1 Fossil-calibrated molecular phylogeny of atlantid heteropods 2 (, ) 3 4 Deborah Wall-Palmer1, * 5 Arie W. Janssen 1 6 Erica Goetze 2 7 Le Qin Choo 1, 3 8 Lisette Mekkes 1, 3 9 Katja T.C.A. Peijnenburg 1, 3 10 11 1 Marine Biodiversity Group, Naturalis Biodiversity Center, Leiden, The Netherlands. 12 13 2 Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, USA. 14 15 3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 16 Amsterdam, The Netherlands. 17 18 * Corresponding author 19 Email: [email protected] 20 21

1 22 Abstract 23 24 The aragonite shelled, planktonic gastropod family (shelled heteropods) is 25 likely to be one of the first groups to be impacted by imminent ocean changes, 26 including ocean warming and ocean acidification. With a fossil record spanning at 27 least 100 Million years (Ma), atlantids have experienced and survived global-scale 28 ocean changes and extinction events in the past. However, the diversification 29 patterns and tempo of evolution in this family are largely unknown. Based on a 30 concatenated maximum likelihood phylogeny of three genes (cytochrome c oxidase 31 subunit 1 mitochondrial DNA, 28S and 18S ribosomal rRNA) we show that the three 32 extant genera of the family Atlantidae, , Protatlanta and , form 33 monophyletic clades. The Atlanta is split into two groups, one exhibiting 34 smaller, well ornamented shells, and the other having larger, less ornamented shells. 35 The fossil record, in combination with a fossil-calibrated phylogeny suggest that large 36 scale atlantid extinction was accompanied by considerable and rapid diversification 37 over the last 25 Ma, potentially driven by vicariance events. Now confronted with a 38 rapidly changing modern ocean, the ability of atlantids to survive past global change 39 crises gives some optimism that they may be able to persist through the 40 Anthropocene. 41 42 [195 of 350 words] 43 44 Keywords 45 46 Atlantidae, Planktonic gastropods, cytochrome c oxidase subunit 1, 28S and 18S 47 ribosomal rRNA, ocean change, rapid diversification 48 49 [6 of 10 keywords]

2 50 Introduction 51 52 The Atlantidae is a family of small (<14 mm) marine predatory gastropods with a 53 holoplanktonic mode of life (Fig. 1). Atlantids fall within the superfamily 54 Pterotracheoidea, known commonly as heteropods, or sea elephants. Unlike the 55 other two heteropod families ( and ), all three genera of 56 the Atlantidae (Atlanta, Protatlanta and Oxygyrus) have thin-walled laterally 57 compressed aragonite shells that are broadened with a keel. A modified foot serves 58 as a primary swimming fin, and the broad shell is used as a secondary swimming fin 59 [1]. Together, the fin and the shell generate rapid and directed movement for prey 60 capture and predator evasion. Atlantids are able to fully withdraw into their shell and 61 seal the with an . They also have well developed eyes, a sucker 62 on their fin for securing prey, and a proboscis, or trunk, which is used for reaching 63 into the shells of prey, such as shelled pteropods [2–4]. It is clear that atlantids have 64 remarkable and derived adaptations for a holoplanktonic lifestyle, however, their 65 evolutionary history is largely unknown. Until now, theories about the evolution of 66 atlantids (and heteropods in general) have relied upon a fossil record with vast gaps 67 [5], due to a combination of the loss of delicate aragonite shells during diagenetic 68 processes, creating genuine gaps in the fossil record, and a lack of research on fossil 69 heteropods as a whole, creating knowledge gaps. Despite these gaps, the 70 evolutionary history of this group is of interest in understanding how these delicate 71 aragonite-shelled plankton, and presently the only aragonite shelled predatory 72 holoplankton, have fared through past climate change and ocean acidification events. 73 The morphologically similar aragonite-shelled pteropods are known to have survived 74 through both the -Paleogene (KPg or KT) extinction event and the 75 Paleocene Eocene Thermal Maximum (PETM), which were both times of extreme 76 climate change and the closest analogues to predicted ocean changes [6–8]. 77 78 The thin-walled aragonite shells of the atlantids, and their habitat in the upper ocean 79 imply that they are likely to be sensitive to ocean acidification and ocean warming, in 80 a similar way to the shelled pteropods [9]. The only study addressing the effects of 81 ocean acidification on atlantids found negative effects of reduced ocean pH on shell 82 growth and the down-regulation of biomineralisation and growth genes [10]. 83 Relatively recent local extinctions have been reported for several atlantid . 84 Atlanta plana and are not found in the modern Atlantic Ocean [11],

