Exercise Set

Total Page:16

File Type:pdf, Size:1020Kb

Exercise Set WS 12/13 Game Theory Exercise Set Question 1 (GE with production) In an economy, there are two consumers (i = 1; 2), two firms (j = 1; 2) and two goods (labor/leisure and rice). Each consumer is endowed with 1 unit of leisure but no rice. Denote xi as consumer i's consumption of rice and li leisure. (Note that if consumer i consumes li amount of leisure, she has (1 − li) amount of labor available to sell.) The utility they derive from the consumption bundle (xi; li) is ui(xi; li) = ln(xi) + ln(li). The two firms use labor to grow rice. Let yj denote firm j's output of rice and Lj firm j's input of labor. Firm 1's production function is y1 = AL1 where A is a positive real. 1 Firm 2's production function is y2 = (L2) 2 . Firm 1 is owned by consumer 1 and firm 2 is owned by consumer 2. The earnings of a firm are paid lump-sum to the owner. a) Define a competitive equilibrium for this economy. b) Assume both firms produce positive output. Calculate the competitive equilibrium price vector and allocation, as a function of the parameter A. (Hint: Normalize the price of rice to 1.) c) For what values of the parameter A will we have a corner solution, where one of the firms produces zero output? Question 2 (GE with uncertainty) In a village, there are 150 consumers and one physical commodity (rice) per state of nature. For i = 1; :::; 150, consumer i is a von Neumann-Morgenstern expected utility maximizer with (Bernoulli) utility of certain consumption given by ui(xi) = ln(xi). For i = 1; :::; 100, consumer i lives on the highlands, and has an endowment of 1 in all states of nature. For i = 101; :::; 150, consumer i lives on the flood plain. When a flood occurs, all con- 1 sumers living on the plain receive an endowment of 0. The probability of a flood is 10 . 9 When a flood does not occur (probability 10 ), all consumers living on the plain receive an endowment of 1. a) If the entire village trades state-contingent commodities, define a competitive equili- brium for this economy. b) Calculate the competitive equilibrium price vector and allocation. (Hint: Normalize p2 to 1. (Hint: treat rice in the flood state and in the no flood state as two different goods.) 1 WS 12/13 Game Theory Question 3 (Nash-Equilibrium in a three player game) To prevent humans from being bitten, the government offers one unit of banked blood per day to every vampire for free. The blood bank of the capital has three units of banked blood of different conditions. Suppose that three vampires want to go out for lunch and are interested in these blood units. The manager of the blood bank makes a special offer: with a small "contribution" of 20 Dollars a vampire can increase the probability of recei- ving a good unit. Dracula, one of the three vampires, just like his two colleagues, doesn't want to pay the contribution. Because of different expected quality, the vampires value the best unit with 150 Dollars, the second best unit with 100 Dollars and the worst with 50 Dollars. The allocation of the units occurs according to the following: If everyone or no one pays, the blood units will be randomly assigned, and Dracula assumes that the probabilities of getting any of the three blood units are the same. If two and only two vampires pay the contribution, these two will get the best two units with the same probability. The one who didn't pay will get the worst unit. If one and only one pays, that vampire gets the best unit and the other two have equal probabilities receiving the worst unit. Model the game in normal form. Assume that the vampires have common valuation of the banked blood, what can you recommend to Dracula? Question 4 (Dividing Money) Two people have 10 Dollars to divide between themselves. They use the following procedure. Each person names a number of Dollars (a nonnegative integer), at most equal to 10. If the sum of the amounts that the people name is at most 10, then each person receives the amount of money she named (and the remainder is destroyed). If the sum of the amounts that the people name exceeds 10 and the amounts named are different, then the person who named the smaller amount receives that amount and the other person receives the remaining money. If the sum of the amounts that the people name exceeds 10 and the amounts named are the same, then each person receives 5 Dollars. Determine the best response of each player to each of the other player's actions; plot them in a diagram and thus find the Nash-Equilibria of the game. 2 WS 12/13 Game Theory Question 5 (Tullock Contest) Assume that there are only two producers on the market for refuelling aircrafts: Bobus and Airing. The Air Force of Tasmania is using old aircrafts made in the late 50's. Accor- dingly, the minister of defence wants to buy new aircrafts, either from Airing or Bobus. The revenue of the contract is the same for both producers. Accordingly, it is denoted by V . But only one producer can get the contract. To convince the minister, both firms invest in marketing and bribery. The expenditures of Airing are given by xA and those of Bobus are given by xB. The