The Dinosaurs Are Back!

Total Page:16

File Type:pdf, Size:1020Kb

The Dinosaurs Are Back! EXHIBITION FOR HIRE THE DINOSAURS ARE BACK! THE DINOSAURS ARE BACK! In partnership with Emilio’s Creations, Universeum proudly presents the unique dinosaur exhibition “The dinosaurs are back”. The latest scientific discoveries are summarised in a spectacular visitor experience with 16 life-size dinosaurs that move and make noises. Ten of them are feathered in accordance with recent research. The exhibition for hire comprises eight different species set in a prehistoric forest landscape with trees and plants from that specific era. Included is the world’s largest known land predator, theSpinosaurus , at 14 metres long and five metres tall. Also on display are the four-metre tall and fully feathered Therizinosaurus and the legendary Tyrannosaurus rex, together with a feathered juvenile. Feathers The dinosaurs in the exhibition for hire The dinosaurs never really died out. They live The dinosaurs in the exhibition have been carefully on and we see and hear them every day. After selected to show a diverse range of species and all, birds are directly descended from some of highlight scientifically interesting points. the most ferocious and predatory dinosaurs, Sinosauropteryx (x2). The first genus of dinosaur discovered with recent research confirming the close outside of Avialae(birds) that is known to have been links between dinosaurs and birds. This feathered. point is clearly illustrated when visitors see the Tyrannosaurus rex (x2). As well as being famous, it is of great feathered dinosaurs in the exhibition. scientific interest. Researchers are speculating as to whether the adult lost the coat of feathers it had when young or Environment whether it retained all or part of it throughout its life. The dinosaurs are set in a prehistoric forest landscape surrounded by plants that are typical of the Mesozoic era, Microraptor (x2). A small, bird-like dinosaur with four wings. the time of the dinosaurs. Giant conifers, gingko and It was one of the “missing links” between the classic tree ferns together form complete ground vegetation dinosaurs and the birds. in an evocative setting. This gives the visitors a total Parasaurolophus (x2). A spectacular dinosaur with a large experience and increases their understanding of how the sound-amplifying crest on its head. dinosaurs lived. Deinonychus (x3). An intelligent, feathered predator with a large claw on its hind feet. Probably hunted in packs. Information, guided tours and school programme Therizinosaurus (x1). A gigantic and fascinating evolutionary The exhibition for hire includes text and image material creation. A feathered herbivore with claws up to a metre long for exhibition signs and digital information solutions. on its front limbs. Background information and instructions for guided Styracosaurus (x3). Perhaps the most eye-catching crested dinosaur, with its bony neck frill and many horns. tours are included, along with material for a schools programme. The material has been prepared in Spinosaurus (x1). A powerful and incredibly huge, dragon- consultation with experts at the Göteborg Natural History like dinosaur. An extremely interesting creature with an Museum and the University of Gothenburg. appearance that is bound to get people talking. Marcus Lidén Export Manager Direct: +46 31 335 64 14 [email protected] Eva Andreasson Export Coordinator Direct: +46 31 335 64 08 [email protected] Universeum AB | Box 14365, 400 20 Göteborg, Sweden | +46 31 335 64 50 | universeum.se.
Recommended publications
  • A New Troodontid Theropod, Talos Sampsoni Gen. Et Sp. Nov., from the Upper Cretaceous Western Interior Basin of North America
    A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America Lindsay E. Zanno1,2*, David J. Varricchio3, Patrick M. O’Connor4,5, Alan L. Titus6, Michael J. Knell3 1 Field Museum of Natural History, Chicago, Illinois, United States of America, 2 Biological Sciences Department, University of Wisconsin-Parkside, Kenosha, Wisconsin, United States of America, 3 Department of Earth Sciences, Montana State University, Bozeman, Montana, United States of America, 4 Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio, United States of America, 5 Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio, United States of America, 6 Grand Staircase-Escalante National Monument, Bureau of Land Management, Kanab, Utah, United States of America Abstract Background: Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species—Troodon formosus—presently known from substantial skeletal remains. Methodology/Principal Findings: Here we report a gracile new troodontid theropod—Talos sampsoni gen. et sp. nov.— from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar.
