Insect Diversity on Clearcuts in Boreal Forest Landscapes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insect Cold Tolerance: How Many Kinds of Frozen?
POINT OF VIEW Eur. J. Entomol. 96:157—164, 1999 ISSN 1210-5759 Insect cold tolerance: How many kinds of frozen? B rent J. SINCLAIR Department o f Zoology, University o f Otago, PO Box 56, Dunedin, New Zealand; e-mail: [email protected] Key words. Insect, cold hardiness, strategies, Freezing tolerance, Freeze intolerance Abstract. Insect cold tolerance mechanisms are often divided into freezing tolerance and freeze intolerance. This division has been criticised in recent years; Bale (1996) established five categories of cold tolerance. In Bale’s view, freezing tolerance is at the ex treme end of the spectrum o f cold tolerance, and represents insects which are most able to survive low temperatures. Data in the lit erature from 53 species o f freezing tolerant insects suggest that the freezing tolerance strategies o f these species are divisible into four groups according to supercooling point (SCP) and lower lethal temperature (LLT): (1) Partially Freezing Tolerant-species that survive a small proportion o f their body water converted into ice, (2) Moderately Freezing Tolerant-species die less than ten degrees below their SCP, (3) Strongly Freezing Tolerant-insects with LLTs 20 degrees or more below their SCP, and (4) Freezing Tolerant Species with Low Supercooling Points which freeze at very low temperatures, and can survive a few degrees below their SCP. The last 3 groups can survive the conversion of body water into ice to an equilibrium at sub-lethal environmental temperatures. Statistical analyses o f these groups are presented in this paper. However, the data set is small and biased, and there are many other aspects o f freezing tolerance, for example proportion o f body water frozen, and site o f ice nucleation, so these categories may have to be re vised in the future. -
(Insecta) a Mátra És Tarnavidék Területéről
16_Kovacs_Ritka_rovarok.qxd 2011.01.19. 15:23 Page 181 FOLIA HISTORICO NATURALIA MUSEI MATRAENSIS 2010 34: 181–195 Ritka és természetvédelmi szempontból jelentõs rovarok (Insecta) a Mátra és Tarnavidék területérõl II. KOVÁCS TIBOR, MAGOS GÁBOR & URBÁN LÁSZLÓ ABSTRACT: (Rare and protected insects (Insecta) in the area of the Mátra and Tarnavidék II.) This paper provides locality data of 106 insect species from the Mátra Mountains, the Tarna Region and the Uppony Hills. Eight spe- cies are of community interest listed in the Habitats Directive (Cerambyx cerdo, Cucujus cinnaberinus, Limoniscus violaceus, Lucanus cervus, Osmoderma eremita, Probaticus subrugosus, Rosalia alpina, Saga pedo); one species (Osmoderma eremita) is strictly protected and 49 species are protected in Hungary. Species interesting from faunistical point of view: Omoglymmius germari, Osmoderma eremita, Anthaxia plicata, Cerophytum elateroides, Megapenthes lugens, Podeonius acuticornis, Aplocnemus integer, Prostomis mandibularis, Tetratoma desmarestii, Mycetoma suturale, Necydalis ulmi. The following species are new to the Mátra Mountains: Omoglymmius germari (Rhysodidae); Anthaxia plica- ta (Buprestidae); Cerophytum elateroides (Cerophytidae); Ampedus elegantulus, A. nigerrimus, A. nigroflavus, Ischnodes sanguinicollis, Lacon querceus, Megapenthes lugens, Podeonius acuticornis, Reitterelater bouyoni (Elateridae); Chlorophorus hungaricus, Paracorymbia fulva, Necydalis ulmi (Cerambycidae); Camptorhinus simp- lex, C. statua (Curculionidae). The following natural habitats are especially valuable on the basis of their insect fauna (taking into the considera- tion a previous paper on the same area): Ágasvár – Ágasvár-oldal, Cserepes-tetõ, Disznó-tetõ – Fekete-tó, Ezerháztetõ – Szénégetõ – Tót-hegyes, Kisgombosi-legelõ, Mraznica-tetõ – Tõkés-kút-tetõ, Oroszlánvár, Óvár – Óvár-oldal, Som-hegy, Úrráteszi-rész (Mátra Mountains); Burja-hegyese, Debornya-fõ, Kis-Nádú-völgy, Ökör-hegy, Szállás- verõ-hegy, Szederjes-verõ, Vajdavár (Tarna Region); Damasa-hegy, Damasa-szakadék (Uppony Hills). -
(Coleoptera) in the Babia Góra National Park
