Control a Microraptor's Flight

Total Page:16

File Type:pdf, Size:1020Kb

Control a Microraptor's Flight Control a Microraptor’s Flight . by building a glider that you can steer! Here’s what you need to know: lift thrust drag gravity There are a lot of forces that affect how something flies! There are 4 main forces that you need to know: Lift is the force that’s the opposite of gravity. While gravity keeps us on the ground, lift keeps birds in the air. To use lift, birds and flying dinosaurs need wings. Birds flap their wings against the air which pushes them up, up, and away! Thrust is the forward force or the direction the flying animal is going. Drag is the opposite of thrust and pushes the flying animal back. When you hold your hand out a car window, you can feel the air pushing your hand backward. This is drag! 44 curiositymachine.org/challenges/64/ Microraptor was a small four-winged dinosaur that lived during the early Cretaceous period. Microraptor 45 Did you know some dinosaurs had feathers? front wing back wing Feathers helped Microraptors fly by increasing the size of their wings without adding very much weight. Their feathered wings helped them push against the air and create lift to maneuver through forests in search of food. Unlike birds who flap their wings to fly, Microraptors probably climbed up trees and then jumped out, opening their wings to glide to the next tree! They lived in forests with lots of trees and likely used their back wings like rudders (like the ones on boats and airplanes) to control drag and change their direction quickly. 46 curiositymachine.org/challenges/64/ Different animals fly in different ways! Think about all the flying animals you’ve seen, and the many ways that they fly! bats can turn really fast and need less energy than birds to fly because of the flexible structure of their wings Flower flies can hover owls fly silently and are excellent and turn very well at changing directions through trees because their wings can flap so quickly! Draw some more examples here! Microraptor 47 Get ready to build your flying Microraptor! List all the materials you plan to use. There’s a few here to get started. If there are other materials you need, add them too! tape paper straws string modelling clay pipe cleaners 48 curiositymachine.org/challenges/64/ Draw your plan for a flying Microraptor design here. Label all the parts and how it will move so that everyone else can understand your amaz- ing plan! Draw the shape of your design and think about where you need to attach control strings to your design! Microraptor 49 Start building! If you have trouble getting started, here’s one way to build a flying Microraptor that you can control: step 1: Use your plan drawing to start build- ing the frame of your design with straws and pipe cleaners, including the wings and tail. These will be like the bones of your design. step 2: Cover the wings, tail, and body with lightweight paper. This will help your design catch air when it flies to create lift! 50 curiositymachine.org/challenges/64/ step 3: Attach strings to the wings. When the design is flying, pulling these should help you to steer! Use clay to add some weight to the underside of the attach string attach string design for balance. step 4: Test your design! Use a fan or windy day to fly your Microraptor. While it’s flying, try pulling the strings at different times. Does it change direction? Microraptor 51 How does it work? Sometimes it takes a few tries to make something work like you want it to! If yours doesn’t work the fi rst time, try to fi nd a way to make it better! Take notes on what problems you had, or what worked really well. 52 curiositymachine.org/challenges/64/ Draw your Microraptor here, or tape in a picture of your design! Microraptor 53 Put on your thinking cap! Reflect on what you’ve made! What can you change to make it work better? Did you learn how to do something new? Here’s one question to get you started: Does your design have four wings? Why do you think birds today don’t have four wings? 54 curiositymachine.org/challenges/64/ There are animals living today that use gliding as a way to get around! Flying squirrels are really cool animals that travel from tree to tree by gliding. They don’t have wings, but use a flap of skin between their front and back legs to create lift. Microraptor 55.
Recommended publications
  • The Dinosaurs Are Back!
