Quantum Reference Frame Transformations As Symmetries and the Paradox of the Third Particle
Total Page:16
File Type:pdf, Size:1020Kb
Quantum reference frame transformations as symmetries and the paradox of the third particle Marius Krumm1,2, Philipp A. Hohn¨ 3,4, and Markus P. Muller¨ 1,2,5 1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria 2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Vienna, Austria 3Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan 4Department of Physics and Astronomy, University College London, London, United Kingdom 5Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo ON N2L 2Y5, Canada In a quantum world, reference frames are ulti- dox of the third particle’. We argue that it can mately quantum systems too — but what does it be reduced to the question of how to relation- mean to “jump into the perspective of a quantum ally embed fewer into more particles, and give a particle”? In this work, we show that quantum thorough physical and algebraic analysis of this reference frame (QRF) transformations appear question. This leads us to a generalization of the naturally as symmetries of simple physical sys- partial trace (‘relational trace’) which arguably tems. This allows us to rederive and generalize resolves the paradox, and it uncovers important known QRF transformations within an alterna- structures of constraint quantization within a tive, operationally transparent framework, and simple quantum information setting, such as re- to shed new light on their structure and inter- lational observables which are key in this reso- pretation. We give an explicit description of the lution. While we restrict our attention to finite observables that are measurable by agents con- Abelian groups for transparency and mathemat- strained by such quantum symmetries, and ap- ical rigor, the intuitive physical appeal of our re- ply our results to a puzzle known as the ‘para- sults makes us expect that they remain valid in more general situations. <latexit sha1_base64="1uAEiDp0HbNGJ/CNa5TpdkIjuno=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPBiyepYG2hCWWznbRLN5tldyOU2L/hxYOCePXHePPfuG1z0NYHA4/3ZpiZF0nOtPG8b6e0tr6xuVXeruzs7u0fVA+PHnSaKYptmvJUdSOikTOBbcMMx65USJKIYycaX8/8ziMqzVJxbyYSw4QMBYsZJcZKwVMgNQsUEUOO/WrNq3tzuKvEL0gNCrT61a9gkNIsQWEoJ1r3fE+aMCfKMMpxWgkyjZLQMRliz1JBEtRhPr956p5ZZeDGqbIljDtXf0/kJNF6kkS2MyFmpJe9mfif18tMfBXmTMjMoKCLRXHGXZO6swDcAVNIDZ9YQqhi9laXjogi1NiYKjYEf/nlVdK5qPuNuu/fNWrN2yKPMpzAKZyDD5fQhBtoQRsoSHiGV3hzMufFeXc+Fq0lp5g5hj9wPn8ACoOSMA==</latexit> 0 n-1 1 | i 1 Cyclic 2 translations, N=3 <latexit sha1_base64="4PiHjr2w4kH2DzfJT0RJ/k24npg=">AAAB9HicbVBNS8NAFHypX7V+VT16WSyCp5JIQY9FLx4rWFtsQtlst+3SzSbsvggl9G948aAgXv0x3vw3btoctHVgYZh5jzc7YSKFQdf9dkpr6xubW+Xtys7u3v5B9fDowcSpZrzNYhnrbkgNl0LxNgqUvJtoTqNQ8k44ucn9zhPXRsTqHqcJDyI6UmIoGEUr+X5EcRyG2eOsr/rVmlt35yCrxCtIDQq0+tUvfxCzNOIKmaTG9Dw3wSCjGgWTfFbxU8MTyiZ0xHuWKhpxE2TzzDNyZpUBGcbaPoVkrv7eyGhkzDQK7WSe0Sx7ufif10txeBVkQiUpcsUWh4apJBiTvAAyEJozlFNLKNPCZiVsTDVlaGuq2BK85S+vks5F3WvUPe+uUWteF32U4QRO4Rw8uIQm3EIL2sAggWd4hTcndV6cd+djMVpyip1j+APn8wfta5IU</latexit> 3 2 group CnZn 4 ... arXiv:2011.01951v2 [quant-ph] 21 Aug 2021 Figure 1: The simplest example of this article’s setup: a discretization of wave functions in one spatial dimension under translation symmetry. The configuration space is the cyclic group Zn, and the one-particle Hilbert space is 2 n ⊗N H = ` (Zn) ' C . We have N distinguishable particles in a joint quantum state |ψi ∈ H , and we study QRF transformations that switch between the “perspectives of the particles”. Marius Krumm: [email protected] Philipp A. H¨ohn: [email protected] Markus P. Muller:¨ [email protected] Accepted in Quantum 2021-06-18, click title to verify. Published under CC-BY 4.0. 