JULY 2018 Show
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungal Diversity Driven by Bark Features Affects Phorophyte
www.nature.com/scientificreports OPEN Fungal diversity driven by bark features afects phorophyte preference in epiphytic orchids from southern China Lorenzo Pecoraro1*, Hanne N. Rasmussen2, Sofa I. F. Gomes3, Xiao Wang1, Vincent S. F. T. Merckx3, Lei Cai4 & Finn N. Rasmussen5 Epiphytic orchids exhibit varying degrees of phorophyte tree specifcity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea unifora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specifc association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially infuencing the relationship between orchids and trees. Diference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could infuence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confrmed the presence of signifcantly diferent fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is infuenced by the fungal communities of the host tree bark. Epiphytism is one of the most common examples of commensalism occurring in terrestrial environments, which provides advantages, such as less competition and increased access to light, protection from terrestrial herbivores, and better fower exposure to pollinators and seed dispersal 1,2. -
Lankesteriana IV
LANKESTERIANA 7(1-2): 229-239. 2007. DENSITY INDUCED RATES OF POLLINARIA REMOVAL AND DEPOSITION IN THE PURPLE ENAMEL-ORCHID, ELYTHRANTHERA BRUNONIS (ENDL.) A.S. GEORGE 1,10 2 3 RAYMOND L. TREMBLAY , RICHARD M. BATEMAN , ANDREW P. B ROWN , 4 5 6 7 MARC HACHADOURIAN , MICHAEL J. HUTCHINGS , SHELAGH KELL , HAROLD KOOPOWITZ , 8 9 CARLOS LEHNEBACH & DENNIS WIGHAM 1 Department of Biology, 100 Carr. 908, University of Puerto Rico – Humacao campus, Humacao, Puerto Rico, 00791-4300, USA 2 Natural History Museum, Cromwell Road, London SW7 5BD, UK 3 Department of Environment and Conservation, Species and Communities Branch, Locked Bag 104 Bentley Delivery Centre WA 6893, Australia 4 New York Botanic Garden, 112 Alpine Terrace, Hilldale, NJ 00642, USA 5 School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex, BN1 9QG, UK 6 IUCN/SSC Orchid Specialist Group Secretariat, 36 Broad Street, Lyme Regis, Dorset, DT7 3QF, UK 7 University of California, Ecology and Evolutionary Biology, Irvine, CA 92697, USA 8 Massey University, Allan Wilson Center for Molecular Ecology and Evolution 9 Smithsonian Institution, Smithsonian Environmental Research Center, Box 28, Edgewater, MD 21037, USA 10 Author for correspondence: [email protected] RESUMEN. La distribución y densidad de los individuos dentro de las poblaciones de plantas pueden afectar el éxito reproductivo de sus integrantes. Luego de describir la filogenia de las orquideas del grupo de las Caladeniideas y su biología reproductiva, evaluamos el efecto de la densidad en el éxito reproductivo de la orquídea terrestre Elythranthera brunonis, endémica de Australia del Oeste. El éxito reproductivo de esta orquídea, medido como la deposición y remoción de polinios, fue evaluado. -
Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys Apifera
Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys apifera By Wazeera Rashid Abdullah April 2018 A Thesis submitted to the University of Liverpool in fulfilment of the requirement for the degree of Doctor in Philosophy Table of Contents Page No. Acknowledgements ............................................................................................................. xiv Abbreviations ............................................................................ Error! Bookmark not defined. Abstract ................................................................................................................................... 2 1 Chapter one: Literature review: ........................................................................................ 3 1.1 Mycorrhiza: .................................................................................................................... 3 1.1.1Arbuscular mycorrhiza (AM) or Vesicular-arbuscular mycorrhiza (VAM): ........... 5 1.1.2 Ectomycorrhiza: ...................................................................................................... 5 1.1.3 Ectendomycorrhiza: ................................................................................................ 6 1.1.4 Ericoid mycorrhiza, Arbutoid mycorrhiza, and Monotropoid mycorrhiza: ............ 6 1.1.5 Orchid mycorrhiza: ................................................................................................. 7 1.1.5.1 Orchid mycorrhizal interaction: ...................................................................... -