Wiadomości Entomologiczne 38 (4) 212–231 Poznań 2019 New findings of rare and interesting beetles (Coleoptera) in the Babia Góra National Park Nowe stwierdzenia rzadkich i interesujących chrząszczy (Coleoptera) w Babiogórskim Parku Narodowym 1 2 3 4 Stanisław SZAFRANIEC , Piotr CHACHUŁA , Andrzej MELKE , Rafał RUTA , 5 Henryk SZOŁTYS 1 Babia Góra National Park, 34-222 Zawoja 1403, Poland; e-mail: [email protected] 2 Pieniny National Park, Jagiellońska 107B, 34-450 Krościenko n/Dunajcem, Poland; e-mail: [email protected] 3 św. Stanisława 11/5, 62-800 Kalisz, Poland; e-mail: [email protected] 4 Department of Biodiversity and Evolutionary Taxonomy, University of Wrocław, Przybyszewskiego 65, 51-148 Wrocław, Poland; e-mail: [email protected] 5 Park 9, 42-690 Brynek, Poland; e-mail: [email protected] ABSTRACT: A survey of beetles associated with macromycetes was conducted in 2018- 2019 in the Babia Góra National Park (S Poland). Almost 300 species were collected on fungi and in flight interception traps. Among them, 18 species were recorded from the Western Beskid Mts. for the first time, 41 were new records for the Babia Góra NP, and 16 were from various categories on the Polish Red List of Animals. The first certain record of Bolitochara tecta ASSING, 2014 in Poland is reported. KEY WORDS: beetles, macromycetes, ecology, trophic interactions, Polish Carpathians, UNESCO Biosphere Reserve Introduction Beetles of the Babia Góra massif have been studied for over 150 years. The first study of the Coleoptera of Babia Góra was by ROTTENBERG th (1868), which included data on 102 species. During the 19 century, INTERESTING BEETLES (COLEOPTERA) IN THE BABIA GÓRA NP 213 several other papers including data on beetles from Babia Góra were published: 37 species were recorded from the area by KIESENWETTER (1869), a single species by NOWICKI (1870) and 47 by KOTULA (1873). -
Coleoptera: Tenebrionidae) from Australia, Southeast Asia and the Pacific Region, with Comments on Phylogenetic Relationships and Antipredator Adaptations
Systematic Entomology (2004) 29, 101–114 First descriptions of Coelometopini pupae (Coleoptera: Tenebrionidae) from Australia, Southeast Asia and the Pacific region, with comments on phylogenetic relationships and antipredator adaptations PATRICE BOUCHARD1,2 andWARREN E. STEINER Jr3 1Canadian Museum of Nature, Ottawa, Ontario, Canada, 2Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Que´bec, Canada and 3Department of Systematic Biology – Entomology, Smithsonian Institution, Washington, DC, U.S.A. Abstract. The pupal stage of ten Coelometopini species occurring in Australia, New Guinea, Southeast Asia and the Pacific region are described and a key for their identification is provided. The species are Chrysopeplus expolitus Broun, Derosphaerus hirtipes Kaszab, Hypaulax crenata (Boisduval), Leprocaulus borneensis Kaszab, Metisopus purpureipennis Bates, Promethis carteri Kaszab, P. nigra (Blessig), P. quadraticollis (Gebien), P. quadricollis Pascoe and P. sulcigera (Boisduval). The gin trap structures of D. hirtipes and P. quadraticollis are described in detail using scanning electron micrographs. A summary of anti- predator structures of all known Coelometopini pupae is given. The phylogenetic value of pupal characters is assessed at intra- and intergeneric levels within the tribe. Introduction tribe Coelometopini (Tenebrionidae: Coelometopinae) to address this question. The evolution of a pupal stage in the life history of holo- metabolous insects has been of great importance for the success of insects. This critical transformation stage has Antipredator adaptations in insect pupae enabled members of Holometabola to dissociate the larval and adult stages and, as a consequence, promoted the Hinton (1955) identified two main types of antipredator exploitation of a wide variety of environments. Although device in pupae of holometabolous insects: passive and most insect pupae are immotile, a small number of clades nonpassive. -
Effects of Size and Forest Structure of Old-Growth Forests on the Species
Preface Insects have fascinated me from an early age, and I have used countless of hours chasing butterflies, collecting beetles and digging in the muddy bottom of the pound in my parents garden, hunting for new discoveries. My fascination and curiosity for the diversity and complexity of insect communities has increased during my studies at the Norwegian University of Life Sciences (NMBU), and has led me to choose a topic within entomology for my master thesis. My work is based on a study that was started in 2014 by Leonie Gough, and is a collaboration with the Habitat fragmentation and Pathways to Extinction in dead-wood dependent fungi (PATHEXT) by Jenni Nordén and Karl-Henrik Larsson at the University