Reference Frames, Superselection Rules, and Quantum Information

Total Page:16

File Type:pdf, Size:1020Kb

Reference Frames, Superselection Rules, and Quantum Information Reference frames, superselection rules, and quantum information Stephen D. Bartlett,1 Terry Rudolph,2,3 and Robert W. Spekkens4 1School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia 2Optics Section, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom 3Institute for Mathematical Sciences, Imperial College London, London SW7 2BW, United Kingdom 4Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom (Dated: 4 April 2007) Recently, there has been much interest in a new kind of “unspeakable” quantum information that stands to regular quantum information in the same way that a direction in space or a mo- ment in time stands to a classical bit string: the former can only be encoded using particular degrees of freedom while the latter are indifferent to the physical nature of the information car- riers. The problem of correlating distant reference frames, of which aligning Cartesian axes and synchronizing clocks are important instances, is an example of a task that requires the exchange of unspeakable information and for which it is interesting to determine the fundamental quantum limit of efficiency. There have also been many investigations into the information theory that is appropriate for parties that lack reference frames or that lack correlation between their reference frames, restrictions that result in global and local superselection rules. In the presence of these, quantum unspeakable information becomes a new kind of resource that can be manipulated, de- pleted, quantified, etcetera. Methods have also been developed to contend with these restrictions using relational encodings, particularly in the context of computation, cryptography, communica- tion, and the manipulation of entanglement. This article reviews the role of reference frames and superselection rules in the theory of quantum information processing. Contents B. General approach to aligning reference frames 30 C. Maximum likelihood estimation 31 I. Introduction – Why consider reference frames in 1. Maximum likelihood estimation of a phase quantum information? 2 reference 32 2. Maximum likelihood estimation of a Cartesian II. Formalizing reference frames and superselection frame 32 rules 4 D. General figures of merit 33 A. Reference frames in quantum theory 4 1. Fidelity of aligning a phase reference 34 B. Lacking a phase reference implies a photon-number 2. Fidelity of aligning a Cartesian frame 35 superselection rule 4 E. Reference frames associated with coset spaces 36 C. A general framework for reference frames and 1. Aligning a direction 36 superselection rules 6 F. Relation to phase/parameter estimation 38 G. Communication complexity of alignment 38 III. Quantum information without a shared reference H. Clock synchronization 40 frame 9 I. Other instances of alignment 41 A. Communication without a shared reference frame 10 J. Private communication of unspeakable information 41 1. Communication using photons without a shared K. Dense coding of unspeakable information 42 phase reference 10 L. Error correction of unspeakable information? 43 2. Communication without a shared Cartesian frame 11 VI. Quantum information with bounded reference arXiv:quant-ph/0610030v3 10 Apr 2007 3. Consequences for quantum information processing 13 B. QKD without a shared reference frame 14 frames 43 C. Entanglement without a shared reference frame 15 A. Measurements and state estimation with bounded 1. Entanglement without a shared phase reference 15 reference frames 43 2. Activation and entanglement distillation 16 1. A directional example 44 3. Quantifying bi-partite entanglement without a 2. Measuring relational degrees of freedom 44 shared reference frame 17 B. Quantum computation with bounded reference frames 45 4. Extensions and application to other systems 18 1. Precision of quantum gates 45 D. Private shared reference frames as cryptographic key 18 2. Degradation of a quantum reference frame 46 C. Quantum cryptography with bounded reference IV. Quantum treatment of reference frames 20 frames 47 A. Relational descriptions of phase 21 1. Data hiding with a superselection rule 48 1. Quantization of a phase reference 21 2. Ancilla-free bit commitment 48 2. Dequantization of a phase reference 22 D. Quantifying bounded shared reference frames 49 3. The optical coherence controversy 23 E. Purification of bounded shared reference frames? 51 4. Generalization to composite systems 24 F. Treating bounded reference frames as decoherence 51 B. Quantization of a general reference frame 24 C. Are certain superselection rules fundamental? 25 VII. Outlook 52 D. Superselection rules and quantum cryptography 26 Acknowledgments 53 V. Aligning reference frames 28 A. Example: sending a direction with two spins 28 References 53 2 I. INTRODUCTION – WHY CONSIDER REFERENCE It is critical to note that when one has a system encod- FRAMES IN QUANTUM INFORMATION? ing directional information, such as a spin-1/2 particle in a pure state, the direction is not defined with respect Classical information theory is typically concerned to any purported absolute Newtonian space, but rather with fungible information, that is, information for which with respect to another system, for instance, a set of the means of encoding is not important. Shannon’s cod- gyroscopes in the laboratory. Similarly, a system that ing theorems, for instance, are indifferent to whether the contains phase information, such as a two-level atom in two values “0” and “1” of a classical bit correspond to a coherent superposition of ground and excited states, is two values of magnetization on a tape, two voltages on not defined relative to any purported