Diversity and Evolution of Monocots
Lilioids - petaloid monocots 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit ! • Lilioids (lilies, orchids, yams) – grade, non-monophyletic – petaloid . orchids and palms . ! • Commelinoids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Lilioids - petaloid monocots Asparagales: *Orchidaceae - orchids • finish the Asparagales by 1. Terrestrial/epiphytes: plants looking at the largest family - typically not aquatic the orchids 2. Geophytes: herbaceous above ground with below ground modified perennial stems: bulbs, corms, rhizomes, tubers 3. Tepals: showy perianth in 2 series of 3 each; usually all petaloid, or outer series not green and sepal-like & with no bracts 1 *Orchidaceae - orchids *Orchidaceae - orchids The family is diverse with about 880 genera and over 22,000 All orchids have a protocorm - a feature restricted to the species, mainly of the tropics family. Orchids are • structure formed after germination and before the mycotrophic (= fungi development of the seedling plant dependent) lilioids; • has no radicle but instead mycotrophic tissue some are obligate mycotrophs Cypripedium acaule Corallorhiza striata Stemless lady-slipper Striped coral root Dactylorhiza majalis protocorm *Orchidaceae - orchids *Orchidaceae - orchids Cosmopolitan, but the majority of species are found in the Survive in these epiphytic and other harsh environments via tropics and subtropics, ranging from sea -
Common Epiphytes and Lithophytes of BELIZE 1 Bruce K
Common Epiphytes and Lithophytes of BELIZE 1 Bruce K. Holst, Sally Chambers, Elizabeth Gandy & Marilynn Shelley1 David Amaya, Ella Baron, Marvin Paredes, Pascual Garcia & Sayuri Tzul2 1Marie Selby Botanical Gardens, 2 Ian Anderson’s Caves Branch Botanical Garden © Marie Selby Bot. Gard. ([email protected]), Ian Anderson’s Caves Branch Bot. Gard. ([email protected]). Photos by David Amaya (DA), Ella Baron (EB), Sally Chambers (SC), Wade Coller (WC), Pascual Garcia (PG), Elizabeth Gandy (EG), Bruce Holst (BH), Elma Kay (EK), Elizabeth Mallory (EM), Jan Meerman (JM), Marvin Paredes (MP), Dan Perales (DP), Phil Nelson (PN), David Troxell (DT) Support from the Marie Selby Botanical Gardens, Ian Anderson’s Caves Branch Jungle Lodge, and many more listed in the Acknowledgments [fieldguides.fieldmuseum.org] [1179] version 1 11/2019 TABLE OF CONTENTS long the eastern slopes of the Andes and in Brazil’s Atlantic P. 1 ............. Epiphyte Overview Forest biome. In these places where conditions are favorable, epiphytes account for up to half of the total vascular plant P. 2 .............. Epiphyte Adaptive Strategies species. Worldwide, epiphytes account for nearly 10 percent P. 3 ............. Overview of major epiphytic plant families of all vascular plant species. Epiphytism (the ability to grow P. 6 .............. Lesser known epiphytic plant families as an epiphyte) has arisen many times in the plant kingdom P. 7 ............. Common epiphytic plant families and species around the world. (Pteridophytes, p. 7; Araceae, p. 9; Bromeliaceae, p. In Belize, epiphytes are represented by 34 vascular plant 11; Cactaceae, p. 15; p. Gesneriaceae, p. 17; Orchida- families which grow abundantly in many shrublands and for- ceae, p. -
Comparative Vegetative Anatomy and Systematics of Oncidiinae (Maxillarieae, Orchidaceae) William Louis Stern University of Florida