    EXHIBITION FOR HIRE THE DINOSAURS ARE BACK! THE DINOSAURS ARE BACK! In partnership with Emilio’s Creations, Universeum proudly presents the unique dinosaur exhibition “The dinosaurs are back”. The latest scientific discoveries are summarised in a spectacular visitor experience with 16 life-size dinosaurs that move and make noises. Ten of them are feathered in accordance with recent research. The exhibition for hire comprises eight different species set in a prehistoric forest landscape with trees and plants from that specific era. Included is the world’s largest known land predator, theSpinosaurus , at 14 metres long and five metres tall. Also on display are the four-metre tall and fully feathered Therizinosaurus and the legendary Tyrannosaurus rex, together with a feathered juvenile. Feathers The dinosaurs in the exhibition for hire The dinosaurs never really died out. They live The dinosaurs in the exhibition have been carefully on and we see and hear them every day. After selected to show a diverse range of species and all, birds are directly descended from some of highlight scientifically interesting points. the most ferocious and predatory dinosaurs, Sinosauropteryx (x2). The first genus of dinosaur discovered with recent research confirming the close outside of Avialae(birds) that is known to have been links between dinosaurs and birds. This feathered. point is clearly illustrated when visitors see the Tyrannosaurus rex (x2). As well as being famous, it is of great feathered dinosaurs in the exhibition. scientific interest. Researchers are speculating as to whether the adult lost the coat of feathers it had when young or Environment whether it retained all or part of it throughout its life.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Therizinosaurus Cheloniformis
    3-EURO-SUPERSAURS THERIZINOSAURUS CHELONIFORMIS Series Supersaurs Appearances can be deceptive. Weighing five tons, up to ten metres tall and boas- ting sharp claws that were longer than those of any other land animal that has ever Face value ¤ 3 existed, the Therizinosaurus was not as dangerous as it looked. The subject of the Date of Issue 17 February 2021 sixth coin in the superlative Supersaurs series was actually a vegetarian and its claws Design K. Kuntner/ H. Andexlinger more suited to detaching vegetation than attacking the other animals that roamed Diameter 34 mm the planet some 70 million years ago. Quality Uncirculated Mintage 65,000 As a theropod, Therizinosaurus cheloniformis was not only distantly related to pre- Alloy Coloured metal dators such as Tyrannosaurus rex but also to present-day birds. Originally carnivor- Total Weight 16.00 g ous, over time the Therizinosaurus changed its diet and became a pure herbivore. Edge Plain During the late Cretaceous period, it lived in areas of the northern continent of Colour application, glow in the dark, Laurasia that now correspond to North America, China and Mongolia. Up to one no packaging. metre in length, flat, curved and pointed at the end, the dinosaur’s claws are re- sponsible for its nickname, ‘scythe lizard’. They were used primarily to reach high Recommended branches in trees as well as perhaps for self-defence. Well preserved remains of one initial issue price: ¤ 12.60 (incl. 20% VAT) of its close relatives have suggested that, rather surprisingly, the Therizinosaurus was also partially feathered. WITH COIN MOTIF COLOURED GLOW-IN-THE-DARK Therizinosaurus features all 12 of the extreme prehistoric animals in the Supersaurs EFFECT series in silhouette on its obverse, while a colour-printed Therizinosaurus is shown in its native prehistoric habitat next to a nest full of eggs on the coin’s glow-in-the- dark reverse.
    [Show full text]
  • A Comparison of Flight Potential Among Small-Bodied Paravians
    Chapter 11 High Flyer or High Fashion? A Comparison of Flight Potential among Small-Bodied Paravians T. ALEXANDER DECECCHI,1 HANS C.E. LARSSON,2 MICHAEL PITTMAN,3 AND MICHAEL B. HABIB4 ABSTRACT The origin of flight in birds and its relationship to bird origins itself has achieved something of a renaissance in recent years, driven by the discovery of a suite of small-bodied taxa with large pen- naceous feathers. As some of these specimens date back to the Middle Jurassic and predate the earli- est known birds, understanding how these potential aerofoil surfaces were used is of great importance to answering the question: which came first, the bird or the wing? Here we seek to address this question by directly comparing key members of three of the major clades of paravians: anchiorni- thines, Microraptor and Archaeopteryx across their known size classes to see how they differ in terms of major flight-related parameters (wing loading; disc loading; specific lift; glide speed; takeoff poten- tial). Using specimens with snout to vent length (SVL) ranging from around 150 mm to 400 mm and mass ranging from approximately 130 g to 2 kg, we investigated patterns of inter- and intraspe- cific changes in flight potential. We find that anchiornithines show much higher wing- and disc- loading values and correspondingly high required minimum glide and takeoff speeds, along with lower specific lift and flapping running outputs suggesting little to no flight capability in this clade. In contrast, we see good support for flight potential, either gliding or powered flight, for all size classes of both Microraptor and Archaeopteryx, though there are differing patterns of how this shifts ontogenetically.