    [Show full text]
  • Theropod Teeth from the Upper Maastrichtian Hell Creek Formation “Sue” Quarry: New Morphotypes and Faunal Comparisons
    Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons TERRY A. GATES, LINDSAY E. ZANNO, and PETER J. MAKOVICKY Gates, T.A., Zanno, L.E., and Makovicky, P.J. 2015. Theropod teeth from the upper Maastrichtian Hell Creek Formation “Sue” Quarry: New morphotypes and faunal comparisons. Acta Palaeontologica Polonica 60 (1): 131–139. Isolated teeth from vertebrate microfossil localities often provide unique information on the biodiversity of ancient ecosystems that might otherwise remain unrecognized. Microfossil sampling is a particularly valuable tool for doc- umenting taxa that are poorly represented in macrofossil surveys due to small body size, fragile skeletal structure, or relatively low ecosystem abundance. Because biodiversity patterns in the late Maastrichtian of North American are the primary data for a broad array of studies regarding non-avian dinosaur extinction in the terminal Cretaceous, intensive sampling on multiple scales is critical to understanding the nature of this event. We address theropod biodiversity in the Maastrichtian by examining teeth collected from the Hell Creek Formation locality that yielded FMNH PR 2081 (the Tyrannosaurus rex specimen “Sue”). Eight morphotypes (three previously undocumented) are identified in the sample, representing Tyrannosauridae, Dromaeosauridae, Troodontidae, and Avialae. Noticeably absent are teeth attributed to the morphotypes Richardoestesia and Paronychodon. Morphometric comparison to dromaeosaurid teeth from multiple Hell Creek and Lance formations microsites reveals two unique dromaeosaurid morphotypes bearing finer distal denticles than present on teeth of similar size, and also differences in crown shape in at least one of these. These findings suggest more dromaeosaurid taxa, and a higher Maastrichtian biodiversity, than previously appreciated.
    [Show full text]
  • A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
    ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA.
    [Show full text]
  • Therizinosaurus Cheloniformis
    3-EURO-SUPERSAURS THERIZINOSAURUS CHELONIFORMIS Series Supersaurs Appearances can be deceptive. Weighing five tons, up to ten metres tall and boas- ting sharp claws that were longer than those of any other land animal that has ever Face value ¤ 3 existed, the Therizinosaurus was not as dangerous as it looked. The subject of the Date of Issue 17 February 2021 sixth coin in the superlative Supersaurs series was actually a vegetarian and its claws Design K. Kuntner/ H. Andexlinger more suited to detaching vegetation than attacking the other animals that roamed Diameter 34 mm the planet some 70 million years ago. Quality Uncirculated Mintage 65,000 As a theropod, Therizinosaurus cheloniformis was not only distantly related to pre- Alloy Coloured metal dators such as Tyrannosaurus rex but also to present-day birds. Originally carnivor- Total Weight 16.00 g ous, over time the Therizinosaurus changed its diet and became a pure herbivore. Edge Plain During the late Cretaceous period, it lived in areas of the northern continent of Colour application, glow in the dark, Laurasia that now correspond to North America, China and Mongolia. Up to one no packaging. metre in length, flat, curved and pointed at the end, the dinosaur’s claws are re- sponsible for its nickname, ‘scythe lizard’. They were used primarily to reach high Recommended branches in trees as well as perhaps for self-defence. Well preserved remains of one initial issue price: ¤ 12.60 (incl. 20% VAT) of its close relatives have suggested that, rather surprisingly, the Therizinosaurus was also partially feathered. WITH COIN MOTIF COLOURED GLOW-IN-THE-DARK Therizinosaurus features all 12 of the extreme prehistoric animals in the Supersaurs EFFECT series in silhouette on its obverse, while a colour-printed Therizinosaurus is shown in its native prehistoric habitat next to a nest full of eggs on the coin’s glow-in-the- dark reverse.