CORE Metadata, citation and similar papers at core.ac.uk Provided by The Keep Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2006 Comparative vegetative anatomy and systematics of Oncidiinae (Maxillarieae, Orchidaceae) William Louis Stern University of Florida Barbara S. Carlsward Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Biology Commons Recommended Citation Stern, William Louis and Carlsward, Barbara S., "Comparative vegetative anatomy and systematics of Oncidiinae (Maxillarieae, Orchidaceae)" (2006). Faculty Research & Creative Activity. 263. http://thekeep.eiu.edu/bio_fac/263 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. Comparative vegetative anatomy and systematics of the Oncidiinae (Maxillarieae, Orchidaceae) WILLIAM LOUIS STERN and BARBARA S. CARLSWARD Abstract Subtribe Oncidiinae comprises a vegetatively heterogeneous assemblage of species that has persistently been incapable of organization. Anatomy was considered to be a possible means to resolve the perplexity of relationships amongst the constituent taxa. The consistent occurrence of a foliar hypodermis, homogeneous mesophyll, conical silica bodies in stegmata, and ubiquitous fibre bundles in leaves provides a matrix for linKing the taxa, as do the parenchymatous pith and O-thickened endodermal cell walls in roots. However, the strict consensus of the 40 genera studied was completely unresolved, suggesting that vegetative characters alone are insufficient to assess the relationships amongst these taxa, a conclusion also reached for the remainder of Maxillarieae. -
The Diversity of Root-Associated Endophytic Fungi from Four Epiphytic Orchids in China
diversity Article The Diversity of Root-Associated Endophytic Fungi from Four Epiphytic Orchids in China Tao Wang , Miao Chi, Ling Guo, Donghuan Liu, Yu Yang and Yu Zhang * Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing 100093, China; [email protected] (T.W.); [email protected] (M.C.); [email protected] (L.G.); [email protected] (D.L.); [email protected] (Y.Y.) * Correspondence: [email protected] Abstract: Root-associated endophytic fungi (RAF) are found asymptomatically in almost all plant groups. However, little is known about the compositions and potential functions of RAF communities associated with most Orchidaceae species. In this study, the diversity of RAF was examined in four wild epiphytic orchids, Acampe rigida, Doritis pulcherrima, Renanthera coccinea, and Robiquetia succisa, that occur in southern China. A culture-independent method involving Illumina amplicon sequencing, and an in vitro culture method, were used to identify culturable fungi. The RAF community diversity differed among the orchid roots, and some fungal taxa were clearly concentrated in a certain orchid species, with more OTUs being detected. By investigating mycorrhizal associations, the results showed that 28 (about 0.8%) of the 3527 operational taxonomic units (OTUs) could be assigned as OMF, while the OTUs of non-mycorrhizal fungal were about 99.2%. Among the OMFs, Ceratobasidiaceae OTUs were the most abundant with different richness, followed by Thelephoraceae. In addition, five Ceratobasidium sp. strains were isolated from D. pulcherrima, R. succisa, and R. coccinea roots with high separation rates. These culturable Ceratobasidium strains will provide materials for Citation: Wang, T.; Chi, M.; Guo, L.; host orchid conservation and for studying the mechanisms underlying mycorrhizal symbiosis. -
Hand-Pollination Increases Seed Set in the Critically Endangered Orchid Thelymitra Kangaloonica
Cunninghamia Date of Publication: August 2019 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Hand-pollination increases seed set in the critically endangered orchid Thelymitra kangaloonica. Lachlan Wilmott1*, James Schlunke2, Matt Renner3, Jessica Wait4 and Karen D. Sommerville4 1* Corresponding author: [email protected]; NSW Department of Planning, Industry and Environment, Wollongong, NSW 2520, AUSTRALIA 2 Axis Ecological Services, 4 Bedford Street Earlwood, NSW 2206, AUSTRALIA 3 National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Sydney, NSW 2000, AUSTRALIA 4 The Australian PlantBank, Royal Botanic Gardens & Domain Trust, Mount Annan, NSW 2567, AUSTRALIA Abstract: Thelymitra