    [Show full text]
  • Additional Specimen of Microraptor Provides Unique Evidence of Dinosaurs Preying on Birds
    Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds Jingmai O’Connor1, Zhonghe Zhou1, and Xing Xu Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, October 28, 2011 (sent for review September 13, 2011) Preserved indicators of diet are extremely rare in the fossil record; The vertebral column of this specimen is complete except for even more so is unequivocal direct evidence for predator–prey its proximal and distal ends; pleurocoels are absent from the relationships. Here, we report on a unique specimen of the small thoracic vertebrae, as in dromaeosaurids and basal birds. Poor nonavian theropod Microraptor gui from the Early Cretaceous preservation prevents clear observation of sutures; however, Jehol biota, China, which has the remains of an adult enantiorni- there does not appear to be any separation between the neural thine bird preserved in its abdomen, most likely not scavenged, arches and vertebral centra, or any other indicators that the but captured and consumed by the dinosaur. We provide direct specimen is a juvenile. The number of caudal vertebrae cannot evidence for the dietary preferences of Microraptor and a nonavian be estimated, but the elongate distal caudals are tightly bounded dinosaur feeding on a bird. Further, because Jehol enantiorni- by elongated zygapophyses, as in other dromaeosaurids. The rib thines were distinctly arboreal, in contrast to their cursorial orni- cage is nearly completely preserved; both right and left sides are thurine counterparts, this fossil suggests that Microraptor hunted visible ventrally closed by the articulated gastral basket.
    [Show full text]
  • An Evaluation of Flapping-Based Locomotory Hypotheses in Bird
    The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents T. Alexander Dececchi1, Hans C.E. Larsson2 and Michael B. Habib3,4 1 Department of Geological Sciences, Queens University, Kingston, Ontario, Canada 2 Redpath Museum, McGill University, Montreal, Quebec, Canada 3 Keck School of Medicine of USC, Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States 4 Dinosaur Institute, Natural History Museum of Los Angeles, Los Angeles, CA, United States ABSTRACT Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less Submitted 23 January 2016 stringent locomotory behaviours such as balancing and braking, played a role in Accepted 27 May 2016 the evolution of the maniraptoran wing and nascent flight stroke.
    [Show full text]
  • Raptors in Action 1 Suggested Pre-Visit Activities
    PROGRAM OVERVIEW TOPIC: Small theropods commonly known as “raptors.” THEME: Explore the adaptations that made raptors unique and successful, like claws, intelligence, vision, speed, and hollow bones. PROGRAM DESCRIPTION: Razor-sharp teeth and sickle-like claws are just a few of the characteristics that have made raptors famous. Working in groups, students will build a working model of a raptor leg and then bring it to life while competing in a relay race that simulates the hunting techniques of these carnivorous animals. AUDIENCE: Grades 3–6 CURRICULUM CONNECTIONS: Grade 3 Science: Building with a Variety of Materials Grade 3–6 Math: Patterns and Relations Grade 4 Science: Building Devices and Vehicles that Move Grade 6 Science: Evidence and Investigation PROGRAM ObJECTIVES: 1. Students will understand the adaptations that contributed to the success of small theropods. 2. Students will explore the function of the muscles used in vertebrate movement and the mechanics of how a raptor leg works. 3. Students will understand the function of the raptorial claw. 4. Students will discover connections between small theropod dinosaurs and birds. SUGGESTED PRE-VISIT ACTIVITIES UNDERstANDING CLADIstICS Animals and plants are often referred to as part of a family or group. For example, the dog is part of the canine family (along with wolves, coyotes, foxes, etc.). Scientists group living things together based on relationships to gain insight into where they came from. This helps us identify common ancestors of different organisms. This method of grouping is called “cladistics.” Cladistics is a system that uses branches like a family tree to show how organisms are related to one another.
