What Is Glen Canyon Dam's Value and Should It Be Decommissioned?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Little Colorado River Project: Is New Hydropower Development the Key to a Renewable Energy Future, Or the Vestige of a Failed Past?
COLORADO NATURAL RESOURCES, ENERGY & ENVIRONMENTAL LAW REVIEW The Little Colorado River Project: Is New Hydropower Development the Key to a Renewable Energy Future, or the Vestige oF a Failed Past? Liam Patton* Table of Contents INTRODUCTION ........................................................................................ 42 I. THE EVOLUTION OF HYDROPOWER ON THE COLORADO PLATEAU ..... 45 A. Hydropower and the Development of Pumped Storage .......... 45 B. History of Dam ConstruCtion on the Plateau ........................... 48 C. Shipping ResourCes Off the Plateau: Phoenix as an Example 50 D. Modern PoliCies for Dam and Hydropower ConstruCtion ...... 52 E. The Result of Renewed Federal Support for Dams ................. 53 II. HYDROPOWER AS AN ALLY IN THE SHIFT TO CLEAN POWER ............ 54 A. Coal Generation and the Harms of the “Big Buildup” ............ 54 B. DeCommissioning Coal and the Shift to Renewable Energy ... 55 C. The LCR ProjeCt and “Clean” Pumped Hydropower .............. 56 * J.D. Candidate, 2021, University oF Colorado Law School. This Note is adapted From a final paper written for the Advanced Natural Resources Law Seminar. Thank you to the Colorado Natural Resources, Energy & Environmental Law Review staFF For all their advice and assistance in preparing this Note For publication. An additional thanks to ProFessor KrakoFF For her teachings on the economic, environmental, and Indigenous histories of the Colorado Plateau and For her invaluable guidance throughout the writing process. I am grateFul to share my Note with the community and owe it all to my professors and classmates at Colorado Law. COLORADO NATURAL RESOURCES, ENERGY & ENVIRONMENTAL LAW REVIEW 42 Colo. Nat. Resources, Energy & Envtl. L. Rev. [Vol. 32:1 III. ENVIRONMENTAL IMPACTS OF PLATEAU HYDROPOWER ............... -
Comprehensive Review of the Fill Lake Mead First Initiative
Comprehensive Review of the Fill Lake Mead First Initiative Trevor Carey ECL 290 February 28th, 2018 Lake Powell • Commissioned in 1966, full pool 1980 • 2nd largest man-made reservoir in United States (24.3 MAF) • Important for water storage and power generation for the Western United States USBR (2015) Impacts of Lake Powell and Glen Canyon Dam Fish Mollie & Aviva: Showed the dam almost eliminated sediment flows, decreased river temp. and allowed for a more hospitable environment for non-native fish. Vanessa: Discussed how dams contributed the extirpation of native fish. Water Rights Jesse & Jennifer: Native American’s access to water rights in the upper and lower basin, (Navajo water rights are in the Lake Powell watershed). Sediment Jeff: Sediment regime of the lower basin has been completely altered by impoundment of Lake Powell. Sarah: How dams contributed to changes to riparian ecosystems. Jasmin: Using high flow experiments to redistribute sediment and create beaches Dam Operation Marisa: Citizen science program looking at tidal effects caused by the dam Other Ann: Habitat destruction of the Kanab Ambersnail from high flows Fill Lake Mead First Initiative • Reservoir levels of both Lake Mead & Powell have been hovering around 50% full • Recent studies Barnett and Pierce (2008) and Kirk et al. (2017) showed reservoir levels will continue to decline, and hot drier conditions will be more common • Drain water from Lake Powell to fill Lake Mead • Glen Canyon dam would become a run of the river dam, with additional flood control capacity if needed Data courtesy of water-data.com Goals of FLMF • First proposed by Glen Canyon Institute in 2013 • Identified 3 goals of the initiative: 1. -
Operation of Flaming Gorge Dam Final Environmental Impact Statement
