureshi1*, Rayees Ahmad Dar2, Shaheen Iqbal Tahir3 and R. C. Bhagat4 1, 4 P.G. Department of Zoology, University of Kashmir, Srinagar, Kashmir. 3SKIMS, Soura, Srinagar, J&K 3Government Higher Secondary School, Boys, Baramulla, Kashmir *Present address of Corresponding author: Islamic University of Science and Technology, Awantipora, Jammu and Kashmir. Email; [email protected] Abstract: Field surveys conducted at Gulmarg, Kashmir during the years of 2006-08 revealed presence of 31 butterfly species distributed in 8 families and 27 genera. During the present preliminary field investigations documented for the first time the dominant family was found to be Nymphalidae (36%) followed by Pieridae (23%), Satyridae (19%), Lycaenidae (10%) whereas Danaidae, Hesperiidae, Libytheidae and Papilionidae were represented by 3% each. The butterflies were active from April to November and highest distribution was in summer season. Diversity was calculated by Shannon-Weiner, Simpson and Margalaf’s diversity indices and the values obtained by these indices indicated that the area is rich in butterfly diversity. However, human pressure due to tremendous flow of tourists was found a major threat to the environment of the area. 11 host- plants distributed in 8 families and 11 genera are being reported for the first time and highest number of butterflies visited the members of Asteraceae. Key Words: Gulmarg, Kashmir Valley, butterflies, distribution, diversity indices, host plants. -
Revised Systematics and Higher Classification of Pierid Butterflies
Zoologica Scripta Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data NIKLAS WAHLBERG,JADRANKA ROTA,MICHAEL F. BRABY,NAOMI E. PIERCE & CHRISTOPHER W. WHEAT Submitted: 5 May 2014 Wahlberg, N., Rota, J., Braby, M.F., Pierce, N.E. & Wheat, C.W. (2014). Revised Accepted: 12 July 2014 systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on doi:10.1111/zsc.12075 molecular data. — Zoologica Scripta, 43, 641–650. The butterfly family Pieridae comprises approximately 1000 described species placed in 85 genera, but the higher classification has not yet been settled. We used molecular data from eight gene regions (one mitochondrial and seven nuclear protein-coding genes) com- prising a total of ~6700 bp from 96 taxa to infer a well-supported phylogenetic hypothesis for the family. Based on this hypothesis, we revise the higher classification for all pierid genera. We resurrect the tribe Teracolini stat. rev. in the subfamily Pierinae to include the genera Teracolus, Pinacopteryx, Gideona, Ixias, Eronia, Colotis and most likely Calopieris. We transfer Hebomoia to the tribe Anthocharidini and assign the previously unplaced gen- era Belenois and Dixeia to the subtribe Aporiina. Three lineages near the base of Pierinae (Leptosia, Elodina and Nepheronia + Pareronia) remain unplaced. For each of these, we describe and delineate new tribes: Elodinini Braby tribus nova, Leptosiaini Braby tribus nova and Nepheroniini Braby tribus nova. The proposed higher classification is based on well-supported monophyletic groups and is likely to remain stable even with the addition of more data. Corresponding author: Niklas Wahlberg, Department of Biology, University of Turku, Turku, 20014, Finland. -
How Much Biodiversity Is in Natura 2000?