kangaloonica is a listed Critically Endangered sun-orchid (family Orchidaceae) with a highly restricted distribution. In recent years both individual abundance and capsule set rates have been low in this species. The flowers of Thelymitra kangaloonica possess some traits associated with autogamy (self-fertilisation) and others associated with entomophily (insect-pollination), however the pollination mechanisms have not been explicitly tested. This study compared the capsule set rate of flowers cross-pollinated by hand among individuals, against flowers which received no treatment. We found that capsule set rate in hand cross-pollinated flowers was significantly higher than in flowers receiving no treatment (23.1% versus 4.4%). This suggests that Thelymitra kangaloonica relies primarily on entomogamy to achieve seed set. Hand cross-pollination may assist management of the species by increasing the number of seeds in the soil seed bank and potentially assist in increasing the population size. In addition, it facilitates seed collection for seed banking and development of an ex-situ population for future population augmentation or translocation. -
Ancestral State Reconstruction of the Mycorrhizal Association for the Last Common Ancestor of Embryophyta, Given the Different Phylogenetic Constraints
Supplementary information Supplementary Figures Figure S1 | Ancestral state reconstruction of the mycorrhizal association for the last common ancestor of Embryophyta, given the different phylogenetic constraints. Pie charts show the likelihood of the ancestral states for the MRCA of Embryophyta for each phylogenetic hypothesis shown below. Letters represent mycorrhizal associations: (A) Ascomycota; (B) Basidiomycota; (G) Glomeromycotina; (M) Mucoromycotina; (-) Non-mycorrhizal. Combinations of letters represent a combination of mycorrhizal associations. Austrocedrus chilensis Chamaecyparis obtusa Sequoiadendron giganteum Prumnopitys taxifolia Prumnopitys Prumnopitys montana Prumnopitys Prumnopitys ferruginea Prumnopitys Araucaria angustifolia Araucaria Dacrycarpus dacrydioides Dacrycarpus Taxus baccata Podocarpus oleifolius Podocarpus Afrocarpus falcatus Afrocarpus Ephedra fragilis Nymphaea alba Nymphaea Gnetum gnemon Abies alba Abies balsamea Austrobaileya scandens Austrobaileya Abies nordmanniana Thalictrum minus Thalictrum Abies homolepis Caltha palustris Caltha Abies magnifica ia repens Ranunculus Abies religiosa Ranunculus montanus Ranunculus Clematis vitalba Clematis Keteleeria davidiana Anemone patens Anemone Tsuga canadensis Vitis vinifera Vitis Tsuga mertensiana Saxifraga oppositifolia Saxifraga Larix decidua Hypericum maculatum Hypericum Larix gmelinii Phyllanthus calycinus Phyllanthus Larix kaempferi Hieronyma oblonga Hieronyma Pseudotsuga menziesii Salix reinii Salix Picea abies Salix polaris Salix Picea crassifolia Salix herbacea -
Main Fungal Partners and Different Levels of Specificity of Orchid Mycorrhizae in the Tropical Mountain Forests of Ecuador
LANKESTERIANA 16(2): 299–305. 2016. doi: http://dx.doi.org/10.15517/lank.v16i2.26014 MAIN FUNGAL PARTNERS AND DIFFERENT LEVELS OF SPECIFICITY OF ORCHID MYCORRHIZAE IN THE TROPICAL MOUNTAIN FORESTS OF ECUADOR JUAN PABLO SUÁREZ1,3 & INGRID KOTTKE2 1 Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n C.P. 11 01 608, Loja, Ecuador* 2 Plant Evolutionary Ecology, Institute of Evolution and Ecology, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany; retired 3 Corresponding author: [email protected] ABSTRACT. Orchids are a main component of the diversity of vascular plants in Ecuador with approximately 4000 species representing about 5.3% of the orchid species described worldwide. More than a third of these species are endemics. As orchids, in contrast to other plants, depend on mycorrhizal fungi already for seed germination and early seedling establishment, availability of appropriate fungi may strongly influence distribution of orchid populations. It is currently debated if green orchids depend on specific mycobionts or may be equally promoted by a broad spectrum of mycorrhizal fungi, discussion mostly