Citizen Scientists Monitor a Deadly Fungus Threatening Amphibian Communities in Northern Coastal California, Usa

Total Page:16

File Type:pdf, Size:1020Kb

Citizen Scientists Monitor a Deadly Fungus Threatening Amphibian Communities in Northern Coastal California, Usa DOI: 10.7589/2015-10-280 Journal of Wildlife Diseases, 52(3), 2016, pp. 516–523 Wildlife Disease Association 2016 CITIZEN SCIENTISTS MONITOR A DEADLY FUNGUS THREATENING AMPHIBIAN COMMUNITIES IN NORTHERN COASTAL CALIFORNIA, USA 1 2 3 4 Ecoclub Amphibian Group, Karen L. Pope, Greta M. Wengert, Janet E. Foley, Donald T. 5 1,6,7 Ashton, and Richard G. Botzler 1 Bilingual McKinleyville Ecoclub, 1363 Whitmire Ave., McKinleyville, California 95519, USA 2 US Forest Service Pacific Southwest Research Station, Redwood Sciences Laboratory, 1700 Bayview Dr., Arcata, California 95521, USA 3 Integral Ecology Research Center, 431 1st Ave., Blue Lake, California 95525, USA 4 School of Veterinary Medicine, University of California, 1320 Tupper Hall, Davis, California 95616, USA 5 McBain Associates, 980 7th Street, Arcata, California 95521, USA 6 Professor emeritus, Department of Wildlife, Humboldt State University, 1 Harpst St., Arcata, California 95521, USA 7 Corresponding author (e-mail: [email protected]) ABSTRACT: Ecoclub youth and supervising family members conducted citizen science to assess regional prevalence and distribution of Batrachochytrium dendrobatidis (Bd) among amphibians at Humboldt Bay National Wildlife Refuge (Refuge) and Redwood National and State Parks (Parks), Humboldt County, California, US, May 2013 through December 2014. Using quantitative real-time PCR, 26 (17%) of 155 samples were positive for Bd. Positive samples occurred in four frog and toad species: foothill yellow-legged frog (Rana boylii), northern red-legged frog (Rana aurora), Pacific chorus frog (Pseudacris regilla), and western toad (Anaxyrus [Bufo] boreas); no salamanders or anuran larvae were positive. Except for R. aurora, all infected anurans were first-time species reports for coastal northern California. At the Refuge, significantly fewer (6/71) postmetamorphic amphibians were positive compared to the Parks (20/69; P¼0.0018). We assessed the association of being PCR-positive for Bd, season of sampling, and age of sampler (child, teen, or adult). The full model with season, species, and sampler age had the greatest support. Frogs tested in winter or spring were more likely to be positive than those tested in summer or fall; foothill yellow-legged frogs, northern red-legged frogs, and western toads were more likely to be positive than were Pacific chorus frogs; and the probability of being positive nearly doubled when a child (<12 yr old) collected the sample compared to a teen or adult. Our results support other chytrid studies that found amphibians are more susceptible to Bd when temperatures are cool and that species differ in their susceptibility. The Ecoclub’s findings provide new information important to conservation of northern California’s coastal amphibians and demonstrate the value of involving children in citizen science. Key words: Amphibian disease, amphibian monitoring, Batrachochytrium dendrobatidis, Bd, chytrid fungus, Northern California, youth citizen science. INTRODUCTION fungus infects keratinized tissue of amphibi­ ans including the skin of postmetamorphic Spread of the deadly amphibian disease, animals and mouthparts of larvae (Berger et chytridiomycosis, has become a prominent al. 1998, 2005). In postmetamorphic animals, threat to amphibian biodiversity worldwide Bd compromises osmotic regulation and can (Skerratt et al. 2007; Olson et al. 2013; Botzler lead to mortality from cardiac arrest (Voyles et and Brown 2014). Chytridiomycosis, caused al. 2009). by the fungus Batrachochytrium dendrobati­ Citizen science projects increasingly are dis (Bd; class Chytridiomycetes), commonly making important contributions to conserva­ referred to as the chytrid fungus, has caused tion science (Citizen Science Association decline or extinction of .200 amphibian 2016). Although many projects focus on species (Skerratt et al. 2007). It affects a participation by adults, the inclusion of broad range of amphibian hosts and has been children in citizen science can be beneficial reported in 516 (42%) of 1,240 amphibian because children are enthusiastic and curious species evaluated (Olson et al. 2013). The observers. For example, Minnesota school 516 ECOCLUB AMPHIBIAN GROUP ET AL.