absolute time, but a transmission line, or two positions of a bead on an rather relative to a clock. We refer to the systems with abacus. Most information-processing tasks of interest to respect to which unspeakable/nonfungible information is computer scientists and information theorists are of this defined, clocks, gyroscopes, metre sticks and so forth, as sort, whether they be communication tasks such as data reference frames. The tasks we have highlighted thus far compression, cryptographic tasks such as key distribu- can all be described as the alignment of reference frames. tion, or computational tasks such as factoring. Nonethe- Nonfungible information is nonfungible precisely because less, there are many tasks that cannot be achieved with it can only be defined with respect to a particular type fungible information but that are also aptly described of reference frame. as “information processing” tasks. Examples include the Even a quantum information theorist who is uninter- synchronization of distant clocks, the alignment of dis- ested in tasks such as clock synchronization and Carte- tant Cartesian frames, and the determination of one’s sian frame alignment must necessarily consider physical global position. Imagine for instance that Alice and Bob systems which make use of reference frames. The reason are in separate spaceships with no shared Cartesian frame is that although fungible information can be encoded into (in particular, no access to the fixed stars). There is any degree of freedom, and thus defined with respect to clearly no way for Alice to describe a direction in space any reference frame, it is still the case that some degree to Bob abstractly, that is, using nothing more than a of freedom must be chosen, and consequently some refer- string of classical bits. Rather, she must send to Bob a ence frame is required. For instance, if a two-level atomic system that can point in some direction, a token of one qubit is being used for some task, one still requires a clock of the axes of her own Cartesian frame. This token can- in the background in order to implement arbitrary prepa- not be spherically symmetric; it must have a degree of rations and measurements on this qubit even if the task freedom that can encode directional information. On the is to perform abstract quantum information-processing other hand, if she wishes to synchronize her clock with rather than as a means of distributing phase informa- Bob’s by sending him a token system, she will need to tion. In this example, one can change the relative phase make use of a system that has a natural oscillation. The between the ground and excited states of a two-level atom information that is communicated in these sorts of tasks by a specified amount by turning on a static electric field is said to be nonfungible. These two sorts of information, for a specific time interval, but this requires a suitably fungible and nonfungible, have also been referred to as precise clock as well as alignment of the field with the speakable and unspeakable (Peres and Scudo, 2002b). atomic dipole moment. The relatively young field of quantum information It follows that to lack a reference frame for a particu- theory has been primarily concerned with developing lar degree of freedom has an impact on the success with a quantum theory of speakable information. Investi- which one can perform certain quantum information pro- gators have sought to determine the degree of success cessing tasks. On several occasions there has been consid- with which various abstract information-processing tasks erable controversy over the performance of certain tasks can be achieved assuming that the systems used to im- because this impact was ignored, or not treated properly. plement these tasks obey the laws of quantum theory. As we will see, the lack of
Recommended publications
  • Mixing Indistinguishable Systems Leads to a Quantum Gibbs Paradox ✉ ✉ ✉ Benjamin Yadin 1,2 , Benjamin Morris 1 & Gerardo Adesso 1
    ARTICLE https://doi.org/10.1038/s41467-021-21620-7 OPEN Mixing indistinguishable systems leads to a quantum Gibbs paradox ✉ ✉ ✉ Benjamin Yadin 1,2 , Benjamin Morris 1 & Gerardo Adesso 1 The classical Gibbs paradox concerns the entropy change upon mixing two gases. Whether an observer assigns an entropy increase to the process depends on their ability to distinguish the gases. A resolution is that an “ignorant” observer, who cannot distinguish the gases, has 1234567890():,; no way of extracting work by mixing them. Moving the thought experiment into the quantum realm, we reveal new and surprising behaviour: the ignorant observer can extract work from mixing different gases, even if the gases cannot be directly distinguished. Moreover, in the macroscopic limit, the quantum case diverges from the classical ideal gas: as much work can be extracted as if the gases were fully distinguishable. We show that the ignorant observer assigns more microstates to the system than found by naive counting in semiclassical sta- tistical mechanics. This demonstrates the importance of accounting for the level of knowl- edge of an observer, and its implications for genuinely quantum modifications to thermodynamics. 1 School of Mathematical Sciences and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University Park, University ✉ of Nottingham, Nottingham, UK. 2 Wolfson College, University of Oxford, Oxford, UK. email: [email protected]; benjamin. [email protected]; [email protected] NATURE COMMUNICATIONS | (2021) 12:1471 | https://doi.org/10.1038/s41467-021-21620-7 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21620-7 espite its phenomenological beginnings, thermodynamics work from apparently indistinguishable gases as the informed Dhas been inextricably linked throughout the past century observer.