Alterra Wageningen UR Alterra Wageningen UR is the research institute for our green living environment. P.O. Box 47 We off er a combination of practical and scientifi c research in a multitude of How much Biodiversity is in Natura 2000? 6700 AA Wageningen disciplines related to the green world around us and the sustainable use of our living The Netherlands environment, such as fl ora and fauna, soil, water, the environment, geo-information The “Umbrella Eff ect” of the European Natura 2000 protected area network T +31 (0) 317 48 07 00 and remote sensing, landscape and spatial planning, man and society. www.wageningenUR.nl/en/alterra The mission of Wageningen UR (University & Research centre) is ‘To explore Technical report Alterra Report 2730B the potential of nature to improve the quality of life’. Within Wageningen UR, ISSN 1566-7197 nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the Theo van der Sluis, Ruud Foppen, Simon Gillings, Thomas Groen, René Henkens, Stephan Hennekens, domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading Kim Huskens, David Noble, Fabrice Ottburg, Luca Santini, Henk Sierdsema, Andre van Kleunen, organisations in its domain worldwide. The integral approach to problems and Joop Schaminee, Chris van Swaay, Bert Toxopeus, Michiel Wallis de Vries and Lawrence Jones-Walters the cooperation between the various disciplines -
Euchloeini Euchloe-Barbarea, Biscutella, Ineris, Sisymbrium (Cruciferae)
VOLUME 38, NUMBER 3 251 Euchloeini Euchloe-Barbarea, Biscutella, Ineris, Sisymbrium (Cruciferae). Anthocharis-Biscutella, Cardamines, Sisymbrium, etc. (Cruciferae). Pierini Aporia-Crataegus, Prunus, Spiraea (Rosaceae). Pieris-Aethionema, Alyssum, Brassica, lberis, Sinapis, Sisymbrium (Cruciferae), Tropaeolum (Geraniaceae), Reseda (Resedaceae). Colotis-Capparis (Capparidaceae). Zegris-Sinapis (Cruciferae). Leptidea-Cracca, Lathyrus, Lotus, Viccia (Papilionaceae). NORTH AMERICA (after Ehrlich & Ehrlich's "How to Know the Butterflies") Coliadini Nathalis-Stellaria (Caryophyllaceae), Bidens, Dyssodia, Tagetes (Compositae), Ero dium (Geraniaceae), Helenium (??). Colias-Vaccinium (Ericaceae), Amorpha, Astragalus, Hedysarum, Medicago, Paro- sela (Papilionaceae), Salix (Salicaceae). Kricogonia-No records. Eurema-Cassia (Caesalpiniaceae), perhaps Astragalus (Papilionaceae) and others. Phoems-Cassia (Caesalpiniaceae). Euchloeini Anthocharis-Arams, Barbarea, Cardamines, Sisymbrium (Cruciferae). Euchloe-Arams, Sisymbrium, etc. (Cruciferae). Pierini Pieris-Dentaria, Isomeria, Stanleya, other Cruciferae and Capparidaceae. Ascia-Brassica, Cleome, Polanisia, other Cruciferae and Capparidaceae. Neophasia-Pinus (Coniferae). Unfortunately, I have no records for South America. Looking at the foregoing lists as a whole, a fairly coherent pattern emerges. The Coliadini are almost entirely confined to the leguminous subfamilies Papilionaceae and Caesalpiniaceae, with Conepteryx confined to the Rhamnaceae. The other pierine tribes show a decided preference for plants containing mustard oil glucosides, i.e., Cruciferae, Capparidaceae and Salvadoraceae but with a few divergent groups or species; for ex ample, Delias and Mylothris feeding mainly on Loranthaceae and Aporia on Rosaceae, Rubiaceae and Berberidaceae, among others. I am unable to trace any record for Lau raceae apart from Mr. Young's, and, although that does not completely preclude the family as a pierine food-plant, it makes it less likely. D. C. SEVASTOPULO, F.R.E.S., P.O. Box 95617, Mombasa (Nyali), Kenya. -
A Comparison of Butterfly Diversity Across Four Habitats in Gir Wildlife Sanctuary
Int. J. Adv. Res. Biol. Sci. (2017). 4(3): 43-53 International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com DOI: 10.22192/ijarbs Coden: IJARQG(USA) Volume 4, Issue 3 - 2017 Research Article DOI: http://dx.doi.org/10.22192/ijarbs.2017.04.03.005 Suitability of Butterflies as Indicators of Ecosystem Condition: A Comparison of Butterfly Diversity across four habitats in Gir Wildlife Sanctuary Meeta Sharma* and Noopur Sharma Forest Protection Division, Arid Forest Research Institute, Jodhpur (Rajasthan), India *Corresponding author: [email protected] Abstract Gir forest of Gujarat is widely known as the last home of Asiatic Lion. It also hosts a range of other mammalian, avian, reptiles and insect species biodiversity. The sanctuary