Record of Decision Operation of Flaming Gorge Dam Final Environmental Impact Statement I. Summary of Action and Background The Bureau of Reclamation (Reclamation) has completed a final environmental impact statement (EIS) on the operation of Flaming Gorge Dam. The EIS describes the potential effects of modifying the operation of Flaming Gorge Dam to assist in the recovery of four endangered fish, and their critical habitat, downstream from the dam. The four endangered fish species are Colorado pikeminnow (Ptychocheilus lucius), humpback chub (Gila cypha), razorback sucker (Xyrauchen texanus), and bonytail (Gila elegans). Reclamation would implement the proposed action by modifying the operations of Flaming Gorge Dam, to the extent possible, to achieve the flows and temperatures recommended by participants of the Upper Colorado River Endangered Fish Recovery Program (Recovery Program). Reclamation’s goal is to implement the proposed action and, at the same time, maintain and continue all authorized purposes of the Colorado River Storage Project. The purpose of the proposed action is to operate Flaming Gorge Dam to protect and assist in recovery of the populations and designated critical habitat of the four endangered fishes, while maintaining all authorized purposes of the Flaming Gorge Unit of the Colorado River Storage Project (CRSP), including those related to the development of water resources in accordance with the Colorado River Compact. As the Federal agency responsible for the operation of Flaming Gorge Dam, Reclamation was the lead agency in preparing the EIS. Eight cooperating agencies also participated in preparing this EIS: the Bureau of Indian Affairs (BIA), Bureau of Land Management, National Park Service, State of Utah Department of Natural Resources, U.S. -
Grand Canyon Helicopter Tours
GRAND CANYON HELICOPTER TOURS * * $289 Adult • $269 Child (Ages 2 - 11) + $35 Fees $364 Adult • $344 Child (Ages 2 - 11) + $80 Fees GRAND CANYON SOAR LIKE AN EAGLE THROUGH THE GRAND CANYON • Descend 4,000 feet into the Grand Canyon MOST AND SEE THE BEAUTIFUL BOWL OF FIRE. • Touch down by the banks of the Colorado River POPULAR • Champagne picnic under an authentic Hualapai Indian shelter TOUR! & Las Vegas Tours • Air only excursion through the Grand Canyon • Views of Lake Mead, Hoover Dam, Fortication Hill and the Grand Wash Clis • Views of Lake Mead, Hoover Dam, Fortification Hill and the Grand Wash Clis • Tour Duration: Approximately 4 hours (hotel to hotel) World’s Largest Grand Canyon Air Tour Company, since 1965! • Tour Duration: Approximately 3 hours (hotel to hotel) • $40 SUNSET UPGRADE (PBW-4S) • ADD LIMO TRANSFERS & STRIP FLIGHT (PLW-1) $404 Adult • $384 Child (ages 2-11) + $80 Fees $349 Adult • $329 Child (Ages 2-11) + $40 Fees • ADD LIMO TRANSFERS & STRIP FLIGHT (PLW-4) $414 Adult • $394 Child (ages 2-11) + $80 Fees • ADD LIMO TRANSFERS, SUNSET & STRIP FLIGHT (PLW-4S) $454 Adult • $434 Child (ages 2-11) + $80 Fees $94 Adult • $74 Child (Ages 2 - 11) + $10 Fees TAKE TO THE SKIES OVER THE DAZZLING AND WORLD FAMOUS LAS VEGAS "STRIP"! • Views of the MGM, New York New York, Caesar’s Palace, Bellagio, Mirage and more • Fly by the Stratosphere Tower and downtown Glitter Gulch where Las Vegas began • Complimentary champagne toast L’excursion aérienne Die vielseitigste Papillon- Veleggiate al di sotto del キャニオン上空を低 La visita aérea más • Tour Duration: Approx. -
Equity and the Colorado River Compact
TOJCI.ROBISON & KENNEY.DOC 11/26/2012 8:47 PM EQUITY AND THE COLORADO RIVER COMPACT BY JASON A. ROBISON & DOUGLAS S. KENNEY* The Colorado River and the elaborate body of laws governing its flows (Law of the River) are at a critical juncture, with a formidable imbalance between water supplies and demands prompting diverse efforts to evaluate and to think anew about Colorado River governance. One such effort is the Colorado River Governance Initiative (CRGI) at the University of Colorado Law School. Incorporating CRGI research undertaken over the past two-and-a-half years, this Article focuses on the interstate compact constituting the foundation of the Law of the River—the Colorado River Compact (Compact)—and approaches the water apportionment scheme established by this Compact as a subject of central importance in current efforts to navigate the future of the river. Lying at the base of the Compact is a commitment to equity—“equitable division and apportionment of the use of the waters of the Colorado River