    [Show full text]
  • Arxiv:1812.08053V1 [Quant-Ph] 19 Dec 2018 This Motivates the Study of Quantum Communication Without a Shared Reference Frame [4]
    Communicating without shared reference frames Alexander R. H. Smith1, ∗ 1Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, USA (Dated: December 20, 2018) We generalize a quantum communication protocol introduced by Bartlett et al. [New. J. Phys. 11, 063013 (2009)] in which two parties communicating do not share a classical reference frame, to the case where changes of their reference frames form a one-dimensional noncompact Lie group. Alice sends to Bob the state ρR ⊗ρS , where ρS is the state of the system Alice wishes to communicate and ρR is the state of an ancillary system serving as a token of her reference frame. Because Bob is ignorant of the relationship between his reference frame and Alice's, he will describe the state ρR ⊗ ρS as an average over all possible reference frames. Bob measures the reference token and applies a correction to the system Alice wished to communicate conditioned on the outcome of the 0 measurement. The recovered state ρS is decohered with respect to ρS , the amount of decoherence depending on the properties of the reference token ρR. We present an example of this protocol when Alice and Bob do not share a reference frame associated with the one-dimensional translation group 0 and use the fidelity between ρS and ρS to quantify the success of the recovery operation. I. INTRODUCTION quire highly entangled states of many qubits. Another possibility for Alice and Bob to communicate Most quantum communication protocols assume that without a shared reference frame is for Alice to send Bob the parties communicating share a classical background a quantum system ρR to serve as a token of her reference reference frame.
    [Show full text]
  • Reference Frame Induced Symmetry Breaking on Holographic Screens
    S S symmetry Article Reference Frame Induced Symmetry Breaking on Holographic Screens Chris Fields 1,* , James F. Glazebrook 2,† and Antonino Marcianò 3,‡ 1 23 Rue des Lavandières, 11160 Caunes Minervois, France 2 Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL 61920, USA; [email protected] 3 Center for Field Theory and Particle Physics, Department of Physics, Fudan University, Shanghai 200433, China; [email protected] * Correspondence: fi[email protected]; Tel.: +33-6-44-20-68-69 † Adjunct Faculty: Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, IL 61820, USA. ‡ Also: Laboratori Nazionali di Frascati INFN, Frascati, Rome 00044, Italy. Abstract: Any interaction between finite quantum systems in a separable joint state can be viewed as encoding classical information on an induced holographic screen. Here we show that when such an interaction is represented as a measurement, the quantum reference frames (QRFs) deployed to identify systems and pick out their pointer states induce decoherence, breaking the symmetry of the holographic encoding in an observer-relative way. Observable entanglement, contextuality, and classical memory are, in this representation, logical and temporal relations between QRFs. Sharing entanglement as a resource requires a priori shared QRFs. Keywords: black hole; contextuality; decoherence; quantum error-correcting code; quantum refer- ence frame; system identification; channel theory Citation: Fields, C.; Glazebrook, J.F.; Marcianò, A. Reference Frame Induced Symmetry Breaking on Holographic Screens. Symmetry 2021, 1. Introduction 13, 408. https://doi.org/10.3390/ The holographic principle (HP) states, in its covariant formulation, that for any finite sym13030408 spacelike boundary B, open or closed, the classical, thermodynamic entropy S(L(B)) of Academic Editor: Kazuharu Bamba any light-sheet L(B) of B satisfies: S(L(B)) ≤ A(B) Received: 9 February 2021 /4 , (1) Accepted: 27 February 2021 where A(B) is the area of B in Planck units [1].