—CITIZEN SCIENTISTS MONITOR CHYTRID FUNGUS 517 children discovered a high proportion of Health Organization 2013). We had two malformed frogs in a local pond, leading to a objectives. Firstly, we used citizen science to wide-scale investigation into the scope and understand the status and distribution of Bd cause of amphibian malformations (Vanden­ within local amphibian communities. Second­ langenberg et al. 2003). Incorporating chil­ ly, we evaluated whether citizen science with dren in scientific research also enhances their children could provide viable research on a teamwork skills to accomplish common goals significant wildlife disease problem. In addi­ and further develops awareness of conserva­ tion to the conservation importance of the tion issues, providing science education project, studying the prevalence and distribu­ through direct experience. tion of Bd in local amphibian populations Youth of the Bilingual McKinleyville Eco- seemed an appropriate project for Ecoclub club in Humboldt County, California, US, youth because 1) frogs and salamanders are searched the literature about chytridiomycosis relatively easy and safe to catch; 2) testing for and learned that severe declines were occur­ Bd involves a simple skin swab that youth can ring in frog populations in California’s moun­ be trained to do correctly; and 3) Bd causes no tains (Rachowicz et al. 2006; Fellers et al. harm to humans. 2008; Piovia-Scott et al. 2014). California, and the north coast in particular, has a rich MATERIALS AND METHODS diversity of amphibians with 27 species of frogs and toads (order Anura) and at least 43 Study areas salamanders (order Caudata; Stebbins and We surveyed sites at the Humboldt Bay McGinnis 2012), yet information about the National Wildlife Refuge (Refuge) (408420 5900 N, status of many of the species found in coastal 1248130 0400 W) and Redwood National and State 0 0 0 northern California is lacking. Nieto et al. Parks (Parks) (41804 –41849 N, 123853 – 0 (2007) reported a Bd prevalence of 6.4% 124810 W). Both locations are in coastal Hum­ boldt County and support a diversity of protected among 6,830 northern red-legged frog (Rana freshwater habitats where red-legged frogs have aurora) tadpoles in 13 ponds associated with been found infected with Bd (Nieto et al. 2007; Redwood National Park, Humboldt County. Sun 2012). The Refuge includes 1,619 ha in the In a follow-up study of the same sites, Sun southern part of the County and is used during (2012) found a 5% prevalence among 81 red- the year by .260 species of birds, 50 species of legged frog tadpoles and a 14% prevalence mammals, 95 species of fish, 15 species of reptiles, and eight species of amphibians (US Fish and among 42 metamorphosed red-legged frogs. Wildlife Service 2009). The Parks are a World Adams et al. (2010) reported the presence of a Heritage Site about 85 km north of the Refuge northern red-legged frog infected with Bd on along the coast and are jointly managed by the a map in the vicinity of Humboldt Bay National Park Service and the California Depart­ National Wildlife Refuge, Humboldt County; ment of Parks and Recreation (US National Park Service 2001). The Parks include 53,420 ha of no methods or other pertinent information is temperate rainforest coast redwood (Sequoia given for this report. These are the only sempervirens) set among several perennial known reports of Bd in coastal northern streams and coastal freshwater ponds. Both the California. Refuge and Parks support a high diversity of With volunteer help from local scientists, amphibians. Species sampled by the Ecoclub Amphibian Group included foothill yellow-legged the Bilingual McKinleyville Ecoclub members frog (Rana boylii), northern red-legged frog (R. designed a monitoring program to assess the aurora), Pacific chorus frog (Pseudacris regilla), status and distribution of Bd in amphibians in western toad (Anaxyrus [Bufo] boreas), coastal protected habitats of Humboldt County. The tailed frog (Ascaphus truei), Ensatina (salaman­ club is part of an international organization, der; Ensatina eschscholtzii), California slender Ecoclubs International, promoting youth lead­ salamander (Batrachoseps attenuatus), coastal giant salamander (Dicamptodon tenebrosus), and ership development with a special focus on rough-skinned newts (Taricha granulosa). Am­ healthy and sustainable natural