3 85 however, fossils of both species have been found in Late Pleistocene sediments of 86 the Caribbean Sea [12], and A. plana has also been found in Pliocene rocks of 87 southern France and southern Spain [13, 14]. These records suggest the local 88 extinction of A. turriculata at around 16 thousand years (ka), and A. plana in the last 89 3.5–1 ka. Protatlanta sculpta is currently only known from the Atlantic Ocean, but 90 was present in Late Pleistocene sediments of the Indian Ocean 24–16 ka ago (D. 91 Wall-Palmer personal observation) and in Pliocene rocks of Pangasinan, Philippines 92 [15]. Most of these local extinctions have occurred within the warming period since 93 the Last Glacial Maximum, and may reflect sensitivity to a changing ocean. 94 95 Holoplanktonic gastropods are thought to have evolved from benthic gastropods with 96 planktotrophic larvae, with likely progression to remain planktonic in response to 97 hostile, anoxic bottom conditions [16]. Holoplanktonic gastropods first appear in the 98 , likely triggered by the Early Jurassic Anoxia Event [17]. Amongst the 99 earliest holoplanktonic gastropods are several potential heteropod genera including 100 Coelodiscus, Freboldia and Tatediscus [16, 18, 19]. Coelodiscus minutus [16, 20] 101 from the Pliensbachian–Aalenian of the Early–Middle Jurassic (190.8–170.3 Ma) is 102 the earliest known holoplanktonic caenogastropod and probable heteropod. 103 Coelodiscus minutus has a shell morphology remarkably similar to larval atlantid 104 shells of the genus Atlanta (Fig. 2A-D). It is thought that C. minutus does represent 105 an early heteropod [18], but only two ontogenetic stages can be identified from 106 abundant fossil material (compared to three in modern heteropods), and therefore it 107 is not a member of any of the extant families [16]. The planktotrophic larval stage of 108 C. minutus probably became the adult stage when transitioning to a holoplanktonic 109 mode of life, and the adult shell of the modern atlantid heteropods developed later 110 [16]. 111 112 The oldest potential member of the family Atlantidae does not appear in the fossil 113 record until ~57 Ma later, in the Early Cretaceous. Bellerophina minuta [21, 22], 114 found in the Albian (~113–100.5 Ma), has an involute, more rounded shell 115 morphology with clear ornamentation that is similar to larval shells of the extant 116 atlantid genus Oxygyrus (Fig. 2E-H). Destombes [23] considered the relationship 117 between B. minuta and the genus Oxygyrus to be unclear, due to differences in size 118 and incompleteness of the aperture in B. minuta fossils. He therefore placed B. 119 minuta into a separate family, Bellerophinidae, in which an older genus Freboldia