    [Show full text]
  • A Large, Short-Armed, Winged Dromaeosaurid (Dinosauria
    Edinburgh Research Explorer A large, short-armed, winged dromaeosaurid (Dinosauria Citation for published version: Lü, J & Brusatte, SL 2015, 'A large, short-armed, winged dromaeosaurid (Dinosauria: Theropoda) from the Early Cretaceous of China and its implications for feather evolution', Scientific Reports, vol. 5, pp. 11775. https://doi.org/10.1038/srep11775 Digital Object Identifier (DOI): 10.1038/srep11775 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Scientific Reports General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 www.nature.com/scientificreports OPEN A large, short-armed, winged dromaeosaurid (Dinosauria: Theropoda) from the Early Received: 18 November 2014 Accepted: 10 April 2015 Cretaceous of China and its Published: 16 July 2015 implications for feather evolution Junchang Lü1 & Stephen L. Brusatte2 The famous ‘feathered dinosaurs’ from the Early Cretaceous of Liaoning Province, northeastern China, include several dromaeosaurids, which are among the closest relatives of birds. Most of these are small-bodied taxa with long arms and broad wings comprised of vaned feathers, but a single specimen (the holotype of Tianyuraptor) belongs to a much larger individual with reduced forelimbs, which unfortunately lacks any preserved integument.
    [Show full text]
  • Homework Assignment 4
    Geology 202, Fall 2009 1 Homework Assignment 4 The Four-Winged Dinosaur Today we will be watching a Nova documentary called "The Four-Winged Dinosaur." The documentary follows two teams of scientists as they create replicas of microraptor, a dinosaur with four feathered wings, in an attempt to determine how flight evolved in birds (from the ground up or from the trees down). As you watch the video, think about each hypothesis and pay attention to the lines of evidence presented on both sides of the argument. You will be responsible for writing a short essay (~1 page, typed) describing which origin of flight hypothesis you believe is the most plausible and why. Your essay should include a brief both of these hypotheses (and any other pertinent background info), but you should focus on the evolution of flight in birds. Be sure to support your argument with evidence presented in the video. This essay is due in class on Wednesday, November 11th. Answers to the following questions should help you write an effective argument. These are only guidelines, so feel free to take additional notes as you see fit. 1. What was the most plausible function of feathers in theropod dinosaurs like deinonychus? 2. What made microraptor a unique feathered dinosaurs? 3. Describe the two theories about how flight developed in birds. 4. Based on his analysis of the microraptor fossil, what was Xu Xing's original hypothesis for how flight evolved in birds? 5. Why did Ken Dial's studies of birds called chuckers lead him to believe that flight developed from the ground up? Geology 202, Fall 2009 2 Homework Assignment 4 6.
    [Show full text]
  • Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
    J Ornithol DOI 10.1007/s10336-015-1190-9 ORIGINAL ARTICLE Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs 1 2 Alan Feduccia • Stephen A. Czerkas Received: 4 September 2014 / Revised: 31 December 2014 / Accepted: 23 February 2015 Ó Dt. Ornithologen-Gesellschaft e.V. 2015 Abstract Considerable debate surrounds the numerous Zusammenfassung avian-like traits in core maniraptorans (ovirap- torosaurs, troodontids, and dromaeosaurs), especially in the Die ,,Neoflightless‘‘-Hypothese im Test: Halsflughaut Chinese Early Cretaceous oviraptorosaur Caudipteryx, (Propatagium) offenbart flugfa¨hige Vorfahren der which preserves modern avian pennaceous primary remi- Oviraptorosauria ges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod di- Es gibt eine ausgiebige Debatte u¨ber die zahlreichen vo- nosaurs, which is the predominant view among palaeon- gela¨hnlichen Eigenheiten der Maniraptora (Oviraptosaurus, tologists, or was it secondarily flightless, with volant avians Troodontidae, Dromaeosaurus), vor allem des (gefiederten) or theropods as ancestors (the neoflightless hypothesis), Oviraptorosauria Caudipteryx aus der fru¨hen chinesischen which is another popular, but minority view. The discovery Kreidezeit, der genau wie rezente Vo¨gel Handschwingen here of an aerodynamic propatagium in several specimens hatte, die an den Handknochen ansetzen. Stammt Cau- provides new evidence that Caudipteryx (and hence ovi- dipteryx von den nur am Erdboden lebenden Theropoda ab - raptorosaurs) represent secondarily derived flightless die unter den Pala¨ontologen vorherrschende Meinung -, oder ground dwellers, whether of theropod or avian affinity, and war er sekunda¨r flugunfa¨hig und stammte von flugfa¨higen that their presence and radiation during the Cretaceous may Theropoden ab - die ,,Neoflightless‘‘-Hypothese, eine alter- have been a factor in the apparent scarcity of many other native, wenn auch nur von Wenigen unterstu¨tzte These.