environments phibians known to occur in similar aquatic and human communities (Pan American habitats in the Refuge and Parks, but not found 518 JOURNAL OF WILDLIFE DISEASES, VOL. 52, NO. 3, JULY 2016 by the Ecoclub, include northwestern salamander an infected to uninfected amphibian within a (Ambystoma gracile) and southern torrent sala­ site, hands were rinsed in the ponds or streams mander (Rhyacotriton variegatus). between captures in an effort to physically We sampled three sites at the Refuge: Cattail remove chytrids from the hands so the next Marsh (408400 4600 N, 1248120 0600 W) comprises a captured frog would have no more exposure to riparian forest at its eastern edge, freshwater, and chytrids than already was present in the natural then a brackish water slough. Frog City waters. Most samples were collected by Ecoclub (408410700 N, 1248120 3000 W) and Wildwing Dock youth (<16 yr); adults primarily supervised youth (408410900 N, 12481203300 W)
Recommended publications
  • Bacterial Diseases (Field Manual of Wildlife Diseases)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Other Publications in Zoonotics and Wildlife Disease Wildlife Disease and Zoonotics December 1999 Bacterial Diseases (Field Manual of Wildlife Diseases) Milton Friend Follow this and additional works at: https://digitalcommons.unl.edu/zoonoticspub Part of the Veterinary Infectious Diseases Commons Friend, Milton, "Bacterial Diseases (Field Manual of Wildlife Diseases)" (1999). Other Publications in Zoonotics and Wildlife Disease. 12. https://digitalcommons.unl.edu/zoonoticspub/12 This Article is brought to you for free and open access by the Wildlife Disease and Zoonotics at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Zoonotics and Wildlife Disease by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Section 2 Bacterial Diseases Avian Cholera Tuberculosis Salmonellosis Chlamydiosis Mycoplasmosis Miscellaneous Bacterial Diseases Introduction to Bacterial Diseases 73 Inoculating media for culture of bacteria Photo by Phillip J. Redman Introduction to Bacterial Diseases “Consider the difference in size between some of the very tiniest and the very largest creatures on Earth. A small bacterium weighs as little as 0.00000000001 gram. A blue whale weighs about 100,000,000 grams. Yet a bacterium can kill a whale…Such is the adaptability and versatility of microorganisms as compared with humans and other so-called ‘higher’ organisms, that they will doubtless continue to colonize and alter the face of the Earth long after we and the rest of our cohabitants have left the stage forever. Microbes, not macrobes, rule the world.” (Bernard Dixon) Diseases caused by bacteria are a more common cause of whooping crane population has challenged the survival of mortality in wild birds than are those caused by viruses.
    [Show full text]
  • Threat Abatement Plan
    gus resulting in ch fun ytridio trid myc chy osis ith w s n ia ib h p m a f o n o i t THREAT ABATEMENTc PLAN e f n I THREAT ABATEMENT PLAN INFECTION OF AMPHIBIANS WITH CHYTRID FUNGUS RESULTING IN CHYTRIDIOMYCOSIS Department of the Environment and Heritage © Commonwealth of Australia 2006 ISBN 0 642 55029 8 Published 2006 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth, available from the Department of the Environment and Heritage. Requests and inquiries concerning reproduction and rights should be addressed to: Assistant Secretary Natural Resource Management Policy Branch Department of the Environment and Heritage PO Box 787 CANBERRA ACT 2601 This publication is available on the Internet at: www.deh.gov.au/biodiversity/threatened/publications/tap/chytrid/ For additional hard copies, please contact the Department of the Environment and Heritage, Community Information Unit on 1800 803 772. Front cover photo: Litoria genimaculata (Green-eyed tree frog) Sequential page photo: Taudactylus eungellensis (Eungella day frog) Banner photo on chapter pages: Close up of the skin of Litoria genimaculata (Green-eyed tree frog) ii Foreword ‘Infection of amphibians with chytrid fungus resulting Under the EPBC Act the Australian Government in chytridiomycosis’ was listed in July 2002 as a key implements the plan in Commonwealth areas and seeks threatening process under the Environment Protection the cooperation of the states and territories where the and Biodiversity Conservation Act 1999 (EPBC Act). disease impacts within their jurisdictions.