System”—which poses the fundamental question explored in this Article: To what extent does the Compact’s apportionment scheme fulfill this commitment to equity in its existing form? After providing an initial overview of the Compact, this Article considers the meaning of “equity” as a norm, setting the stage for a subsequent examination of water supplies and demands in the basin and of longstanding interpretive disputes involving the Compact’s key terms. This examination reveals several equity-related concerns associated with the composition of the Compact’s apportionment scheme and the governance structure devised for it. -
3.6 Riverflow Issues
AFFECTED ENVIRONMENT & ENVIRONMENTAL CONSEQUENCES CHAPTER 3 3.6 RIVERFLOW ISSUES 3.6.1 INTRODUCTION This section considers the potential effects of interim surplus criteria on three types of releases from Glen Canyon Dam and Hoover Dam. The Glen Canyon Dam releases analyzed are those needed for restoration of beaches and habitat along the Colorado River between the Glen Canyon Dam and Lake Mead, and for a yet to be defined program of low steady summer flows to be provided for the study and recovery of endangered Colorado River fish, in years when releases from the dam are near the minimum. The Hoover Dam releases analyzed are the frequency of flood releases from the dam and the effect of flood flows along the river downstream of Hoover Dam. 3.6.2 BEACH/HABITAT-BUILDING FLOWS The construction and operation of Glen Canyon Dam has caused two major changes related to sediment resources downstream in Glen Canyon and Grand Canyon. The first is reduced sediment supply. Because the dam traps virtually all of the incoming sediment from the Upper Basin in Lake Powell, the Colorado River is now released from the dam as clear water. The second major change is the reduction in the high water zone from the level of pre-dam annual floods to the level of powerplant releases. Thus, the height of annual sediment deposition and erosion has been reduced. During the investigations leading to the preparation of the Operation of Glen Canyon Dam Final EIS (Reclamation, 1995b), the relationships between releases from the dam and downstream sedimentation processes were brought sharply into focus, and flow patterns designed to conserve sediment for building beaches and habitat (i.e., beach/habitat-building flow, or BHBF releases) were identified. -
Busting the Big One Activists Claim That Decommissioning Glen Canyon Dam Will Save Water and Restore a Wild Canyon
BUSTING THE BIG ONE Activists claim that decommissioning Glen Canyon Dam will save water and restore a wild canyon. Are they right? BY Krista LaNGLOIS “I just read n 1963, Glen Canyon was pronounced dead. Glen Can- Meanwhile, Lake Powell may be squandering the very re- yon Dam had submerged its fabled grottoes, Ancestral source it was designed to protect. Every day, water slowly seeps what everyone Puebloan cliff dwellings and slickrock chutes beneath the into the soft, porous sandstone beneath the reservoir and evapo- else had I stagnant water of Lake Powell, and forever altered the rates off its surface into the desert air. When more water flowed in ecology of the Grand Canyon just downstream. the system, this hardly mattered. But in an era where “every drop forgotten.” For wilderness lovers, the 710-foot-tall concrete wall stuck counts,” says Eric Balken, executive director of the nonprofit Glen out of the Colorado River like a middle finger — an insult that Canyon Institute, it calls for a drastic re-evaluation of the Colo- —Jack Schmidt, helped ignite the modern environmental movement. In 1981, rado River’s plumbing. “The Colorado River can no longer sustain watershed scientist the radical group Earth First! faked a “crack” on the dam by two huge reservoirs,” Balken says. “There isn’t enough water.” who evaluated water unfurling a 300-foot-long black banner down the structure’s That’s one reason the Glen Canyon Institute is pushing an savings and loss from Lake Powell front. The Sierra Club’s first executive director, David Brower, audacious proposal called “Fill Mead First,” which calls for the and Lake Mead considered the dam’s construction a personal failure and spent U.S. -
Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics
Effects of the Glen Canyon Dam on Colorado River Temperature Dynamics GEL 230 – Ecogeomorphology University of California, Davis Derek Roberts March 2nd, 2016 Abstract: At the upstream end of the Grand Canyon, the Glen Canyon Dam has changed the Colorado River from a run-of-the-river flow to a deep, summer-stratified reservoir. This change in flow regime significantly alters the temperature regime of the Colorado River. Seasonal temperature variation, once ranging from near to almost , is now limited to 7 . The lack of warm summer temperatures has prevented spawning of endangered 0℃ 30℃ humpback chub in the Colorado River. Implementation of a temperature control device, to − 14℃ allow for warmer summer releases to mitigate negative temperature effects on endangered fish, was considered by the federal government. Ultimately, this proposal was put on indefinite hold by the Bureau of Reclamation and U.S. Fish and Wildlife Service due to concerns of cost and unintended ecological consequences. The low-variability of the current dam-induced Colorado River temperature regime will continue into the foreseeable future. Agencies are reviewing humpback chub conservation efforts outside of temperature control. Keywords: Colorado River, Grand Canyon, Glen Canyon Dam, thermal dynamics 1.0 Introduction Temperature in natural water bodies is a primary driver of both ecological and physical processes. Freshwater plant and animal metabolisms are heavily affected by temperature (Coulter 2014). Furthermore, the thermal structure of a water body has significant impacts on the physical processes that drive ecosystem function (Hodges et al 2000); fluid dynamics drive transport of nutrients, oxygen, and heat. Human action, often the introduction of dams or industrial cooling systems, can alter the natural thermal regimes of rivers and lakes leading to reverberating impacts throughout associated ecosystems. -
Colorado River Compact, 1922
Colorado River Compact, 1922 The States of Arizona, California, Colorado, Nevada, New Mexico, Utah, and Wyoming, having resolved to enter into a compact under the Act of the Congress of the United States of America approved August 19, 1921 (42 Statutes at Large, page 171), and the Acts of the Legislatures of the said States, have through their Governors appointed as their Commissioners: W.S. Norviel for the State of Arizona, W.F. McClure for the State of California, Delph E. Carpenter for the State of Colorado, J.G. Scrugham for the State of Nevada, Stephen B. Davis, Jr., for the State of New Mexico, R.E. Caldwell for the State of Utah, Frank C. Emerson for the State of Wyoming, who, after negotiations participated in by Herbert Hoover appointed by The President as the representative of the United States of America, have agreed upon the following articles: ARTICLE I The major purposes of this compact are to provide for the equitable division and apportionment of the use of the waters of the Colorado River System; to establish the relative importance of different beneficial uses of water, to promote interstate comity; to remove causes of present and future controversies; and to secure the expeditious agricultural and industrial development of the Colorado River Basin, the storage of its waters, and the protection of life and property from floods. To these ends the Colorado River Basin is divided into two Basins, and an apportionment of the use of part of the water of the Colorado River System is made to each of them with the provision that further equitable apportionments may be made. -
Executive Summary U.S