    [Show full text]
  • A Comparison of Flight Potential Among Small-Bodied Paravians
    Chapter 11 High Flyer or High Fashion? A Comparison of Flight Potential among Small-Bodied Paravians T. ALEXANDER DECECCHI,1 HANS C.E. LARSSON,2 MICHAEL PITTMAN,3 AND MICHAEL B. HABIB4 ABSTRACT The origin of flight in birds and its relationship to bird origins itself has achieved something of a renaissance in recent years, driven by the discovery of a suite of small-bodied taxa with large pen- naceous feathers. As some of these specimens date back to the Middle Jurassic and predate the earli- est known birds, understanding how these potential aerofoil surfaces were used is of great importance to answering the question: which came first, the bird or the wing? Here we seek to address this question by directly comparing key members of three of the major clades of paravians: anchiorni- thines, Microraptor and Archaeopteryx across their known size classes to see how they differ in terms of major flight-related parameters (wing loading; disc loading; specific lift; glide speed; takeoff poten- tial). Using specimens with snout to vent length (SVL) ranging from around 150 mm to 400 mm and mass ranging from approximately 130 g to 2 kg, we investigated patterns of inter- and intraspe- cific changes in flight potential. We find that anchiornithines show much higher wing- and disc- loading values and correspondingly high required minimum glide and takeoff speeds, along with lower specific lift and flapping running outputs suggesting little to no flight capability in this clade. In contrast, we see good support for flight potential, either gliding or powered flight, for all size classes of both Microraptor and Archaeopteryx, though there are differing patterns of how this shifts ontogenetically.
    [Show full text]
  • Additional Specimen of Microraptor Provides Unique Evidence of Dinosaurs Preying on Birds
    Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds Jingmai O’Connor1, Zhonghe Zhou1, and Xing Xu Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Contributed by Zhonghe Zhou, October 28, 2011 (sent for review September 13, 2011) Preserved indicators of diet are extremely rare in the fossil record; The vertebral column of this specimen is complete except for even more so is unequivocal direct evidence for predator–prey its proximal and distal ends; pleurocoels are absent from the relationships. Here, we report on a unique specimen of the small thoracic vertebrae, as in dromaeosaurids and basal birds. Poor nonavian theropod Microraptor gui from the Early Cretaceous preservation prevents clear observation of sutures; however, Jehol biota, China, which has the remains of an adult enantiorni- there does not appear to be any separation between the neural thine bird preserved in its abdomen, most likely not scavenged, arches and vertebral centra, or any other indicators that the but captured and consumed by the dinosaur. We provide direct specimen is a juvenile. The number of caudal vertebrae cannot evidence for the dietary preferences of Microraptor and a nonavian be estimated, but the elongate distal caudals are tightly bounded dinosaur feeding on a bird. Further, because Jehol enantiorni- by elongated zygapophyses, as in other dromaeosaurids. The rib thines were distinctly arboreal, in contrast to their cursorial orni- cage is nearly completely preserved; both right and left sides are thurine counterparts, this fossil suggests that Microraptor hunted visible ventrally closed by the articulated gastral basket.
    [Show full text]
  • Dinosaurs Put All Colored Birds' Eggs in One Basket, Evolutionarily Speaking 31 October 2018
    Dinosaurs put all colored birds' eggs in one basket, evolutionarily speaking 31 October 2018 red and blue, to create all of the various egg colors, spots, and speckles. Wiemann and her colleagues analyzed 18 fossil dinosaur eggshell samples from around the world, using non-destructive laser microspectroscopy to test for the presence of the two eggshell pigments. They found them in eggshells belonging to Eumaniraptoran dinosaurs, which include small, carnivorous dinosaurs such as Velociraptor. Fossil theropod dinosaur egg (front), with corvid eggs in a nest. Fossil Deinonychus and oviraptor eggs were probably similar in coloration to corvid eggs. Credit: Jasmina Wiemann/Yale University A new study says the colors found in modern birds' eggs did not evolve independently, as previously thought, but evolved instead from dinosaurs. Illustration of a hatching Deinonychus chick from a blue According to researchers at Yale, the American egg with brown spots. The diversity researchers Museum of Natural History, and the University of recovered for dinosaur egg colors mirrors that found for Bonn, birds inherited their egg color from non- modern bird eggs. Credit: Jasmina Wiemann/Yale avian dinosaur ancestors that laid eggs in fully or University partially open nests. The researchers' findings appear Oct. 31 in the online edition of the journal Nature. "We infer that egg color co-evolved with open "This completely changes our understanding of nesting habits in dinosaurs," Wiemann said. "Once how egg colors evolved," said the study's lead dinosaurs started to build open nests, exposure of author, Yale paleontologist Jasmina Wiemann. the eggs to visually hunting predators and even "For two centuries, ornithologists assumed that nesting parasites favored the evolution of egg color appeared in modern birds' eggs multiple camouflaging egg colors, and individually times, independently." recognizable patterns of spots and speckles." The egg colors of birds reflect characteristic preferences in nesting environments and brooding behaviors.