4 120 (163.5–157.3 Ma) is now also placed [17]. However, here we consider B. minuta to 121 belong within the family Atlantidae, having a shell morphology very similar to the 122 extant genus Oxygyrus [22]. Freboldia fluitans (163.5–157.3 Ma) is thought to be 123 holoplanktonic and its shell morphology is involute and quite rounded in shape, 124 however, unlike B. minuta, the shell surface has little or no ornamentation, and the 125 coiling direction of F. fluitans cannot be determined with certainty [17]. 126 127 Through the Late Cretaceous, Paleocene and Eocene there are no known atlantid 128 fossils, creating a gap in the record of ~73 Ma. The recent fossil record of the 129 Atlantidae, extending to the Piacenzian (3.6–0 Ma) is relatively well known [5]. 130 However, from the Piacenzian to the Chattian of the Oligocene (~27.82–3.6 Ma) [24], 131 diversity is much lower with only five atlantid species, and two not determined to 132 species level. There are eight atlantid species known to have become extinct during 133 the Miocene and the Pliocene [5], and one extinct genus, Atlantidea [25]. 134 135 Although heteropods have almost certainly been alive for the last ~190 Ma, nothing is 136 known from these large 57 Ma and 73 Ma gaps in the fossil record, and so the 137 evolutionary diversification patterns and timing of this group are unclear. It has been 138 hypothesised that within the family Atlantidae, the genus Atlanta, with an entirely 139 aragonite shell, is the earliest diverged, and that the genus Oxygyrus, with a shell 140 composed of both aragonite and conchiolin (probably to improve buoyancy), is the 141 most derived [2, 26–29]. However, the shell of the Early Cretaceous B. minuta is 142 morphologically most similar to Oxygyrus (Fig. 2), contradicting this hypothesised 143 evolutionary history of the atlantids. 144 145 Only a single large-scale study has previously explored the molecular phylogeny of 146 the atlantid heteropods [30]. Wall-Palmer et al.[30] revealed considerable hidden 147 diversity using a global dataset of mitochondrial cytochrome c oxidase subunit 1 148 (CO1) sequences from specimens of all known atlantid morphospecies. However, 149 deeper genus level relationships were not resolved in this study, and it provided few 150 clues about the longer-term evolutionary history of the family. In the present study, an 151 extended CO1 dataset is used in combination with two nuclear genes, 28S and 18S, 152 to produce a more complete molecular phylogeny with which to compare previous 153 morphology based hypotheses of atlantid evolution. Through a fossil-calibration of

5 154 this phylogeny, the likely timing of diversification reveals the persistence of this 155 successful group of holoplankton through past ocean changes. 156 157 Results and Discussion 158 Phylogeny of the Atlantidae 159 160 Phylogenetic analysis of a concatenated (3-gene) alignment of CO1, 28S and 18S 161 recovers species and genera well, with node supports of >80% (100% for most) at 162 most levels of the atlantid tree (Fig. 3). For the first time, it can be demonstrated that 163 all three atlantid genera are monophyletic with 100% bootstrap support, however, 164 relationships between the genera remain inconclusive. Maximum likelihood analyses 165 of individual genes recovered species and genera with varying levels of success 166 (Figs S1-S3). While the CO1 phylogenetic tree resolved all clades and 167 morphospecies well with bootstrap supports of >80% (100% for most), the deeper 168 relationships between atlantid genera were not supported (<60%, Fig. S1). 169 Conversely, 28S and 18S trees did not always resolve species-level relationships 170 well, but they showed moderate support for relationships between the atlantid genera 171 (>60%, Figs S2 and S3, respectively). 172 173 Atlantids have long been divided into groups of closely related species (Table 2) 174 based on morphological characters. The 3-gene maximum likelihood (ML) phylogeny 175 largely supports these morphology-based species groups (Table 2), with only the 176 Atlanta peronii, Atlanta gibbosa and Atlanta lesueurii groups not well resolved (Fig. 177 3). The A. lesueurii group is monophyletic, but not well supported. The A. peronii and 178 A. gibbosa groups are not monophyletic due to the position of A. frontieri, which falls 179 within the A. gibbosa group (Fig. 3). As found in previous phylogenetic analysis of 180 CO1 [30], several atlantid morphospecies contain one or more additional well 181 supported clades (>80%). The majority of these additional clades (12 of 13) show 182 some degree of geographical separation, residing in different ocean basins, and six 183 of these clades are also supported by the more slowly evolving nuclear markers, 184 demonstrating that they are probably distinct species. However, further work into 185 resolving the morphology and distributions of these new species would be necessary 186 to describe and validate each one [31] . 187

