ASTR 565 Stellar Structure and Evolution Fall 2019 New Mexico State University
Total Page:16
File Type:pdf, Size:1020Kb
1 ASTR 565 Stellar Structure and Evolution Fall 2019 New Mexico State University Jason Jackiewicz Department of Astronomy December 5, 2019 2 Contents I Stellar Structure 7 1 Equilibrium and time scales 9 1.1 Energy equilibrium .......................................... 9 1.2 Local thermodynamic equilibrium .................................. 10 1.3 Are stars a one-fluid plasma? .................................... 10 1.4 Simple time scales of stars ...................................... 11 1.4.1 Dynamical timescale ..................................... 11 1.4.2 Thermal timescale ...................................... 12 1.4.3 Nuclear timescale ....................................... 12 1.5 Problems ............................................... 12 2 Nuclear interactions 15 2.1 Coulomb barrier ........................................... 15 2.2 Nuclear reaction rates ........................................ 15 2.3 Gamow peak ............................................. 17 2.4 Problems ............................................... 19 3 Energy release in nuclear reactions 21 3.1 Mass excess .............................................. 21 3.2 Binding energy ............................................ 22 3.3 Hydrogen burning .......................................... 23 3.3.1 PP-I chain .......................................... 24 3.3.2 PP-II and PP-III chains ................................... 25 3.3.3 CNO cycle .......................................... 26 3.4 Problems ............................................... 27 4 Distribution functions 29 4.1 An example .............................................. 29 4.2 Partition function ........................................... 30 4.2.1 Distinguishable particles ................................... 30 4.2.2 Identical fermions ...................................... 30 4.2.3 Identical bosons ....................................... 31 4.3 Derivation ............................................... 31 5 Mean molecular weight 33 6 Equation of state: Ideal gas 37 6.1 Preliminaries ............................................. 37 6.2 Maxwell-Boltzmann statistics .................................... 38 6.3 Ideal monatomic gas ......................................... 39 3 4 CONTENTS 7 Equation of state: Degenerate gas 41 7.1 Completely degenerate gas ...................................... 41 7.2 Partially degenerate gas ....................................... 44 8 Density-temperature equation of state landscape 45 8.1 Radiation pressure .......................................... 45 8.2 Putting it all together ........................................ 46 9 Hydrostatic Equilibrium 49 9.1 Derivation ............................................... 49 9.2 Simple solutions ........................................... 52 9.2.1 Linearized density ...................................... 52 9.2.2 Isothermal atmosphere .................................... 52 10 Polytropes 53 10.1 Motivation and derivation ...................................... 53 10.2 Lane-Emden equation ........................................ 54 10.3 Polytrope solutions .......................................... 55 10.4 Usefulness of polytropes ....................................... 58 11 Thermodynamics of an Ideal Gas 63 11.1 First law of thermodynamics .................................... 63 11.2 Adiabatic process ........................................... 64 12 Thermodynamics with Photons 67 12.1 Mixture of ideal gas and radiation: pressure effects ........................ 67 12.2 Mixture of ideal gas and radiation: ionization effects ....................... 69 12.3 Useful ideal gas equations ...................................... 72 13 Energy Transport: Radiation 73 13.1 Basics ................................................. 73 13.2 Diffusion ................................................ 74 13.3 Frequency dependence of radiation ................................. 75 14 Opacity sources 77 14.1 Kramer’s Laws ............................................ 77 14.2 Consequences ............................................. 79 15 Convection 83 15.1 Temperature gradients (“dels”) ................................... 83 15.2 The convective instability ...................................... 84 16 Convection 2 87 16.1 Other formulations of the instability ................................ 87 16.2 Physical conditions for convection onset .............................. 88 16.3 Depth of outer convection zones ................................... 89 16.4 Semiconvection ............................................ 89 16.5 Mixing length theory ......................................... 91 16.6 Convective overshoot ......................................... 