    [Show full text]
  • An Evaluation of Flapping-Based Locomotory Hypotheses in Bird
    The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents T. Alexander Dececchi1, Hans C.E. Larsson2 and Michael B. Habib3,4 1 Department of Geological Sciences, Queens University, Kingston, Ontario, Canada 2 Redpath Museum, McGill University, Montreal, Quebec, Canada 3 Keck School of Medicine of USC, Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States 4 Dinosaur Institute, Natural History Museum of Los Angeles, Los Angeles, CA, United States ABSTRACT Background: Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. Methods: Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. Results: None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less Submitted 23 January 2016 stringent locomotory behaviours such as balancing and braking, played a role in Accepted 27 May 2016 the evolution of the maniraptoran wing and nascent flight stroke.
    [Show full text]
  • Paleontological Contributions
    Paleontological Contributions Number 14 The first giant raptor (Theropoda: Dromaeosauridae) from the Hell Creek Formation Robert A. DePalma, David A. Burnham, Larry D. Martin, Peter L. Larson, and Robert T. Bakker October 30, 2015 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Life restoration by Emily Willoughby of Dakotaraptor steini running with the sparrow-sized birds, Cimolopteryx petra while the mammal, Purgatorius, can be seen in the foreground. Paleontological Contributions October 30, 2015 Number 14 THE FIRST GIANT RAPTOR (THEROPODA: DROMAEOSAURIDAE) FROM THE HELL CREEK FORMATION Robert A. DePalma1,2, David A. Burnham2,*, Larry D. Martin2,†, Peter L. Larson3 and Robert T. Bakker4 1 Department of Vertebrate Paleontology, The Palm Beach Museum of Natural History, Fort Lauderdale, Florida; 2 University of Kansas Bio- diversity Institute, Lawrence, Kansas; 3Black Hills Institute of Geological Research, Hill City, South Dakota; 4Houston Museum of Nature and Science, Houston, Texas; e-mail: [email protected] ABSTRACT Most dromaeosaurids were small- to medium-sized cursorial, scansorial, and arboreal, sometimes volant predators, but a comparatively small percentage grew to gigantic proportions. Only two such giant “raptors” have been described from North America. Here, we describe a new giant dromaeosaurid, Dakotaraptor steini gen. et sp. nov., from the Hell Creek Formation of South Dakota. The discovery represents the first giant dromaeosaur from the Hell Creek Formation, and the most recent in the fossil record worldwide. A row of prominent ulnar papilli or “quill knobs” on the ulna is our first clear evidence for feather quills on a large dromaeosaurid forearm and impacts evolutionary reconstructions and functional morphology of such derived, typically flight-related features.