area has been explored in the present study for diversity and species richness of small but important creatures called butterflies. Butterflies have been depicted as significant indicator species owing to their sensitivity to slightest change in environmental factors. Their habitat signals a healthy ecosystem. Danaidae and Nymphalidae butterflies were observed the most abundant while Hesperiidae butterflies were recorded the least dominant. Butterfly diversity has been observed higher in thinned, thinned and burnt and in wildfire (disturbed forests) in comparison to the natural dense forests. It was observed that the population of butterflies were found more in the disturbed forests as they interact the most in disturbances; hence they are the ecological indicators of climate change. Keywords: Gir forest, species richness, butterflies, disturbed forests, ecological indicators. Introduction Gir forest of Gujarat is a huge, diversified forest in Butterflies are considered important flagships for terms of flora and fauna. -
Phellodendron Amurense
Phellodendron amurense Phellodendron amurense Amur corktree Introduction The genus Phellodendron contains four species, distributed primarily in eastern Asia. Two species and one variety are native to China. Members of the genus Phellodendron are famous for their abundant alkaloid (berberine, palmatine, cadicine, phellodendrine, magnoflorine), essential oil, and flavonoid (amurensin) content[3]. Species of Phellodendron in China Leaves and fruits of Phellodendron amurense. (Photo by Pat Breen, Oregon State University.) Scientific Name and near houses, as well as other areas insecticide, soap, and lubricants. The P. amurense Rupr. at low elevations[3]. inner layer of bark, known as Huang P. chinense Schneid. Bo, is medically useful [3]. Distribution Taxonomy P. amurense occurs naturally in Hebei, Related Species Family: Rutaceae eastern Inner Mongolia[3],and the three Similar to P. amurense, P. chinense Genus: Phellodendron Rupr. northeastern provinces, Heilongjiang, Schneid can be distinguished by its Jinlin, and Liaoning[3][63]. It is cultivated in brown hairy leaf rachis and petiole. Description Anhui[30], Fujian[35], Henan[25], Hubei[201], Growing in the diverse woody forest Phellodendron amurense is a deciduous Hunan[126], Jiangsu[81], Ningxia[115], of the adjacent areas of Hubei, Hunan tree that grows to 10-20 m, with a Shandong[8], Shanxi[39], Xinjiang[175], and Sichuan provinces at elevations maximum height of 30 m. At maturity, and Zhejiang provinces [153]. above 900 m [3]. the bark is light gray or grayish brown, with webbed fissures on the surface of Economic Importance Natural Enemies of a thick corky layer. Wide-spreading The bark is a good source of cork. The Phellodendron branches are dark purple and glabrous. -
Complete Mitogenome of the Painted Jezebel, Delias Hyparete Linnaeus (Lepidoptera: Pieridae) and Its Comparison with Other Butterfly Species
Zoological Research 33 (E5−6): E111−E120 doi: 10.3724/SP.J.1141.2012.E05-06E111 Complete mitogenome of the Painted Jezebel, Delias hyparete Linnaeus (Lepidoptera: Pieridae) and its comparison with other butterfly species Qinghui SHI 1, Jing XIA 1, Xiaoyan SUN 2, Jiasheng HAO 1,*, Qun YANG 2,* 1. College of Life Sciences, Anhui Normal University, Wuhu 241000, China; 2. Nanjing Institute of Paeleontology and Stratigraphy, the Chinese Academy of Sciences, Nanjing 210008, China Abstract: In the present study, we report the first complete mitochondrial genome (mitogenome) of the Painted Jezebel, Delias hyparete. The mitogenome of Delias hyparete is 15 186 bp in length, and has typical sets of 37 genes: 13 protein-coding genes (PCGs), 2 ribosomal RNAs, 22 transfer RNAs and a non-coding A+T-rich region. All protein-coding genes are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon, as observed in other butterfly species. A total of 10 PCGs harbored the complete termination codon TAA or TAG, while the COI, COII and ND5 genes ended at a single T residue. All 22 tRNA genes show typical clover structures, with the exception of the tRNASer(AGN) which lacks the dihydrouridine (DHU) stem and is instead replaced by a simple loop. Thirteen intergenic spacers totaling 153 bp, and 13 overlapping regions totaling 46 bp are scattered throughout the whole genome. The 377 bp long of D. hyparete A+T-rich region is not comprised of large repetitive sequences, but harbors several features characteristic of the lepidopteran insects, including the motif ATAGA followed by an 18 bp poly-T stretch, a microsatellite-like (AT)5 element preceded by the ATTTA motif, an 10 bp polyA-like stretch (AAAAATAAAA) present immediately upstream tRNAMet. -