    [Show full text]
  • Maritime Southeast Asia and Oceania Regional Focus
    November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November
    [Show full text]
  • L'opposizione Tra La Considerazione Morale Degli Animali E L'ecologism
    Distinti principi, conseguenze messe a confronto: l’opposizione tra la considerazione morale degli animali e l’ecologismo1 Different principles, compared consequences: the opposition between moral consideration towards animals and ecologism di Oscar Horta [email protected] Traduzione italiana di Susanna Ferrario [email protected] Abstract Biocentrism is the position that considers that morally considerable entities are living beings. However, one of the objections is that if we understand that moral consideration should depend on what is valuable, we would have to conclude that the mere fact of being alive is is not what makes someone morally considerable. Ecocentrism is the position that holds that morally valuable entities are not individuals, but the ecosystems in which they live. In fact, among the positions traditionally defended as ecologists there are serious divergences. Some of them, biocentrists, in particular, can ally themselves with holistic positions such as ecocentrism on certain occasions. 1 Si ripubblica il testo per gentile concessione dell’autore. È possibile visualizzare il testo originale sul sito: https://revistas.uaa.mx/index.php/euphyia/article/view/1358. 150 Balthazar, 1, 2020 DOI: https://doi.org/10.13130/balthazar/13915 ISSN: 2724-3079 This work is licensed under a Creative Commons Attribution 4.0 International License. Key-words anthropocentrism, biocentrism, ecocentrism, environmentalism, animal ethics, intervention Introduzione L’ambito di studio conosciuto come etica animale si interroga sulla considerazione morale che dovremmo rivolgere agli esseri animati non umani e sulle conseguenze pratiche di ciò. All’interno di questo campo spiccano le posizioni secondo cui tutti gli esseri senzienti devono essere oggetto di rispetto al di là della propria specie di appartenenza.
    [Show full text]
  • Chytridiomycosis (Infection with Batrachochytrium Dendrobatidis) Version 1, 2012
    Disease Strategy Chytridiomycosis (Infection with Batrachochytrium dendrobatidis) Version 1, 2012 © Commonwealth of Australia 2012 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Populations and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email [email protected] The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for Sustainability, Environment, Water, Population and Communities. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. 1 Preface This disease strategy is for the control and eradication of Chytridiomycosis/Batrachochytrium dendrobatidis. It is one action among 68 actions in a national plan to help abate the key threatening process of chytridiomycosis (Australian Government 2006). The action is number 1.1.3: “Prepare a model action plan (written along the lines of AusVetPlan — http://www.aahc.com.au/ausvetplan/) for chytridiomycosis — free populations based on a risk management approach, setting out the steps of a coordinated response if infection with chytridiomycosis is detected. The model action plan will be based on a risk management approach using quantitative risk analysis where possible and will be able to be modified to become area-specific or population- specific.