of Oslo. The purposes of this study was to use the fungi and dead wood data from the PATHEXT to explain patterns of species richness and resource preferences of saproxylic insects. I would like to thank my supervisors, Tone Birkemoe and Anne Sverdrup-Thygeson, for all the help and guidance they have given me. They have followed the development of the work from an early point, and have sheared of their knowledge at all stages of the process. Our discussion group, with master student Ranjeni Sivasubramaniam, has helped me to collect my thoughts, and the feedback from Ranjeni has encourage me during the writing. I would also like to thank Jenni Nordén, for sharing her data from the PATHEXT project with me. Thanks to Leonie Gough and Adrian Rasmussen for their contribution in the collection of data, and Sindre Ligaard, Lars Ove Hansen and Csaba Thuroczy for the species identification of the beetles and parasitoid wasps. -
Where Do the Bugs Go in Winter? by Matt Bowser
Refuge Notebook • Vol. 7, No. 2 • January 14, 2005 Where do the Bugs go in winter? by Matt Bowser As you enjoy the warmth of your home this Jan- ter. As the nights become cooler, their bodies increase uary and the apparent absence of mosquitoes, have the concentrations of solutes in their body fluids, in- you ever wondered what the bugs are up to or how creasing their resistance to freezing. Under an insu- they are getting along out there in the cold? Theylack lating layer of snow, where temperatures are warmer the ability to make warm shelter as we do, and they and much more stable than the air temperatures yel- are much too small to generate much heat and hold it low jackets can endure winter temperatures down to in as birds and mammals do. Insects and other cold- about 3º F before they freeze. Birch bugs, spruce bark blooded, minute animals make it through the long, beetles, and many other insects supercool similarly. If cold winter in either of two ways: avoidance of cold temperatures continue to drop, though, these super- or physiological adaptations to cope with the cold. cooling critters will freeze and die. This is why ex- Some invertebrates are able to find warm places to tremely cold winters, especially when there is little spend the winter, such as streams, mammal nests and snow cover, may significantly reduce some insect pop- human houses. Most aquatic insects avoid freezing by ulations. spending the winter in water bodies where only the Some of the hardiest insects can actually withstand surface freezes. -
Clear-Cut and Substrate Characteristics Important for the Occurrence of the Beetle Upis Ceramboides
Department of Ecology Clear-cut and substrate characteristics important for the occurrence of the beetle Upis ceramboides Ronny Naalisvaara Master’s thesis Uppsala 2013 Independent project/Degree project / SLU, Department of Ecology 2013:3 Clear-cut and substrate characteristics important for the occurrence of the beetle Upis ceramboides Ronny Naalisvaara Supervisor: Thomas Ranius, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Erik Öckinger, Swedish University of Agricultural Sciences, Department of Ecology Credits: 30 hec Level: A1E Course title: Degree project in Biology/Examensarbete i biologi Course code: EX0009 Place of publication: Uppsala Year of publication: 2013 Cover picture: Ronny Naalisvaara Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2013:3 Online publication: http://stud.epsilon.slu.se Keywords: Upis ceramboides, dead wood, clear-cut, prescribed burning Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 1 Abstract Disturbances, such as fire and wind, are important for saproxylic beetles (= beetles depending on decaying wood) to gain substrate in boreal forests. Clear-cutting is an example of a man-made disturbance. Measures such as prescribed burning have been made to resemble natural disturbances. The aim of this study was to see which clear-cut characteristics are important for the occurrence of the saproxylic beetle Upis ceramboides. This is a species favored by open habitats and is said to respond positively to forest fires. The distribution area in Sweden for this species has decreased during the last two centuries and I wanted to see if there were differences between clear-cuts in Hälsingland, where it is very rare and decreasing, and Norrbotten where this study was conducted. -
Responses of Invertebrates to Temperature and Water Stress A