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3899, 44 pp. April 26, 2018 A Second Specimen of Citipati osmolskae Associated with a Nest of Eggs from Ukhaa Tolgod, Omnogov Aimag, Mongolia MARK A. NORELL,1, 2 AMY M. BALANOFF,1, 3 DANIEL E. BARTA,1, 2 AND GREGORY M. ERICKSON1, 4 ABSTRACT Adult dinosaurs preserved attending their nests in brooding positions are among the rarest vertebrate fossils. By far the most common occurrences are members of the dinosaur group Oviraptorosauria. The first finds of these were specimens recovered from the Djadokhta Forma- tion at the Mongolian locality of Ukhaa Tolgod and the Chinese locality of Bayan Mandahu. Since the initial discovery of these specimens, a few more occurrences of nesting oviraptors have been found at other Asian localities. Here we report on a second nesting oviraptorid specimen (IGM 100/1004) sitting in a brooding position atop a nest of eggs from Ukhaa Tolgod, Omnogov, Mongolia. This is a large specimen of the ubiquitous Ukhaa Tolgod taxon Citipati osmolskae. It is approximately 11% larger based on humeral length than the original Ukhaa Tolgod nesting Citipati osmolskae specimen (IGM 100/979), yet eggshell structure and egg arrangement are identical. No evidence for colonial breeding of these animals has been recovered. Reexamination of another “nesting” oviraptorosaur, the holotype of Oviraptor philoceratops (AMNH FARB 6517) indicates that in addition to the numerous partial eggs associated with the original skeleton that originally led to its referral as a protoceratopsian predator, there are the remains of a tiny theropod. This hind limb can be provisionally assigned to Oviraptoridae. It is thus at least possible that some of the eggs associated with the holotype had hatched and the perinates had not left the nest.
    [Show full text]
  • Raptors in Action 1 Suggested Pre-Visit Activities
    PROGRAM OVERVIEW TOPIC: Small theropods commonly known as “raptors.” THEME: Explore the adaptations that made raptors unique and successful, like claws, intelligence, vision, speed, and hollow bones. PROGRAM DESCRIPTION: Razor-sharp teeth and sickle-like claws are just a few of the characteristics that have made raptors famous. Working in groups, students will build a working model of a raptor leg and then bring it to life while competing in a relay race that simulates the hunting techniques of these carnivorous animals. AUDIENCE: Grades 3–6 CURRICULUM CONNECTIONS: Grade 3 Science: Building with a Variety of Materials Grade 3–6 Math: Patterns and Relations Grade 4 Science: Building Devices and Vehicles that Move Grade 6 Science: Evidence and Investigation PROGRAM ObJECTIVES: 1. Students will understand the adaptations that contributed to the success of small theropods. 2. Students will explore the function of the muscles used in vertebrate movement and the mechanics of how a raptor leg works. 3. Students will understand the function of the raptorial claw. 4. Students will discover connections between small theropod dinosaurs and birds. SUGGESTED PRE-VISIT ACTIVITIES UNDERstANDING CLADIstICS Animals and plants are often referred to as part of a family or group. For example, the dog is part of the canine family (along with wolves, coyotes, foxes, etc.). Scientists group living things together based on relationships to gain insight into where they came from. This helps us identify common ancestors of different organisms. This method of grouping is called “cladistics.” Cladistics is a system that uses branches like a family tree to show how organisms are related to one another.
    [Show full text]
  • A Large, Short-Armed, Winged Dromaeosaurid (Dinosauria
    Edinburgh Research Explorer A large, short-armed, winged dromaeosaurid (Dinosauria Citation for published version: Lü, J & Brusatte, SL 2015, 'A large, short-armed, winged dromaeosaurid (Dinosauria: Theropoda) from the Early Cretaceous of China and its implications for feather evolution', Scientific Reports, vol. 5, pp. 11775. https://doi.org/10.1038/srep11775 Digital Object Identifier (DOI): 10.1038/srep11775 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Scientific Reports General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 www.nature.com/scientificreports OPEN A large, short-armed, winged dromaeosaurid (Dinosauria: Theropoda) from the Early Received: 18 November 2014 Accepted: 10 April 2015 Cretaceous of China and its Published: 16 July 2015 implications for feather evolution Junchang Lü1 & Stephen L. Brusatte2 The famous ‘feathered dinosaurs’ from the Early Cretaceous of Liaoning Province, northeastern China, include several dromaeosaurids, which are among the closest relatives of birds. Most of these are small-bodied taxa with long arms and broad wings comprised of vaned feathers, but a single specimen (the holotype of Tianyuraptor) belongs to a much larger individual with reduced forelimbs, which unfortunately lacks any preserved integument.
    [Show full text]