Glen Canyon Dam Long-Term Experimental and Management Plan Environmental Impact Statement PUBLIC DRAFT Executive Summary U.S. Department of the Interior Bureau of Reclamation, Upper Colorado Region National Park Service, Intermountain Region December 2015 Cover photo credits: Title bar: Grand Canyon National Park Grand Canyon: Grand Canyon National Park Glen Canyon Dam: T.R. Reeve High-flow experimental release: T.R. Reeve Fisherman: T. Gunn Humpback chub: Arizona Game and Fish Department Rafters: Grand Canyon National Park Glen Canyon Dam Long-Term Experimental and Management Plan December 2015 Draft Environmental Impact Statement 1 CONTENTS 2 3 4 ACRONYMS AND ABBREVIATIONS .................................................................................. vii 5 6 ES.1 Introduction ............................................................................................................ 1 7 ES.2 Proposed Federal Action ........................................................................................ 2 8 ES.2.1 Purpose of and Need for Action .............................................................. 2 9 ES.2.2 Objectives and Resource Goals of the LTEMP ....................................... 3 10 ES.3 Scope of the DEIS .................................................................................................. 6 11 ES.3.1 Affected Region and Resources .............................................................. 6 12 ES.3.2 Impact Topics Selected for Detailed Analysis ........................................ 6 13 ES.4 -
Natural Capital in the Colorado River Basin
NATURE’S VALUE IN THE COLORADO RIVER BASIN NATURE’S VALUE IN THE COLORADO RIVER BASIN JULY, 2014 AUTHORS David Batker, Zachary Christin, Corinne Cooley, Dr. William Graf, Dr. Kenneth Bruce Jones, Dr. John Loomis, James Pittman ACKNOWLEDGMENTS This study was commissioned by The Walton Family Foundation. Earth Economics would like to thank our project advisors for their invaluable contributions and expertise: Dr. Kenneth Bagstad of the United States Geological Survey, Dr. William Graf of the University of South Carolina, Dr. Kenneth Bruce Jones of the Desert Research Institute, and Dr. John Loomis of Colorado State University. We would like to thank our team of reviewers, which included Dr. Kenneth Bagstad, Jeff Mitchell, and Leah Mitchell. We would also like to thank our Board of Directors for their continued support and guidance: David Cosman, Josh Farley, and Ingrid Rasch. Earth Economics research team for this study included Cameron Otsuka, Jacob Gellman, Greg Schundler, Erica Stemple, Brianna Trafton, Martha Johnson, Johnny Mojica, and Neil Wagner. Cover and layout design by Angela Fletcher. The authors are responsible for the content of this report. PREPARED BY 107 N. Tacoma Ave Tacoma, WA 98403 253-539-4801 www.eartheconomics.org [email protected] ©2014 by Earth Economics. Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. FUNDED BY EARTH ECONOMICS i ABSTRACT This study presents an economic characterization of the value of ecosystem services in the Colorado River Basin, a 249,000 square mile region spanning across mountains, plateaus, and low-lying valleys of the American Southwest. -
Lake Mead and Lake Powell
Colorado River Water Supply Report Agenda Number 12. Total System Contents: 27.507 MAF 68% 8/26/13 Reservoir Capacities (MAF) Reservoir Current Change Maximum 76% Lake Mead 12.25 + 0.02 25.90 Lake Powell 10.84 - 0.55 24.30 Flaming Gorge Reservoir 2.84 - 0.05 3.75 Navajo Reservoir 0.86 - 0.05 1.70 Blue Mesa Reservoir 0.37 - 0.03 0.83 Fontenelle Reservoir 0.23 - 0.01 0.34 Morrow Point Reservoir 0.11 0.00 0.12 44% Lake Powell 3,700’ 97% 45%, 10.839 MAF 3,590’ 51% Lake Mead 1,220’ 47%, 12.248 MAF 1,106’ 1,075’ 3,680 1,130 Lake Powell Elevations (2013 August 24-Month Study) Lake Mead Elevations (2013 August 24-Month Study) 3,660 1,120 3,640 1,110 3,620 1,100 3,600 1,090 3,580 1,080 Historical 3,560 1,070 Historical Maximum Probable Forecast Maximum Probable Forecast Most Probable Forecast Most Probable Forecast 3,540 1,060 Minimum Probable Forecast Minimum Probable Forecast Shortage 3,520 1,050 The August 2013 24-Month study projected that with an annual release of 8.23 MAF (as was consistent in water year Based on a 2013), the January 1st elevation of Lake Powell would be potential shortage 3,574 ft, which is less than 3,575 ft and places Lake Powell in 2016, impacts to in the mid-elevation release tier. Since Lake Mead is not CAP projected below 1,025 ft, according to the 2007 Interim Guidelines, demand in 2016 under this operational tier annual releases from Lake would include a 320 Powell to Lake Mead will be reduced to 7.48 MAF (for water KAF reduction to year 2014).