Author's Accepted Manuscript Responses of invertebrates to temperature and water stress: A polar perspective M.J. Everatt, P. Convey, J.S. Bale, M.R. Worland, S.A.L. Hayward www.elsevier.com/locate/jtherbio PII: S0306-4565(14)00071-0 DOI: http://dx.doi.org/10.1016/j.jtherbio.2014.05.004 Reference: TB1522 To appear in: Journal of Thermal Biology Received date: 21 August 2013 Revised date: 22 January 2014 Accepted date: 22 January 2014 Cite this article as: M.J. Everatt, P. Convey, J.S. Bale, M.R. Worland, S.A.L. Hayward, Responses of invertebrates to temperature and water stress: A polar perspective, Journal of Thermal Biology, http://dx.doi.org/10.1016/j.jther- bio.2014.05.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Responses of invertebrates to temperature and water 2 stress: A polar perspective 3 M. J. Everatta, P. Conveyb, c, d, J. S. Balea, M. R. Worlandb and S. A. L. 4 Haywarda* a 5 School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK b 6 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, 7 Cambridge, CB3 0ET, UK 8 cNational Antarctic Research Center, IPS Building, University Malaya, 50603 Kuala Lumpur, 9 Malaysia 10 dGateway Antarctica, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand 11 12 *Corresponding author. -
The Physiology of Cold Hardiness in Terrestrial Arthropods*
REVIEW Eur. J. Entomol. 96: 1-10, 1999 ISSN 1210-5759 The physiology of cold hardiness in terrestrial arthropods* L auritz S0MME University of Oslo, Department of Biology, P.O. Box 1050 Blindern, N-0316 Oslo, Norway; e-mail: [email protected] Key words. Terrestrial arthropods, cold hardiness, ice nucleating agents, cryoprotectant substances, thermal hysteresis proteins, desiccation, anaerobiosis Abstract. Insects and other terrestrial arthropods are widely distributed in temperate and polar regions and overwinter in a variety of habitats. Some species are exposed to very low ambient temperatures, while others are protected by plant litter and snow. As may be expected from the enormous diversity of terrestrial arthropods, many different overwintering strategies have evolved. Time is an im portant factor. Temperate and polar species are able to survive extended periods at freezing temperatures, while summer adapted species and tropical species may be killed by short periods even above the freezing point. Some insects survive extracellular ice formation, while most species, as well as all spiders, mites and springtails are freeze intoler ant and depend on supercooling to survive. Both the degree of freeze tolerance and supercooling increase by the accumulation of low molecular weight cryoprotectant substances, e.g. glycerol. Thermal hysteresis proteins (antifreeze proteins) stabilise the supercooled state of insects and may prevent the inoculation of ice from outside through the cuticle. Recently, the amino acid sequences of these proteins have been revealed. Due to potent ice nucleating agents in the haemolymph most freeze tolerant insects freeze at relatively high temperatures, thus preventing harmful effects of intracellular freezing. -
Commentary Plasticity in Arthropod Cryotypes T
2585 The Journal of Experimental Biology 210, 2585-2592 Published by The Company of Biologists 2007 doi:10.1242/jeb.002618 Commentary Plasticity in arthropod cryotypes T. C. Hawes and J. S. Bale* School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK *Author for correspondence (e-mail: [email protected]) Accepted 12 March 2007 Summary Low-temperature acclimation and acclimatization history and organism is proposed, descending, respectively, produce phenotypic changes in arthropods at multiple from what we define as ‘cryotype’ (class of cryoprotective levels of biological organization from the molecular to the strategy) to genotype and, ultimately, phenotype. behavioural. The role and function of plasticity – where a Alternative (and sometimes complementary) strategies to constitutive, reversible change occurs in the phenotype in plasticity include specialization, generalization, bet- response to low temperature – may be partitioned hedging, cross-resistance and convergence. The transition hierarchically at evolutionary scales according to of cryotypes from basal to derived states is a continuum of cryoprotective strategy, at macrophysiological scales trait optimization, involving the fixation of plasticity and/or according to climatic variability, and at meso- and micro- its alternatives. scales according to ecological niche and exposure. In correspondence with these scales (which are interdependent rather than mutually exclusive), a Key words: arthropod, cold tolerance, cryotype, cryoprotection, hierarchical typology of interaction between thermal acclimation, acclimatization, phenotype. Introduction elasticity depends on the type of rubber band and the stimulus Animal physiology in the real world is dynamic – it must it is given, so the plasticity of an arthropod’s response varies in respond to variability at multiple temporal and spatial scales. -