probability that the minister chooses one firm is given by ( xi for xA + xB > 0 xA+xB pi = 1 i = A; B: 2 for xA + xB = 0 a) What is a strategy of a producer in the given game? What is the expected revenue for Airing and for Bobus? Is it possible that xA + xB = 0? (Suppose that there is no communicationn between Airing and Bobus.) b) Calculate the Nash-Equilibrium (xA and xB) as well as xA +xB! What does a producer earn in expectation? Suppose that Bobus can cooperate with a local producer. If the local producer is contrac- ted by Bobus, then the local producer invests in convincing the minister. Bobus does only pay a share of V if Bobus can sell the aircrafts. If Airing can sell the aircrafts, then Bobus pays nothing, but the local partner has to bear his effort xL. c) What share ∗ does Bobus offer to the local partner? Assume that Bobus first contracts the local partner and, afterwards, Airing and the local partner invest in convincing the minister simultaneously. (Hint: Use backward induction.) d) Assume that an unit of effort made by the local partner is worth two units of effort made by Airing. Calculate the share ∗∗ that Bobus is offering his local partner, now. 3 WS 12/13 Game Theory Question 6 (War of Attrition) The game known as the War of Attrition elaborates on the ideas captured by the game Hawk-Dove. It was originally posed as a model of a conflict between two animals fighting over prey. Each animal chooses the time at which it intends to give up. When an animal gives up, its opponent obtains all the prey (and the time at which the winner intended to give up is irrelevant). If both animals give up at the same time then each has an equal chance of obtaining the prey. Fighting is costly: each animal prefers as short a fight as possible. The game models not only such a conflict between animals, but also many other dis- putes. The "prey" can be any indivisible object, and ”fighting" can be any costly activity - for example, simply waiting. To define the game precisely, let time be a continous variable that starts at 0 and runs indefinitely. Assume that the value party i attaches to the object in dispute is vi > 0 and vi the value it attaches to a 50% chance of obtaining the object is 2 . Each unit of time that passes before the dispute is settled (i.e. one of the parties concedes) costs each party one unit of payoff. Thus if player i concedes first, at time ti, her payoff is −ti (she spends ti units of time and does not obtain the object). If the other player concedes first, at time tj, player i's payoff is vi − tj (she obtains the object after tj units of time). If both players 1 concede at the same time, player i's payoff is 2 vi − ti, where ti is the common concession time. a) Find the best response function Bi(ti); i 6= j, for player i; j = 1; 2 and give a graphical description. b) Determine from a) all Nash-Equilibria of the game! What are the features common to all equilibria? 4 WS 12/13 Game Theory Question 7 (Second-price sealed-bid auction) Denote by vi the value player i attaches to the object; if she obtains the object at the price p her payoff is vi−p. Assume that the players' valuations of the object are all different and all positive; number the players 1 through n in such a way that v1 > v2 > ::: > vn > 0. Each player i submits a (sealed) bid bi. If player i's bid is higher than every other bid, she obtains the object at a price equal to the second-highest bid, say bj, and hence receives the payoff vi − bj. If some other bid is higher than player i's bid, player i does not obtain the object, and receives the payoff of zero.
Recommended publications
  • Game Theory Lecture Notes
    Game Theory: Penn State Math 486 Lecture Notes Version 2.1.1 Christopher Griffin « 2010-2021 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License With Major Contributions By: James Fan George Kesidis and Other Contributions By: Arlan Stutler Sarthak Shah Contents List of Figuresv Preface xi 1. Using These Notes xi 2. An Overview of Game Theory xi Chapter 1. Probability Theory and Games Against the House1 1. Probability1 2. Random Variables and Expected Values6 3. Conditional Probability8 4. The Monty Hall Problem 11 Chapter 2. Game Trees and Extensive Form 15 1. Graphs and Trees 15 2. Game Trees with Complete Information and No Chance 18 3. Game Trees with Incomplete Information 22 4. Games of Chance 24 5. Pay-off Functions and Equilibria 26 Chapter 3. Normal and Strategic Form Games and Matrices 37 1. Normal and Strategic Form 37 2. Strategic Form Games 38 3. Review of Basic Matrix Properties 40 4. Special Matrices and Vectors 42 5. Strategy Vectors and Matrix Games 43 Chapter 4. Saddle Points, Mixed Strategies and the Minimax Theorem 45 1. Saddle Points 45 2. Zero-Sum Games without Saddle Points 48 3. Mixed Strategies 50 4. Mixed Strategies in Matrix Games 53 5. Dominated Strategies and Nash Equilibria 54 6. The Minimax Theorem 59 7. Finding Nash Equilibria in Simple Games 64 8. A Note on Nash Equilibria in General 66 Chapter 5. An Introduction to Optimization and the Karush-Kuhn-Tucker Conditions 69 1. A General Maximization Formulation 70 2. Some Geometry for Optimization 72 3.