Diapositiva 1
INTERNATIONAL CONFERENCE ON MOUNTAINS AND CLIMATE CHANGE Alpine butterflies: a challenge to understand the effects of climate change on biodiversity and ecosystems Valerio Sbordoni Department of Biology Tor Vergata University, Roma, Italy Why butterflies? 2 Butterflies are rigorously dependent upon both biotic and abiotic landscape features even at very tiny scales, since their ecology and evolution have been shaped upon their “coarse-grained” sensitivity to the environmental heterogeneity. Butterflies have short life cycles and thus react quickly to environmental changes. Their limited dispersal ability, larval foodplant specialisation and close-reliance on the weather and climate make many butterfly species sensitive to fine-scale changes. These features make butterflies a valuable indicator of biodiversity and provide an early warning system for biodiversity loss and other kinds of ecosystem changes. As a result, they are now the best- monitored group of insects in the world. 3 The Pleistocene glaciations have had a major effect on plants and animals as most species’ distributions shifted in response to climatic fluctuations. De Chaine & Martin(2005). American Journal of Botany. 92: 477- 486. Cold resistant alpine species were probably widely distributed during the last ice age with its cold and dry climatic conditions, and only became disjunct after the climate warmed and their habitats shifted pole-wards and to higher elevations in mountains (sky islands). 4 Many butterfly species inhabit previously glaciated areas in the Alps, Himalaya and other Eurasian mountains, as well as Rocky Mountains, and offer an ideal opportunity to study what effects the climate changes had on their demography and evolution. Kunlun Shan, Qinghai, China 5 Biogeographical terms like”arctic- alpine” and “boreo-alpine” distributions have been applied to species showing today a disjunct or discontinuous distribution in arctic regions or high mountain areas, probably reflecting wider and more continuous distribution ranges during the cold periods. -
Water Balance of Freeze-Tolerant Insect Larvae Inhabiting Arid
Евразиатский энтомол. журнал 14(1): 37–41 © EUROASIAN ENTOMOLOGICAL JOURNAL, 2015 Water balance of freeze-tolerant insect larvae inhabiting arid areas in Eastern Siberia (Yakutia, Russia) Âîäíûé áàëàíñ ìîðîçîòîëåðàíòíûõ íàñåêîìûõ, îáèòàþùèõ â óñëîâèÿõ ñóõîãî êëèìàòà Âîñòî÷íîé Ñèáèðè (ßêóòèÿ, Ðîññèÿ) N.G. Li Í.Ã. Ëè Institute for Biological Problems of Cryolithozone, Russian Academy of Sciences, Siberian Branch, Lenina Ave. 41, Yakutsk, Republic Sakha (Yakutia) 677980 Russia. E-mail: [email protected] Институт биологических проблем криолитозоны СО РАН, пр. Ленина 41, Якутск, Республика Саха (Якутия) 677980 Россия. Key words: Aporia crataegi, Upis ceramboides, Pieris rapae, Delia floralis Fallen, resistance to drought, cuticle water permeability, rates of water loss, metabolic rates, cocoon, Eastern Siberia. Ключевые слова: Aporia crataegi, Upis ceramboides, Pieris rapae, Delia floralis Fallen, устойчивость к засухе, водопроницаемость кутикулы, скорость потери воды, скорость метаболизма, кокон, Восточная Сибирь. Abstract. Climate in Yakutia is characterized by low winter лежащие к Dipera, характеризуются высокой проницае- and hot summer temperatures that cause extreme low air мостью клеточной стенки тела. Это связано с тем, что humidity dropping down to 30 % seasonally. Therefore, in- биологический цикл развития этих видов сопровождает- sects in Yakutia are seasonally faced with extremely dry air ся низкой степенью экспозиции по отношению к сухому which necessitated them to evolve special adaptation mecha- воздуху. Для них замерзание клеточной жидкости, иници- nisms. In this study the estimation of water balance for freeze- ированное лёд-нуклеирующими белками, вероятно, яв- tolerant insect larvae, Aporia crataegi L., Upis ceramboides ляется существенной частью водосохраняющего меха- L., Pieris rapae L., Delia floralis Fallen, was based on mea- низма в зимний период.