1 Contents 1 Introduction 2 2 Quantum information vs. structural approach to reference frames4 2.1 Describing physics with or without external relatum . 4 2.2 Communication scenarios illustrating the two approaches . 6 3 From symmetries to QRF transformations and invariant observables9 3.1 G-systems and their symmetries . 10 3.2 Invariant observables and Hilbert space decomposition . 12 3.3 Group averaging states . 14 3.4 Alignable states as states with a canonical representation . 16 3.5 QRF transformations as symmetry group elements . 16 3.6 Characterization of alignable states . 17 3.7 Alignable and relational observables . 18 3.8 Communication scenario of the structural approach revisited . 20 4 The paradox of the third particle and the relational trace 20 4.1 The non-uniqueness of invariant embeddings . 21 4.2 A class of invariant traces . 24 4.3 Definition of the relational trace . 25 4.4 Relational resolution of the paradox . 28 4.5 Comparison to the resolution by Angelo et al. 28 5 Conclusions 29 Acknowledgments 32 References 32 1 Introduction ticle see the interferometer” [50]? A central topic in this approach is the QRF de- All physical quantities are described relative to pendence of observable properties like superposi- some frame of reference. But since all physical sys- tion, entanglement [38–40], classicality [39, 51, 52], tems are fundamentally quantum, reference frames or of quantum resources [53]. The corresponding must ultimately be quantum systems, too. This sim- QRF transformations admit an unambiguous defi- ple insight is of fundamental importance in a vari- nition of spin in relativistic settings by transform- ety of physical fields, including the foundations of ing to a particle’s rest frame [46, 47], they describe quantum physics [1–11], quantum information the- the comparison of quantum clock readings [42, 45], ory [12–19], quantum thermodynamics [20–28], and and they yield an alternative approach to indefinite quantum gravity [29–37]. causal structure [48,54]. Among other conceived ap- Recently, there has been a wave of interest in plications, they are furthermore conjectured to play a specific approach to quantum reference frames a crucial rule in the implementation of a “quan- (QRFs) that we can broadly classify as structural in tum equivalence principle” [55] as well as in space- nature, including e.g. Refs. [38–49]. This approach time singularity resolution [56] and the description extends the usual concept of reference frames by as- of early universe power spectra [57, 58] in quantum sociating them with quantum systems, and by de- gravity and cosmology. scribing the physical situation of interest from the Despite the broad appeal, several fundamental “internal perspective” of that quantum system. For and conceptual questions remain open. For exam- example, if an interferometer has a particle travel- ple, how should we make concrete sense of the ling in a superposition of paths, how “does the par- idea of “jumping into the reference frame of a parti- Accepted in Quantum 2021-06-18, click title to verify. Published under CC-BY 4.0. 