    [Show full text]
  • Equivalence of the Symbol Grounding and Quantum System Identification Problems
    Information 2014, 5, 172-189; doi:10.3390/info5010172 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Article Equivalence of the Symbol Grounding and Quantum System Identification Problems Chris Fields 528 Zinnia Court, Sonoma, CA 95476, USA; E-Mail: fi[email protected]; Tel.: +1-707-980-5091 Received: 13 November 2013; in revised form: 4 December 2013 / Accepted: 26 February 2014 / Published: 27 February 2014 Abstract: The symbol grounding problem is the problem of specifying a semantics for the representations employed by a physical symbol system in a way that is neither circular nor regressive. The quantum system identification problem is the problem of relating observational outcomes to specific collections of physical degrees of freedom, i.e., to specific Hilbert spaces. It is shown that with reasonable physical assumptions these problems are equivalent. As the quantum system identification problem is demonstrably unsolvable by finite means, the symbol grounding problem is similarly unsolvable. Keywords: decoherence; decompositional equivalence; physical symbol system; observable-dependent exchange symmetry; semantics; tensor-product structure 1. Introduction The symbol grounding problem (SGP) was introduced by Harnad [1] as a generalization and clarification of the semantic under-determination issues raised by Searle [2] in his famous “Chinese room” argument. With reference to a “physical symbol system” model of cognition that posits purely syntactic operations (e.g., [3–6]), Harnad stated the SGP as follows: How can the semantic interpretation of a formal symbol system be made intrinsic to the system, rather than just parasitic on the meanings in our heads? How can the meanings of the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary) shapes, be grounded in anything but other meaningless symbols? [1] (p.
    [Show full text]
  • Are Right Angles Special? the Optimal Primitive Reference Frame
    Optimal primitive reference frames. David Jennings1, 2 1Institute for Mathematical Sciences, Imperial College London, London SW7 2BW, United Kingdom 2QOLS, The Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom (Dated: November 2, 2018) We consider the smallest possible directional reference frames allowed and determine the best one can ever do in preserving quantum information in various scenarios. We find that for the preservation of a single spin state, two orthogonal spins are optimal primitive reference frames, and in a product state do approximately 22% as well as an infinite-sized classical frame. By adding a small amount of entanglement to the reference frame this can be raised to 2(2/3)5 = 26%. Under the different criterion of entanglement-preservation a very similar optimal reference frame is found, however this time for spins aligned at an optimal angle of 87 degrees. In this case 24% of the negativity is preserved. The classical limit is considered numerically, and indicates under the criterion of entanglement preservation, that 90 degrees is selected out non-monotonically, with a peak optimal angle of 96.5 degrees for L = 3 spins. PACS numbers: 03.67.-a, 03.65.Ud, 03.65.Ta I. INTRODUCTION not. In the absence of a shared classical frame, the di- rectionality must be encoded in quantum systems QRFA In information processing it is generally assumed that and QRFB that accompany the two halves of the singlet a large, classical background reference frame is defined state. The quantum information, here entanglement, is and readily available. For example, to measure the spin only partially preserved in the relational properties of of a particle along a certain axis, a Cartesian frame is the composite state.
    [Show full text]
  • Time Contraction Within Lightweight Reference Frames
    Braz J Phys (2017) 47:333–338 DOI 10.1007/s13538-017-0501-4 GENERAL AND APPLIED PHYSICS Time Contraction Within Lightweight Reference Frames Matheus F. Savi1 · Renato M. Angelo1 Received: 3 April 2017 / Published online: 20 April 2017 © Sociedade Brasileira de F´ısica 2017 Abstract The special theory of relativity teaches us that, its position, velocity, energy, mass, spin, charge, tempera- although distinct inertial frames perceive the same dynam- ture, and wave function? Some people would answer this ical laws, space and time intervals differ in value. We question in the affirmative by arguing that one can always revisit the problem of time contraction using the paradig- consider an immaterial reference system for which such matic model of a fast-moving laboratory within which a assertions would make sense. In contrast, we defend that photon is emitted and posteriorly absorbed. In our model, this position is not useful in physics because, within any sci- however, the laboratory is composed of two independent entific theory, we always look for a description that can be parallel plates, each of which allowed to be sufficiently light empirically verified by some observer. Now, the notion of so as to get kickbacks upon emission and absorption of “observer” does not need to be linked with a brain-endowed light. We show that the lightness of the laboratory accentu- organism. It suffices to think of a laboratory equipped with ates the time contraction. We also discuss how the photon apparatuses whose measurement outcomes make reference frequency shifts upon reflection in a light moving mirror. to a space-time structure, which is defined by rods and Although often imperceptible, these effects will inevitably clocks rigidly attached to this laboratory.