    [Show full text]
  • Evolutionary Game Theory: ESS, Convergence Stability, and NIS
    Evolutionary Ecology Research, 2009, 11: 489–515 Evolutionary game theory: ESS, convergence stability, and NIS Joseph Apaloo1, Joel S. Brown2 and Thomas L. Vincent3 1Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, 2Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA and 3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, USA ABSTRACT Question: How are the three main stability concepts from evolutionary game theory – evolutionarily stable strategy (ESS), convergence stability, and neighbourhood invader strategy (NIS) – related to each other? Do they form a basis for the many other definitions proposed in the literature? Mathematical methods: Ecological and evolutionary dynamics of population sizes and heritable strategies respectively, and adaptive and NIS landscapes. Results: Only six of the eight combinations of ESS, convergence stability, and NIS are possible. An ESS that is NIS must also be convergence stable; and a non-ESS, non-NIS cannot be convergence stable. A simple example shows how a single model can easily generate solutions with all six combinations of stability properties and explains in part the proliferation of jargon, terminology, and apparent complexity that has appeared in the literature. A tabulation of most of the evolutionary stability acronyms, definitions, and terminologies is provided for comparison. Key conclusions: The tabulated list of definitions related to evolutionary stability are variants or combinations of the three main stability concepts. Keywords: adaptive landscape, convergence stability, Darwinian dynamics, evolutionary game stabilities, evolutionarily stable strategy, neighbourhood invader strategy, strategy dynamics. INTRODUCTION Evolutionary game theory has and continues to make great strides.
    [Show full text]
  • Game Theoretic Interaction and Decision: a Quantum Analysis
    games Article Game Theoretic Interaction and Decision: A Quantum Analysis Ulrich Faigle 1 and Michel Grabisch 2,* 1 Mathematisches Institut, Universität zu Köln, Weyertal 80, 50931 Köln, Germany; [email protected] 2 Paris School of Economics, University of Paris I, 106-112, Bd. de l’Hôpital, 75013 Paris, France * Correspondence: [email protected]; Tel.: +33-144-07-8744 Received: 12 July 2017; Accepted: 21 October 2017; Published: 6 November 2017 Abstract: An interaction system has a finite set of agents that interact pairwise, depending on the current state of the system. Symmetric decomposition of the matrix of interaction coefficients yields the representation of states by self-adjoint matrices and hence a spectral representation. As a result, cooperation systems, decision systems and quantum systems all become visible as manifestations of special interaction systems. The treatment of the theory is purely mathematical and does not require any special knowledge of physics. It is shown how standard notions in cooperative game theory arise naturally in this context. In particular, states of general interaction systems are seen to arise as linear superpositions of pure quantum states and Fourier transformation to become meaningful. Moreover, quantum games fall into this framework. Finally, a theory of Markov evolution of interaction states is presented that generalizes classical homogeneous Markov chains to the present context. Keywords: cooperative game; decision system; evolution; Fourier transform; interaction system; measurement; quantum game 1. Introduction In an interaction system, economic (or general physical) agents interact pairwise, but do not necessarily cooperate towards a common goal. However, this model arises as a natural generalization of the model of cooperative TU games, for which already Owen [1] introduced the co-value as an assessment of the pairwise interaction of two cooperating players1.
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Banerjee, Abhijit; Weibull, Jörgen W. Working Paper Evolution and Rationality: Some Recent Game- Theoretic Results IUI Working Paper, No. 345 Provided in Cooperation with: Research Institute of Industrial Economics (IFN), Stockholm Suggested Citation: Banerjee, Abhijit; Weibull, Jörgen W. (1992) : Evolution and Rationality: Some Recent Game-Theoretic Results, IUI Working Paper, No. 345, The Research Institute of Industrial Economics (IUI), Stockholm This Version is available at: http://hdl.handle.net/10419/95198 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Ind ustriens Utred n i ngsi nstitut THE INDUSTRIAL INSTITUTE FOR ECONOMIC AND SOCIAL RESEARCH A list of Working Papers on the last pages No.