    [Show full text]
  • Asymptomatic Infection of the Fungal Pathogen Batrachochytrium
    www.nature.com/scientificreports OPEN Asymptomatic infection of the fungal pathogen Batrachochytrium salamandrivorans in captivity Received: 5 July 2017 Joana Sabino-Pinto 1, Michael Veith2, Miguel Vences 1 & Sebastian Steinfartz1 Accepted: 14 July 2018 One of the most important factors driving amphibian declines worldwide is the infectious disease, Published: xx xx xxxx chytridiomycosis. Two fungi have been associated with this disease, Batrachochytrium dendrobatidis and B. salamandrivorans (Bsal). The latter has recently driven Salamandra salamandra populations to extirpation in parts of the Netherlands, and Belgium, and potentially also in Germany. Bsal has been detected in the pet trade, which has been hypothesized to be the pathway by which it reached Europe, and which may continuously contribute to its spread. In the present study, 918 amphibians belonging to 20 captive collections in Germany and Sweden were sampled to explore the extent of Bsal presence in captivity. The fungus was detected by quantitative Polymerase Chain Reaction (qPCR) in ten collections, nine of which lacked clinical symptoms. 23 positives were confrmed by independent processing of duplicate swabs, which were analysed in a separate laboratory, and/or by sequencing ITS and 28 S gene segments. These asymptomatic positives highlight the possibility of Bsal being widespread in captive collections, and is of high conservation concern. This fnding may increase the likelihood of the pathogen being introduced from captivity into the wild, and calls for according biosecurity measures. The detection of Bsal-positive alive specimens of the hyper-susceptible fre salamander could indicate the existence of a less aggressive Bsal variant or the importance of environmental conditions for infection progression.
    [Show full text]
  • Chytrid Fungus in Frogs from an Equatorial African Montane Forest in Western Uganda
    Journal of Wildlife Diseases, 43(3), 2007, pp. 521–524 # Wildlife Disease Association 2007 Chytrid Fungus in Frogs from an Equatorial African Montane Forest in Western Uganda Tony L. Goldberg,1,2,3 Anne M. Readel,2 and Mary H. Lee11Department of Pathobiology, University of Illinois, 2001 South Lincoln Avenue, Urbana, Illinois 61802, USA; 2 Program in Ecology and Evolutionary Biology, University of Illinois, 235 NRSA, 607 East Peabody Drive, Champaign, Illinois 61820, USA; 3 Corresponding author (email: [email protected]) ABSTRACT: Batrachochytrium dendrobatidis, grassland, woodland, lakes and wetlands, the causative agent of chytridiomycosis, was colonizing forest, and plantations of exotic found in 24 of 109 (22%) frogs from Kibale trees (Chapman et al., 1997; Chapman National Park, western Uganda, in January and June 2006, representing the first account of the and Lambert, 2000). Mean daily minimum fungus in six species and in Uganda. The and maximum temperatures in Kibale presence of B. dendrobatidis in an equatorial were recorded as 14.9 C and 20.2 C, African montane forest raises conservation respectively, from 1990 to 2001, with concerns, considering the high amphibian mean annual rainfall during the same diversity and endemism characteristic of such areas and their ecological similarity to other period of 1749 mm, distributed across regions of the world experiencing anuran distinct, bimodal wet and dry seasons declines linked to chytridiomycosis. (Chapman et al., 1999, 2005). Kibale has Key words: Africa, amphibians, Anura, experienced marked climate change over Batrachochytrium dendrobatidis,Chytridio- the last approximately 30 yr, with increas- mycota, Uganda. ing annual rainfall, increasing maximum mean monthly temperatures, and decreas- Chytridiomycosis, an emerging infec- ing minimum mean monthly temperatures tious disease caused by the fungus Ba- trachochytrium dendrobatidis, is a major (Chapman et al., 2005).