    [Show full text]
  • Quantum Reference Frame Transformations As Symmetries and the Paradox of the Third Particle
    Quantum reference frame transformations as symmetries and the paradox of the third particle Marius Krumm1,2, Philipp A. Hohn¨ 3,4, and Markus P. Muller¨ 1,2,5 1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria 2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Vienna, Austria 3Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan 4Department of Physics and Astronomy, University College London, London, United Kingdom 5Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo ON N2L 2Y5, Canada In a quantum world, reference frames are ulti- dox of the third particle’. We argue that it can mately quantum systems too — but what does it be reduced to the question of how to relation- mean to “jump into the perspective of a quantum ally embed fewer into more particles, and give a particle”? In this work, we show that quantum thorough physical and algebraic analysis of this reference frame (QRF) transformations appear question. This leads us to a generalization of the naturally as symmetries of simple physical sys- partial trace (‘relational trace’) which arguably tems. This allows us to rederive and generalize resolves the paradox, and it uncovers important known QRF transformations within an alterna- structures of constraint quantization within a tive, operationally transparent framework, and simple quantum information setting, such as re- to shed new light on their structure and inter- lational observables which are key in this reso- pretation. We give an explicit description of the lution. While we restrict our attention to finite observables that are measurable by agents con- Abelian groups for transparency and mathemat- strained by such quantum symmetries, and ap- ical rigor, the intuitive physical appeal of our re- ply our results to a puzzle known as the ‘para- sults makes us expect that they remain valid in more general situations.
    [Show full text]
  • Kinematics and Dynamics in Noninertial Quantum Frames of Reference
    Home Search Collections Journals About Contact us My IOPscience Kinematics and dynamics in noninertial quantum frames of reference This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2012 J. Phys. A: Math. Theor. 45 465306 (http://iopscience.iop.org/1751-8121/45/46/465306) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 200.17.209.129 The article was downloaded on 01/11/2012 at 10:30 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 45 (2012) 465306 (19pp) doi:10.1088/1751-8113/45/46/465306 Kinematics and dynamics in noninertial quantum frames of reference R M Angelo and A D Ribeiro Departamento de F´ısica, Universidade Federal do Parana,´ PO Box 19044, 81531-980, Curitiba, PR, Brazil E-mail: renato@fisica.ufpr.br Received 4 May 2012, in final form 21 September 2012 Published 31 October 2012 Online at stacks.iop.org/JPhysA/45/465306 Abstract From the principle that there is no absolute description of a physical state, we advance the approach according to which one should be able to describe the physics from the perspective of a quantum particle. The kinematics seen from this frame of reference is shown to be rather unconventional. In particular, we discuss several subtleties emerging in the relative formulation of central notions, such as vector states, the classical limit, entanglement, uncertainty relations and the complementary principle. A Hamiltonian formulation is also derived which correctly encapsulates effects of fictitious forces associated with the accelerated motion of the frame.
    [Show full text]
  • Symmetry, Reference Frames, and Relational Quantities in Quantum Mechanics
    This is a repository copy of Symmetry, Reference Frames, and Relational Quantities in Quantum Mechanics. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/127575/ Version: Accepted Version Article: Loveridge, Leon orcid.org/0000-0002-2650-9214, Miyadera, Takayuki and Busch, Paul orcid.org/0000-0002-2559-9721 (2018) Symmetry, Reference Frames, and Relational Quantities in Quantum Mechanics. Foundations of Physics. ISSN 0015-9018 https://doi.org/10.1007/s10701-018-0138-3 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ To appear in Foundations of Physics 48 (2018) Symmetry, Reference Frames, and Relational Quantities in Quantum Mechanics Leon Loveridge · Takayuki Miyadera · Paul Busch Abstract We propose that observables in quantum theory are properly under- stood as representatives of symmetry-invariant quantities relating one system to another, the latter to be called a reference system. We provide a rigorous mathematical language to introduce and study quantum reference systems, showing that the orthodox “absolute” quantities are good representatives of observable relative quantities if the reference state is suitably localised.