    [Show full text]
  • Cooperative and Non-Cooperative Game Theory Olivier Chatain
    HEC Paris From the SelectedWorks of Olivier Chatain 2014 Cooperative and Non-Cooperative Game Theory Olivier Chatain Available at: https://works.bepress.com/olivier_chatain/9/ The Palgrave Encyclopedia of Strategic Management Edited by Mie Augier and David J. Teece (http://www.palgrave.com/strategicmanagement/information/) Entry: Cooperative and non-cooperative game theory Author: Olivier Chatain Classifications: economics and strategy competitive advantage formal models methods/methodology Definition: Cooperative game theory focuses on how much players can appropriate given the value each coalition of player can create, while non-cooperative game theory focuses on which moves players should rationally make. Abstract: This article outlines the differences between cooperative and non-cooperative game theory. It introduces some of the main concepts of cooperative game theory as they apply to strategic management research. Keywords: cooperative game theory coalitional game theory value-based strategy core (solution concept) Shapley value; biform games Cooperative and non-cooperative game theory Game theory comprises two branches: cooperative game theory (CGT) and non-cooperative game theory (NCGT). CGT models how agents compete and cooperate as coalitions in unstructured interactions to create and capture value. NCGT models the actions of agents, maximizing their utility in a defined procedure, relying on a detailed description of the moves 1 and information available to each agent. CGT abstracts from these details and focuses on how the value creation abilities of each coalition of agents can bear on the agents’ ability to capture value. CGT can be thus called coalitional, while NCGT is procedural. Note that ‘cooperative’ and ‘non-cooperative’ are technical terms and are not an assessment of the degree of cooperation among agents in the model: a cooperative game can as much model extreme competition as a non-cooperative game can model cooperation.
    [Show full text]
  • Dynamics of Profit-Sharing Games
    Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Dynamics of Profit-Sharing Games John Augustine, Ning Chen, Edith Elkind, Angelo Fanelli, Nick Gravin, Dmitry Shiryaev School of Physical and Mathematical Sciences Nanyang Technological University, Singapore Abstract information about other players. Such agents may simply re- spond to their current environment without worrying about An important task in the analysis of multiagent sys- the subsequent reaction of other agents; such behavior is said tems is to understand how groups of selfish players to be myopic. Now, coalition formation by computationally can form coalitions, i.e., work together in teams. In limited agents has been studied by a number of researchers in this paper, we study the dynamics of coalition for- multi-agent systems, starting with the work of [Shehory and mation under bounded rationality. We consider set- Kraus, 1999] and [Sandholm and Lesser, 1997]. However, tings where each team’s profit is given by a concave myopic behavior in coalition formation received relatively lit- function, and propose three profit-sharing schemes, tle attention in the literature (for some exceptions, see [Dieck- each of which is based on the concept of marginal mann and Schwalbe, 2002; Chalkiadakis and Boutilier, 2004; utility. The agents are assumed to be myopic, i.e., Airiau and Sen, 2009]). In contrast, myopic dynamics of they keep changing teams as long as they can in- non-cooperative games is the subject of a growing body of crease their payoff by doing so. We study the prop- research (see, e.g. [Fabrikant et al., 2004; Awerbuch et al., erties (such as closeness to Nash equilibrium or to- 2008; Fanelli et al., 2008]).
    [Show full text]
  • Introduction to Game Theory I
    Introduction to Game Theory I Presented To: 2014 Summer REU Penn State Department of Mathematics Presented By: Christopher Griffin [email protected] 1/34 Types of Game Theory GAME THEORY Classical Game Combinatorial Dynamic Game Evolutionary Other Topics in Theory Game Theory Theory Game Theory Game Theory No time, doesn't contain differential equations Notion of time, may contain differential equations Games with finite or Games with no Games with time. Modeling population Experimental / infinite strategy space, chance. dynamics under Behavioral Game but no time. Games with motion or competition Theory Generally two player a dynamic component. Games with probability strategic games Modeling the evolution Voting Theory (either induced by the played on boards. Examples: of strategies in a player or the game). Optimal play in a dog population. Examples: Moves change the fight. Chasing your Determining why Games with coalitions structure of a game brother across a room. Examples: altruism is present in or negotiations. board. The evolution of human society. behaviors in a group of Examples: Examples: animals. Determining if there's Poker, Strategic Chess, Checkers, Go, a fair voting system. Military Decision Nim. Equilibrium of human Making, Negotiations. behavior in social networks. 2/34 Games Against the House The games we often see on television fall into this category. TV Game Shows (that do not pit players against each other in knowledge tests) often require a single player (who is, in a sense, playing against The House) to make a decision that will affect only his life. Prize is Behind: 1 2 3 Choose Door: 1 2 3 1 2 3 1 2 3 Switch: Y N Y N Y N Y N Y N Y N Y N Y N Y N Win/Lose: L W W L W L W L L W W L W L W L L W The Monty Hall Problem Other games against the house: • Blackjack • The Price is Right 3/34 Assumptions of Multi-Player Games 1.