2 cle”? How are QRF transformations different from broader conceptual framework. any other unitary change of basis in Hilbert space? What kind of physical symmetry claim is associ- <latexit sha1_base64="6S6WBk7iUa+MqlZtKhcadui8Yck=">AAACA3icbVBPS8MwHE3nvzn/VT2Jl+AQPI1WBnocevE4wbrBWkqapVtYkpYkFUYpXvwqXjwoiFe/hDe/jenWg24+CDze+/3I+70oZVRpx/m2aiura+sb9c3G1vbO7p69f3Cvkkxi4uGEJbIfIUUYFcTTVDPSTyVBPGKkF02uS7/3QKSiibjT05QEHI0EjSlG2kihfeT5VPgc6TFGLPeKMPclh2rKi9BuOi1nBrhM3Io0QYVuaH/5wwRnnAiNGVJq4DqpDnIkNcWMFA0/UyRFeIJGZGCoQJyoIJ+dUMBTowxhnEjzhIYz9fdGjrgyqSIzWYZVi14p/ucNMh1fBjkVaaaJwPOP4oxBncCyDzikkmDNpoYgLKnJCvEYSYS1aa1hSnAXT14mvfOW22657m272bmq+qiDY3ACzoALLkAH3IAu8AAGj+AZvII368l6sd6tj/lozap2DsEfWJ8/gmeX9A==</latexit> U ated with the intuition that QRF changes “leave Alignable states 2 Usym the physics invariant”? Furthermore, there are re- symmetry group ported difficulties to extend basic quantum infor- <latexit sha1_base64="oNGgkMRW12WpYpkUDVUeT6b3kt8=">AAAB9XicdVBNS8NAEJ34WetX1aOXxSJ4CkkNrd4KXjxWsLbQhLLZbtqlm03c3RRK6O/w4kFBvPpfvPlv3LYRVPTBwOO9GWbmhSlnSjvOh7Wyura+sVnaKm/v7O7tVw4O71SSSULbJOGJ7IZYUc4EbWumOe2mkuI45LQTjq/mfmdCpWKJuNXTlAYxHgoWMYK1kQK/xfq5L2PExGTWr1Qd26vV6ucOWpLLRkGcOnJtZ4EqFGj1K+/+ICFZTIUmHCvVc51UBzmWmhFOZ2U/UzTFZIyHtGeowDFVQb44eoZOjTJAUSJNCY0W6veJHMdKTePQdMZYj9Rvby7+5fUyHV0EORNppqkgy0VRxpFO0DwBNGCSEs2nhmAimbkVkRGWmGiTU9mE8PUp+p90arbr2a5741WbXpFHCY7hBM7AhQY04Rpa0AYC9/AAT/BsTaxH68V6XbauWMXMEfyA9fYJs2uSfg==</latexit> <latexit sha1_base64="oNGgkMRW12WpYpkUDVUeT6b3kt8=">AAAB9XicdVBNS8NAEJ34WetX1aOXxSJ4CkkNrd4KXjxWsLbQhLLZbtqlm03c3RRK6O/w4kFBvPpfvPlv3LYRVPTBwOO9GWbmhSlnSjvOh7Wyura+sVnaKm/v7O7tVw4O71SSSULbJOGJ7IZYUc4EbWumOe2mkuI45LQTjq/mfmdCpWKJuNXTlAYxHgoWMYK1kQK/xfq5L2PExGTWr1Qd26vV6ucOWpLLRkGcOnJtZ4EqFGj1K+/+ICFZTIUmHCvVc51UBzmWmhFOZ2U/UzTFZIyHtGeowDFVQb44eoZOjTJAUSJNCY0W6veJHMdKTePQdMZYj9Rvby7+5fUyHV0EORNppqkgy0VRxpFO0DwBNGCSEs2nhmAimbkVkRGWmGiTU9mE8PUp+p90arbr2a5741WbXpFHCY7hBM7AhQY04Rpa0AYC9/AAT/BsTaxH68V6XbauWMXMEfyA9fYJs2uSfg==</latexit> mation concepts into this context. For example, <latexit sha1_base64="cFO3MjBWKSc70gnQMOo+VEYxG0c=">AAAB/HicbVBNS8NAEJ3Ur1q/Yj16WSyCp5JIQY8FLx4rWFtoQthsN+3S3STsbsQQ8le8eFAQr/4Qb/4bt20O2vpg4PHeDDPzwpQzpR3n26ptbG5t79R3G3v7B4dH9nHzQSWZJLRPEp7IYYgV5Symfc00p8NUUixCTgfh7GbuDx6pVCyJ73WeUl/gScwiRrA2UmA3vSnWXo8FhScFSqe5KgO75bSdBdA6cSvSggq9wP7yxgnJBI014Vipkeuk2i+w1IxwWja8TNEUkxme0JGhMRZU+cXi9hKdG2WMokSaijVaqL8nCiyUykVoOgXWU7XqzcX/vFGmo2u/YHGaaRqT5aIo40gnaB4EGjNJiea5IZhIZm5FZIolJtrE1TAhuKsvr5PBZdvttF33rtPqdqo86nAKZ3ABLlxBF26hB30g8ATP8ApvVmm9WO/Wx7K1ZlUzJ/AH1ucPw9yUrg==</latexit> <latexit sha1_base64="cFO3MjBWKSc70gnQMOo+VEYxG0c=">AAAB/HicbVBNS8NAEJ3Ur1q/Yj16WSyCp5JIQY8FLx4rWFtoQthsN+3S3STsbsQQ8le8eFAQr/4Qb/4bt20O2vpg4PHeDDPzwpQzpR3n26ptbG5t79R3G3v7B4dH9nHzQSWZJLRPEp7IYYgV5Symfc00p8NUUixCTgfh7GbuDx6pVCyJ73WeUl/gScwiRrA2UmA3vSnWXo8FhScFSqe5KgO75bSdBdA6cSvSggq9wP7yxgnJBI014Vipkeuk2i+w1IxwWja8TNEUkxme0JGhMRZU+cXi9hKdG2WMokSaijVaqL8nCiyUykVoOgXWU7XqzcX/vFGmo2u/YHGaaRqT5aIo40gnaB4EGjNJiea5IZhIZm5FZIolJtrE1TAhuKsvr5PBZdvttF33rtPqdqo86nAKZ3ABLlxBF26hB30g8ATP8ApvVmm9WO/Wx7K1ZlUzJ/AH1ucPw9yUrg==</latexit>