    [Show full text]
  • An Aberrant Island-Dwelling Theropod Dinosaur from the Late Cretaceous of Romania
    An aberrant island-dwelling theropod dinosaur from the Late Cretaceous of Romania Zoltán Csikia,1, Mátyás Vremirb, Stephen L. Brusattec,d, and Mark A. Norellc,d aLaboratory of Paleontology, Department of Geology and Geophysics, University of Bucharest, 1 N. Bălcescu Boulevard, Bucharest 010041, Romania; bDepartment of Natural Sciences, Transylvanian Museum Society (EME), 2-4 Napoca Street, Cluj-Napoca 400009, Romania; cDivision of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; and dDepartment of Earth and Environmental Sciences, Columbia University, New York, NY 10025 Edited* by Paul E. Olsen, Columbia University, Palisades, NY, and approved July 8, 2010 (received for review May 19, 2010) Islands are noted for the occurrence of aberrant, endemic, and large carnivores on the European paleoislands. It exhibits a suite dwarfed taxa (the “island effect”). Late Cretaceous vertebrate of peculiar features, most notably an enlarged pedal digit I, which assemblages of Romania and elsewhere in Europe are classic exam- along with digit II is modified for hyperextension. Nearly 20 ad- ples of island faunas in the fossil record, and are characterized by ditional autapomorphies also characterize this taxon, many of dwarfed herbivorous dinosaurs and other endemic taxa that are which relate to extensive fusion of elements in the hand and distal noticeably primitive relative to their mainland contemporaries. hindlimb and enlarged pelvic musculature. This unique dromaeo- Fossils of the predators
    [Show full text]
  • The Birdlike Raptor Sinornithosaurus Was Venomous
    The birdlike raptor Sinornithosaurus was venomous Enpu Gonga, Larry D. Martinb, David A. Burnhamb,1, and Amanda R. Falkc aDepartment of Geology, Northeastern University, Liaoning 110004, China; bDivision of Vertebrate Paleontology, Biodiversity Institute, Natural History Museum, University of Kansas, Lawrence, KS 66045-7561; and cDepartment of Geology, University of Kansas, Lawrence, KS 66045-7613 Edited by David B. Wake, University of California, Berkeley, Berkeley, CA, and approved November 16, 2009 (received for review October 26, 2009) We suggest that some of the most avian dromaeosaurs, such as of a subfenestral fossa in all specimens. The maxillary teeth are Sinornithosaurus, were venomous, and propose an ecological strongly heterodont, whereas on the lower jaws the height of the model for that taxon based on its unusual dentition and other tooth crowns are similar along the tooth row. cranial features including grooved teeth, a possible pocket for The anterior premaxillary teeth are procumbent and are not venom glands, and a groove leading from that pocket to the ex- recurved or serrated (14). The first premaxillary teeth are rotated posed bases of the teeth. These features are all analogous to the so the carinae are approximately 90° to the rest of the dentition. venomous morphology of lizards. Sinornithosaurus and related The premaxillary teeth are shorter than the maxillary teeth. The dromaeosaurs probably fed on the abundant birds of the Jehol second premaxillary alveolus has the longest tooth, and this forests during the Early Cretaceous in northeastern China. crown, along with the premaxillary tooth crowns for 3 and 4, have deep, narrow grooves on the lingual surface running behind the dromaeosaur | Jehol | grooved fangs | venomous delivery system anterior carinae (Fig.
    [Show full text]