    [Show full text]
  • A Relational Approach to Quantum Reference Frames for Spins
    A relational approach to quantum reference frames for spins Jacques Pienaar In the literature on quantum reference frames, the internal (relative) properties of a system are defined as those which are preserved under an arbitrary change of reference frame. For a system of quantum spins, these are all properties preserved by proper spatial rotations of the laboratory. However, this approach does not account for the hypothetical possibility of the laboratory becoming entangled to the system, as described by a second laboratory (the ‘Wigner’s friend’ scenario), in which case the relationship between the two laboratories is not a rotation, but is fundamentally quantum. To overcome this limitation, we re-define the reference frame transformations to be those that preserve the fidelities between subsystems. This enables us to derive U(2) as the correct symmetry group for transformations of a system of N spin-half particles. Next, we propose that systems having the same internal properties should be regarded as physically equivalent in the absence of an external frame. Remarkably, this implies that a single spin in a superposition relative to a spin magnet is equivalent to a macroscopic superposition of the magnet relative to the spin. We discuss the implications of this result for the Wigner’s friend paradox. I. INTRODUCTION spired by Rovelli’s relational interpretation, according to which different observers may give different accounts of the same physical situation. It follows that any disagree- What is the meaning of a quantum state Ψ ? It can ments between them must be about external quantities. ultimately only have meaning in the context| i of a lab- However, since the observers themselves must obey quan- oratory in which it is possible to prepare and measure tum mechanics, their accounts must also be consistent quantum systems under controlled conditions.
    [Show full text]
  • Path Integral Implementation of Relational Quantum Mechanics Jianhao M
    www.nature.com/scientificreports OPEN Path integral implementation of relational quantum mechanics Jianhao M. Yang Relational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In a recent paper (Yang in Sci Rep 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born’s Rule, Schrödinger Equations, and measurement theory. This paper further extends the reformulation efort in three aspects. First, it gives a clearer explanation of the key concepts behind the framework to calculate measurement probability. Second, we provide a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifes the physical meaning of the relational probability amplitude, but also allows us to elegantly explain the double slit experiment, to describe the interaction history between the measured system and a series of measuring systems, and to calculate entanglement entropy based on path integral and infuence functional. In return, the implementation brings back new insight to path integral itself by completing the explanation on why measurement probability can be calculated as modulus square of probability amplitude. Lastly, we clarify the connection between our reformulation and the quantum reference frame theory. A complete relational formulation of quantum mechanics needs to combine the present works with the quantum reference frame theory. Quantum mechanics was originally developed as a physical theory to explain the experimental observations of a quantum system in a measurement. In the early days of quantum mechanics, Bohr had emphasized that the description of a quantum system depends on the measuring apparatus1–3.
    [Show full text]
  • S41467-018-08155-0.Pdf
    ARTICLE https://doi.org/10.1038/s41467-018-08155-0 OPEN Quantum mechanics and the covariance of physical laws in quantum reference frames Flaminia Giacomini1,2, Esteban Castro-Ruiz1,2 & Časlav Brukner1,2 In physics, every observation is made with respect to a frame of reference. Although refer- ence frames are usually not considered as degrees of freedom, in all practical situations it is a physical system which constitutes a reference frame. Can a quantum system be considered 1234567890():,; as a reference frame and, if so, which description would it give of the world? Here, we introduce a general method to quantise reference frame transformations, which generalises the usual reference frame transformation to a “superposition of coordinate transformations”. We describe states, measurement, and dynamical evolution in different quantum reference frames, without appealing to an external, absolute reference frame, and find that entangle- ment and superposition are frame-dependent features. The transformation also leads to a generalisation of the notion of covariance of dynamical physical laws, to an extension of the weak equivalence principle, and to the possibility of defining the rest frame of a quantum system. 1 Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. 2 Institute of Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria. Correspondence and requests for materials should be addressed to F.G. (email: fl[email protected]) NATURE COMMUNICATIONS | (2019) 10:494 | https://doi.org/10.1038/s41467-018-08155-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08155-0 he state of a physical system has no absolute meaning, but via a ‘generalised coordinate transformation’ from an initial QRF Tis only defined relative to the observer’s reference frame in to a final QRF, which does not only involve the observed system, the laboratory.
    [Show full text]