    [Show full text]
  • Risk of Importing Zoonotic Diseases Through Wildlife Trade, United States Boris I
    Risk of Importing Zoonotic Diseases through Wildlife Trade, United States Boris I. Pavlin, Lisa M. Schloegel, and Peter Daszak The United States is the world’s largest wildlife import- vidual animals during 2000–2004 (5). Little disease sur- er, and imported wild animals represent a potential source veillance is conducted for imported animals; quarantine is of zoonotic pathogens. Using data on mammals imported required for only wild birds, primates, and some ungulates during 2000–2005, we assessed their potential to host 27 arriving in the United States, and mandatory testing exists selected risk zoonoses and created a risk assessment for only a few diseases (psittacosis, foot and mouth dis- that could inform policy making for wildlife importation and ease, Newcastle disease, avian infl uenza). Other animals zoonotic disease surveillance. A total of 246,772 mam- mals in 190 genera (68 families) were imported. The most are typically only screened for physical signs of disease, widespread agents of risk zoonoses were rabies virus (in and pathogen testing is delegated to either the US Depart- 78 genera of mammals), Bacillus anthracis (57), Mycobac- ment of Agriculture (for livestock) or the importer (6). terium tuberculosis complex (48), Echinococcus spp. (41), The process of preimport housing and importation often and Leptospira spp. (35). Genera capable of harboring the involves keeping animals at high density and in unnatural greatest number of risk zoonoses were Canis and Felis (14 groupings of species, providing opportunities for cross- each), Rattus (13), Equus (11), and Macaca and Lepus (10 species transmission and amplifi cation of known and un- each).
    [Show full text]
  • Amphibian Conservation INTRODUCTION
    2014 | HIGHLIGHTS AND ACCOMPLISHMENTS amphibian conservation INTRODUCTION Zoos and aquariums accredited by the Association of Zoos and Aquariums (AZA) have made long-term commitments, both individually and as a community organized under the Amphibian Taxon Advisory Group (ATAG), to the conservation of amphibians throughout the Americas and around the world. With the support and hard work of directors, curators, keepers and partners, 85 AZA-accredited zoos and aquariums reported spending more than $4.2 million to maintain, adapt and expand amphibian conservation programs in 2014. The stories in this report are drawn primarily from annual submissions to AZA’s field conservation database (available when logged into AZA’s website under “Conservation”), as well as from articles submitted directly to AZA. They share the successes and advances in the areas of reintroduction and research, conservation breeding and husbandry and citizen science and community engagement. These efforts are the result of extensive collaborations and multi-year (even multi-decadal!) commitments. AZA congratulates each of the members included in this report for their dedication, and encourages other facilities to become involved. The ATAG has many resources to help people get started or to expand their engagement in amphibian conservation, and people are also welcome to contact the facilities included in this report or the ATAG Chair, Diane Barber ([email protected]). Cover: Spring peeper (Pseudacris crucifer). Widespread throughout the eastern United States and with a familiar call to many, the spring peeper was the most frequently reported frog by FrogWatch USA volunteers in 2014. Although reports of spring peepers began in February, they peaked in April.
    [Show full text]
  • Bullfrogs - a Trojan Horse for a Deadly Fungus?
    DECEMBEROCTOBER 20172018 Bullfrogs - a Trojan horse for a deadly fungus? Authors: Susan Crow, Meghan Pawlowski, Manyowa Meki, LaraAuthors: LaDage, Timothy Roth II, Cynthia Downs, BarryTiffany Sinervo Yap, Michelleand Vladimir Koo, Pravosudov Richard Ambrose and Vance T. Vredenburg AssociateAssociate EEditors:ditors: LindseySeda Dawson, Hall and Gogi Gogi Kalka Kalka Abstract Did you know that amphibians have very special skin? They have helped spread Bd. Bullfrogs don’t show signs of sickness use their skin to breathe and drink water. But a skin-eating when they are infected, which makes them Bd vectors. This fungus, Batrachochytrium dendrobatidis (Bd), is killing them. is alarming because they are traded alive globally and could Since the 1970s, over 200 species of amphibians have declined continue spreading Bd to amphibians around the world. Here, or gone extinct. Amphibians in the eastern US seem to be we analyzed the history of bullfrogs and Bd in the western US. unaffected by Bd, but Bd outbreaks have caused mass die- We found a link between bullfrogs’ arrival and Bd outbreaks. offs in the western US. A frog species native to the eastern Then we predicted areas with high disease risk. These results US, American bullfrogs (Rana catesbeiana) (Figure 1), may can help us control the spread of Bd and save amphibians. Introduction Many amphibians, such as frogs and salamanders, live both on land and in water for some or all of their lives. Most need water specifically for reproduction and laying eggs. This makes them vulnerable to aquatic pathogens, such as the deadly fungus Batrachochytrium dendrobatidis (Bd for short) (Figure 2a).