    [Show full text]
  • What Is Game Theory Trying to Accomplish?
    1 What Is Game Theory Trying to Accomplish? 1 Introduction The language of game theory—coalitions, payo¤s, markets, votes— suggests that it is not a branch of abstract mathematics; that it is moti- vated by and related to the world around us; and that it should be able to tell us something about that world. Most of us have long realized that game theory and the ‘‘real world’’ (it might better be called the complex world) have a relationship that is not entirely comfortable; that it is not clear just what it is that we are trying to do when we build a game- theoretic model and then apply solution concepts to it. This is the subject I would like to explore in this paper. I might add that much the same questions apply to economic theory, at least the kind that those of us working in mathematical economics see most often; and that much of my paper will apply, mutatis mutandis, to economic theory as well. There is a branch of philosophy that deals with theory in the social sciences, so some of the things I have to say are unquestionably old hat. But I am not trying to be particularly original: I am only trying to open this topic, which I think concerns all of us, for discussion, and to suggest a particu- lar point of view. No doubt others have thought about these questions more thoroughly and deeply than I have, and are better versed in the history and philosophy of science in general. I will be grateful to anybody who sets me straight when I err, and who gives me references for the things I get right.
    [Show full text]
  • Solution Concepts in Cooperative Game Theory
    1 A. Stolwijk Solution Concepts in Cooperative Game Theory Master’s Thesis, defended on October 12, 2010 Thesis Advisor: dr. F.M. Spieksma Mathematisch Instituut, Universiteit Leiden 2 Contents 1 Introduction 7 1.1 BackgroundandAims ................................. 7 1.2 Outline .......................................... 8 2 The Model: Some Basic Concepts 9 2.1 CharacteristicFunction .............................. ... 9 2.2 Solution Space: Transferable and Non-Transferable Utilities . .......... 11 2.3 EquivalencebetweenGames. ... 12 2.4 PropertiesofSolutions............................... ... 14 3 Comparing Imputations 15 3.1 StrongDomination................................... 15 3.1.1 Properties of Strong Domination . 17 3.2 WeakDomination .................................... 19 3.2.1 Properties of Weak Domination . 20 3.3 DualDomination..................................... 22 3.3.1 Properties of Dual Domination . 23 4 The Core 25 4.1 TheCore ......................................... 25 4.2 TheDualCore ...................................... 27 4.2.1 ComparingtheCorewiththeDualCore. 29 4.2.2 Strong ǫ-Core................................... 30 5 Nash Equilibria 33 5.1 Strict Nash Equilibria . 33 5.2 Weak Nash Equilibria . 36 3 4 CONTENTS 6 Stable Sets 39 6.1 DefinitionofStableSets ............................... .. 39 6.2 Stability in A′ ....................................... 40 6.3 ConstructionofStronglyStableSets . ...... 41 6.3.1 Explanation of the Strongly Stable Set: The Standard of Behavior in the 3-personzero-sumgame ............................