Animal Ice-Binding (Antifreeze) Proteins and Glycolipids: an Overview with Emphasis on Physiological Function John G
© 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 1846-1855 doi:10.1242/jeb.116905 REVIEW Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function John G. Duman* ABSTRACT Storey and Storey, 2012, 2013). However, certain adaptations have Ice-binding proteins (IBPs) assist in subzero tolerance of multiple evolved in widely divergent organisms, for example, antifreeze cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs proteins (AFPs) and other ice-binding proteins (IBPs), as well as include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze glycolipids (AFGLs). antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice- AFPs were first discovered by DeVries in Antarctic marine fish nucleating proteins (INPs). Several structurally different IBPs have (DeVries and Wohlschlag, 1969; DeVries, 1971), where, as their evolved, even within related taxa. Proteins that produce thermal name implies, they function to prevent freezing. Since then, AFPs hysteresis inhibit freezing by a non-colligative mechanism, whereby have been identified in numerous other organisms, such as freeze- they adsorb onto ice crystals or ice-nucleating surfaces and prevent avoiding insects and other terrestrial arthropods. However, proteins further growth. This lowers the so-called hysteretic freezing point with similar, but considerably lesser, antifreeze (thermal hysteresis below the normal equilibrium freezing/melting point, producing a or TH) activities have been found in freeze-tolerant species, where difference between the two, termed thermal hysteresis. True AFPs they do not prevent organismal freezing, but instead function to with high thermal hysteresis are found in freeze-avoiding animals control the site and temperature of ice formation, ice crystal structure (those that must prevent freezing, as they die if frozen) especially and rate of freezing. -
Diversity Studies in Koitajoki (3.4 MB, Pdf)
Metsähallituksen luonnonsuojelujulkaisuja. Sarja A, No 131 Nature Protection Publications of the Finnish Forest and Park Service. Series A, No 131 Diversity studies in Koitajoki Area (North Karelian Biosphere Reserve, Ilomantsi, Finland) Timo J. Hokkanen (editor) Timo J. Hokkanen (editor) North Karelian Biosphere Reserve FIN-82900 Ilomantsi, FINLAND [email protected] The authors of the publication are responsible for the contents. The publication is not an official statement of Metsähallitus. Julkaisun sisällöstä vastaavat tekijät, eikä julkaisuun voida vedota Metsähallituksen virallisesna kannanottona. ISSN 1235-6549 ISBN 952-446-325-3 Oy Edita Ab Helsinki 2001 Cover picture:Veli-Matti Väänänen © Metsähallitus 2001 DOCUMENTATION PAGE Published by Date of publication Metsähallitus 14.9.2001 Author(s) Type of publication Research report Timo J. Hokkanen (editor) Commissioned by Date of assignment / Date of the research contract Title of publication Diversity studies in Koitajoki Area (North Karelian Biosphere Reserve, Ilomantsi, Finland) Parts of publication Abstract The mature forests of Koitajoki Area in Ilomantsi were studied in the North Karelian Biosphere Reserve Finnish – Russian researches in 1993-1998. Russian researchers from Petrozavodsk (Karelian Research Centre) , St Peters- burg (Komarov Botanical Institute) and Moscow (Moscow State University) were involved in the studies. The goal of the researches was to study the biolgical value of the prevailing forest fragments. An index of the value of the forest fragments was compiled. The index includes the amount and quality and suc- cession of the decaying wood in the sites. The groups studied were Coleoptera, Diptera, Hymenoptera and ap- hyllophoraceous fungi. Coleoptera species were were most numerous in Tapionaho, where there were over 200 spedies found of the total number of 282 found in the studies.