    [Show full text]
  • World Scientists' Warning of a Climate Emergency
    Supplemental File S1 for the article “World Scientists’ Warning of a Climate Emergency” published in BioScience by William J. Ripple, Christopher Wolf, Thomas M. Newsome, Phoebe Barnard, and William R. Moomaw. Contents: List of countries with scientist signatories (page 1); List of scientist signatories (pages 1-319). List of 153 countries with scientist signatories: Albania; Algeria; American Samoa; Andorra; Argentina; Australia; Austria; Bahamas (the); Bangladesh; Barbados; Belarus; Belgium; Belize; Benin; Bolivia (Plurinational State of); Botswana; Brazil; Brunei Darussalam; Bulgaria; Burkina Faso; Cambodia; Cameroon; Canada; Cayman Islands (the); Chad; Chile; China; Colombia; Congo (the Democratic Republic of the); Congo (the); Costa Rica; Côte d’Ivoire; Croatia; Cuba; Curaçao; Cyprus; Czech Republic (the); Denmark; Dominican Republic (the); Ecuador; Egypt; El Salvador; Estonia; Ethiopia; Faroe Islands (the); Fiji; Finland; France; French Guiana; French Polynesia; Georgia; Germany; Ghana; Greece; Guam; Guatemala; Guyana; Honduras; Hong Kong; Hungary; Iceland; India; Indonesia; Iran (Islamic Republic of); Iraq; Ireland; Israel; Italy; Jamaica; Japan; Jersey; Kazakhstan; Kenya; Kiribati; Korea (the Republic of); Lao People’s Democratic Republic (the); Latvia; Lebanon; Lesotho; Liberia; Liechtenstein; Lithuania; Luxembourg; Macedonia, Republic of (the former Yugoslavia); Madagascar; Malawi; Malaysia; Mali; Malta; Martinique; Mauritius; Mexico; Micronesia (Federated States of); Moldova (the Republic of); Morocco; Mozambique; Namibia; Nepal;
    [Show full text]
  • High Prevalence of Batrachochytrium Dendrobatidis in Wild Populations of Lowland Leopard Frogs Rana Yavapaiensis in Arizona
    EcoHealth 4, 421–427, 2007 DOI: 10.1007/s10393-007-0136-y Ó 2007 EcoHealth Journal Consortium Original Contribution High Prevalence of Batrachochytrium dendrobatidis in Wild Populations of Lowland Leopard Frogs Rana yavapaiensis in Arizona Martin A. Schlaepfer,1 Michael J. Sredl,2 Phil C. Rosen,3 and Michael J. Ryan1 1Section of Integrative Biology, University of Texas, Austin, TX 78712, USA 2Arizona Game and Fish Department, Phoenix, AZ 85023, USA 3School of Natural Resources, University of Arizona, Tucson, AZ 85721, USA Abstract: Batrachochytrium dendrobatidis (Bd) is a fungus that can potentially lead to chytridiomycosis, an amphibian disease implicated in die-offs and population declines in many regions of the world. Winter field surveys in the last decade have documented die-offs in populations of the lowland leopard frog Rana yav- apaiensis with chytridiomycosis. To test whether the fungus persists in host populations between episodes of observed host mortality, we quantified field-based Bd infection rates during nonwinter months. We used PCR to sample for the presence of Bd in live individuals from nine seemingly healthy populations of the lowland leopard frog as well as four of the American bullfrog R. catesbeiana (a putative vector for Bd) from Arizona. We found Bd in 10 of 13 sampled populations. The overall prevalence of Bd was 43% in lowland leopard frogs and 18% in American bullfrogs. Our results suggest that Bd is widespread in Arizona during nonwinter months and may become virulent only in winter in conjunction with other cofactors, or is now benign in these species. The absence of Bd from two populations associated with thermal springs (water >30°C), despite its presence in nearby ambient waters, suggests that these microhabitats represent refugia from Bd and chytridiomycosis.
    [Show full text]