    [Show full text]
  • Quantum Conditional Strategies for Prisoners' Dilemmata Under The
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 May 2019 doi:10.20944/preprints201905.0366.v1 Peer-reviewed version available at Appl. Sci. 2019, 9, 2635; doi:10.3390/app9132635 Article Quantum conditional strategies for prisoners’ dilemmata under the EWL scheme Konstantinos Giannakis* , Georgia Theocharopoulou, Christos Papalitsas, Sofia Fanarioti, and Theodore Andronikos* Department of Informatics, Ionian University, Tsirigoti Square 7, Corfu, 49100, Greece; {kgiann, zeta.theo, c14papa, sofiafanar, andronikos}@ionio.gr * Correspondence: [email protected] (K.G.); [email protected] (Th.A.) 1 Abstract: Classic game theory is an important field with a long tradition of useful results. Recently, 2 the quantum versions of classical games, such as the Prisoner’s Dilemma (PD), have attracted a lot of 3 attention. Similarly, state machines and specifically finite automata have also been under constant 4 and thorough study for plenty of reasons. The quantum analogues of these abstract machines, like the 5 quantum finite automata, have been studied extensively. In this work, we examine some well-known 6 game conditional strategies that have been studied within the framework of the repeated PD game. 7 Then, we try to associate these strategies to proper quantum finite automata that receive them as 8 inputs and recognize them with probability 1, achieving some interesting results. We also study the 9 quantum version of PD under the Eisert-Wilkens-Lewenstein scheme, proposing a novel conditional 10 strategy for the repeated version of this game. 11 Keywords: quantum game theory, quantum automata, prisoner’s dilemma, conditional strategies, 12 quantum strategies 13 1. Introduction 14 Quantum game theory has gained a lot of research interest since the first pioneering works of the 15 late ’90s [1–5].
    [Show full text]
  • Navigating the Landscape of Multiplayer Games ✉ Shayegan Omidshafiei 1,4 , Karl Tuyls1,4, Wojciech M
    ARTICLE https://doi.org/10.1038/s41467-020-19244-4 OPEN Navigating the landscape of multiplayer games ✉ Shayegan Omidshafiei 1,4 , Karl Tuyls1,4, Wojciech M. Czarnecki2, Francisco C. Santos3, Mark Rowland2, Jerome Connor2, Daniel Hennes 1, Paul Muller1, Julien Pérolat1, Bart De Vylder1, Audrunas Gruslys2 & Rémi Munos1 Multiplayer games have long been used as testbeds in artificial intelligence research, aptly referred to as the Drosophila of artificial intelligence. Traditionally, researchers have focused on using well-known games to build strong agents. This progress, however, can be better 1234567890():,; informed by characterizing games and their topological landscape. Tackling this latter question can facilitate understanding of agents and help determine what game an agent should target next as part of its training. Here, we show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games, quanti- fying relationships between games of varying sizes and characteristics. We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another. Our results culminate in a demonstration leveraging this information to generate new and interesting games, including mixtures of empirical games synthesized from real world games. 1 DeepMind, Paris, France. 2 DeepMind, London, UK. 3 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. 4These authors ✉ contributed equally: Shayegan Omidshafiei, Karl Tuyls. email: somidshafi[email protected] NATURE COMMUNICATIONS | (2020) 11:5603 | https://doi.org/10.1038/s41467-020-19244-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19244-4 ames have played a prominent role as platforms for the games.
    [Show full text]
  • Chronology of Game Theory
    Chronology of Game Theory http://www.econ.canterbury.ac.nz/personal_pages/paul_walker/g... Home | UC Home | Econ. Department | Chronology of Game Theory | Nobel Prize A Chronology of Game Theory by Paul Walker September 2012 | Ancient | 1700 | 1800 | 1900 | 1950 | 1960 | 1970 | 1980 | 1990 | Nobel Prize | 2nd Nobel Prize | 3rd Nobel Prize | 0-500AD The Babylonian Talmud is the compilation of ancient law and tradition set down during the first five centuries A.D. which serves as the basis of Jewish religious, criminal and civil law. One problem discussed in the Talmud is the so called marriage contract problem: a man has three wives whose marriage contracts specify that in the case of this death they receive 100, 200 and 300 respectively. The Talmud gives apparently contradictory recommendations. Where the man dies leaving an estate of only 100, the Talmud recommends equal division. However, if the estate is worth 300 it recommends proportional division (50,100,150), while for an estate of 200, its recommendation of (50,75,75) is a complete mystery. This particular Mishna has baffled Talmudic scholars for two millennia. In 1985, it was recognised that the Talmud anticipates the modern theory of cooperative games. Each solution corresponds to the nucleolus of an appropriately defined game. 1713 In a letter dated 13 November 1713 Francis Waldegrave provided the first, known, minimax mixed strategy solution to a two-person game. Waldegrave wrote the letter, about a two-person version of the card game le Her, to Pierre-Remond de Montmort who in turn wrote to Nicolas Bernoulli, including in his letter a discussion of the Waldegrave solution.
    [Show full text]