93 16.7 An entropy formulation ....................................... 93 16.8 An energy formulation ........................................ 93 II Stellar Evolution 97 17 Overview of Asteroseismology 99 CONTENTS 5 18 Theory of the Main Sequence 101 18.1 Summary of stellar structure ....................................101 18.2 Homology relations for stars in radiative equilibrium . 102 18.3 Dependence on mass .........................................103 19 Evolution on the main sequence 107 19.1 Low-mass stars ............................................107 19.2 High-mass stars ............................................108 19.3 Summary of main-sequence properties ...............................111 20 The Terminal-Age Main Sequence and Subgiant Branch 115 20.1 Description of evolution movies ...................................115 20.2 TAMS .................................................115 20.3 Sch¨onberg-Chandrasekhar Limit ..................................117 20.4 The subgiant branch .........................................119 21 Towards and up the Red-Giant Branch 121 21.1 High-mass stars ............................................121 21.1.1 Low-mass stars ........................................122 21.2 Helium flash ..............................................124 22 Red-Giant Branch Morphology 127 22.0.1 RGB properties ........................................127 22.1 RGB location .............................................127 22.2 RGB bump luminosity ........................................127 22.3 RGB tip luminosity .........................................128 23 The Horizontal Branch 131 23.1 Quick tour of non-hydrogen nuclear reactions . 131 23.2 The horizontal branch properties ..................................132 23.3 Horizontal branch evolution .....................................133 23.3.1 High-mass stars ........................................133 23.3.2 Low-mass stars ........................................134 24 Asymptotic Giant Branch 137 24.1 General overview ...........................................137 24.2 Double-shell burning .........................................137 24.3 AGB evolution ............................................138 24.4 Thermal pulses ............................................139 24.5 Production of s elements .......................................141 25 Last Stages of Evolution: Low-Mass Stars 143 25.1 Planetary Nebula ...........................................143 25.2 White Dwarfs .............................................144 25.3 Futher WD properties ........................................146 25.4 Type Ia supernovae ..........................................147 26 Last Stages of Evolution: High-Mass Stars 149 26.1 Nuclear burning ...........................................149 26.2 Type II supernova - core collapse ..................................150 26.3 Neutron star .............................................152 26.4 Black hole ...............................................152 6 CONTENTS 27 Instability Strip and Pulsations 153 27.1 Background ..............................................153 27.2 Pulsation mechanisms ........................................154 27.3 Ionization zones ............................................156 Appendix A Conduction 157 A.1 Eddington Luminosity ........................................157 A.2 Conduction ..............................................158 Appendix B The Virial Theorem 159 Bibliography 163 Part I Stellar Structure 7 Unit 1 Equilibrium and time scales 1.1 Energy equilibrium Consider a thin layer at location r and of width dr in the nuclear burning region of a star. For energy • equilibrium, the net flow of energy crossing this region’s boundaries should be equal to the energy generation in the region. Let ε be the energy generated per gram of material per second, so the energy generated per second in • (r, dr) is εdm. Consider the luminosity (energy per second) L that carries energy away. In the layer, there should • be a balance between energy gains and energy losses (plus and minus denotes outgoing from center or toward center, respectively): + − − + εdm + Lr + Lr+dr = Lr + Lr+dr (1.1) εdm = [L+ L− ] [L+ L−]= L L (1.2) r+dr − r+dr − r − r r+dr − r εdm/dr = dL/dr, (1.3) by dividing by dr and letting it go to zero (derivative). This standard relation will appear many times: • dm ρ = , (1.4) dV or, dm = 4πr2ρ dr (1.5) If ρε is the energy produced per second in each cm3 of material, then by unit analysis the energy • generated per second in (r, dr) is also given by εdm = (4πr2dr)ρε. (1.6) Therefore, we can finally state • dL = 4πr2ρε. (1.7) dr Sometimes we will use m instead of r as the independent coordinate, and so • dL = ε. (1.8) dm 9 10 UNIT 1. EQUILIBRIUM AND TIME SCALES This is one of the main equations of stellar structure. • Note that in regions where ε = 0, the luminosity