based on data from temperate regions. Here we summarize results obtained from broad scale investigations in the tropical mountain rain forest of Ecuador revealing associations with members of Serendipitaceae (Sebacinales), Tulasnellaceae, Ceratobasidiaceae (Cantharellales), and Atractiellales. Recent molecular data show that these worldwide spread fungal groups have broad ecological implications and are specifically suited as mycorrhizal fungi of green orchids. We found that main fungal partners and different levels of specificity among orchids and their mycobionts in the tropical mountain forests correspond to findings in other biomes despite the large ecological differences. -
Orchid Research Newsletter No. 66
Orchid Research Newsletter No. 66 When the Molecular Systematics Laboratory at the Royal Botanic Gardens, Kew, first opened under the leadership of Mark Chase and Mike Bennett as Keeper of the Jodrell, the main target marker was rbcL for family-wide systematic studies of Orchidaceae and other families. Internal transcribed spacers of nuclear ribosomal DNA were used for studies below the family level. Those of us unfortunate to have lived through those days of manual sequencing in the early 1990s know how laborious it was to label nucleotides with radioactive phosphorus 32 or sulfur 35 with all the safety measures that that entailed, pour polyacrylamide gels between two glass plates without even the smallest air bubble, expose the sequencing gel to x-ray film, and then manually call the bases one by one off the autoradiogram, hoping to get 100 bases of the more than 1300 base pairs in the rbcL sequence and then enter them into the computer database. In many cases, the results were ambiguous, which entailed judgment calls. And this did not even include data analysis with software much, much slower than today. All this work produced only a trickle of data and a lack of strong support for many branches leading to the major clades. Manna from heaven came in the form of automated sequencing later that decade. Automated sequencers used the Sanger method, which relied on the introduction of dideoxynucleotides into the growing DNA strand by DNA polymerase, creating fragments separated by size on the gel by electrophoresis. Nucleotides were labeled by fluorescent dyes rather than sulfur 35, and read by a laser. -
Oncidiinae (Orchidaceae) on the Great Curve Of
http://dx.doi.org/10.1590/1519-6984.01014BM Original Article Oncidiinae (Orchidaceae) on the great curve of the Xingu River, Pará state, Brazil Carneiro-Silva, MQ.a, Koch, AK.b, Viana, PL.c and Ilkiu-Borges, AL.c* aPrograma de Pós-Graduação em Ciências Biológicas, Botânica Tropical, Museu Paraense Emílio Goeldi, Universidade Federal Rural da Amazônia – UFRA, Av. Perimetral, 1901, Terra Firme, CEP 66077-830, Belém, PA, Brazil bNúcleo de Pesquisa Orquidário do Estado, Instituto de Botânica de São Paulo, Av. Miguel Stéfano, 3687, Água Funda, CEP 04301-902, São Paulo, SP, Brazil cMuseu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, CEP 66077-830, Belém, PA, Brazil *e-mail: [email protected] Received: May 30, 2014 – Accepted: February 10, 2015 – Distributed: August 31, 2015 (With 3 figures) Abstract Among the studies on Orchidaceae in the Amazon, none comprised the region of the Great Curve of the Xingu River, located in the lower Xingu river. The aim of this study was to inventory and taxonomically study the species of Oncidiinae (Orchidaceae) in the Great Curve of the Xingu River, Pará state. The floristic survey was performed in the area of the Belo Monte hydroelectric plant, in the Vitória do Xingu municipality, centrally inserted in the called Great Curve of the Xingu River. Botanical collections were accomplished between June 2011 and December 2013. A total of 27 species of Oncidiinae, distributed in 15 genera, was inventoried in the study area. Notylia Lindl. and Trichocentrum Poepp. & Endl. were the richest genera, with five and four species, respectively, followed by Erycina Lindl., Ionopsis Kunth, Lockhartia Hook., Macradenia R.Br., and Ornithocephalus Hook., with two species each.