6 188 The 3-gene phylogeny demonstrates that the genus Atlanta can be split into two 189 broad groups: one of smaller-shelled species generally with shell ornamentation, and 190 one of larger-shelled species generally lacking shell ornamentation (Fig. 3). The 191 smaller ornamented species form a well supported monophyletic group containing 192 the , A. brunnea, A. gaudichaudi and A. lesueurii species groups (95% 193 supported). The larger and non-ornamented shelled species are grouped together, 194 but have low node support (58% support). These two broad groups are also 195 supported by type (Table 2), with the smaller ornamented group having a ‘type 196 I radula’, in which the number of tooth rows continually increases because teeth are 197 never cast off, and the larger non-ornamented group having a ‘type II radula’, with a 198 set number of tooth rows per species because teeth are cast off the anterior end [32]. 199 These results suggest that the genus Atlanta has followed two evolutionary routes. 200 201 Previous morphology based studies that focussed on the shell, eyes, radula and 202 operculum [26–29], as well as chromosomal studies [33], also support a clade of 203 larger-shelled species generally lacking shell ornamentation. Richter [26–29] 204 proposed an evolutionary route where shells became flatter, shell walls became 205 thinner and the central became narrower and tilted over evolutionary time. The 206 clade of larger, non ornamented species identified in the present study do exhibit 207 these shell features. Richter proposed that this evolutionary path resulted from 208 selection pressure to improve swimming efficiency by providing a broad flat shell to 209 counteract the side-to-side swimming motion. This may partly be true, however, we 210 now know that the shell is used as a secondary swimming fin by A. selvagensis, and 211 likely by all atlantid species [1] so a broadening of the shell may permit faster 212 swimming speeds. 213 214 Richter proposed a second evolutionary route within the genus Atlanta that involves 215 the reduction of shell mass, where shells gradually become composed of less 216 aragonite and more conchiolin. This route would involve the direct evolution from the 217 ornamented members of the genus Atlanta (fully aragonite shell, Fig. 1B), to 218 Protatlanta (aragonite shell, conchiolin keel, Fig. 1A) and terminating in Oxygyrus 219 (shell largely composed of conchiolin, Fig. 1C). The monophyletic clade of smaller, 220 ornamented Atlanta species identified in the present study does share the same 221 radula ‘type I’ with Protatlanta and Oxygyrus. However, the relationships between the 222 three Atlantidae genera are not well-resolved, and therefore, this evolutionary path

7 223 cannot be tested. A broader dataset including information from the other two 224 heteropod families and more genetic information is needed to resolve and inform 225 these three deepest nodes within the atlantid phylogeny. 226 227 Gaps in the fossil record 228 229 The fossil-calibrated Bayesian molecular phylogeny presented here (Fig. 4) supports 230 an Early Cretaceous origin for the family Atlantidae and implies that the gap in the 231 atlantid fossil record from the Early Cretaceous to the Oligocene is likely due to the 232 poor shell preservation. The fossil record of thin aragonitic holoplanktonic gastropod 233 shells is affected by both dissolution and by compaction during diagenesis [34]. The 234 euthecosome pteropods, of similar shell composition, thickness and size to the 235 atlantids are also greatly affected by diagenetic processes, and have a similar gap 236 within their fossil record, from the Late Cretaceous until the Eocene [34], although 237 recently, several potential shelled pteropods from the Paleogene (Danian) and Late 238 Cretaceous have been described [35]. In modern oceans, pteropods are generally 239 much more abundant than atlantids and this difference in abundance may explain 240 why more pteropod fossils have been found. The fossil record of both atlantids and 241 euthecosome pteropods is more complete from the Eocene to the present day [5, 242 34]. It is very likely that there are Early Cretaceous to Oligocene atlantid fossils still to 243 be found. Despite the prodigious palaeontological research of Janssen (e.g. [15, 24, 244 36]) and Nützel (e.g. [16, 19]), there are few researchers working in this field. 245 246 Evolutionary history of the family Atlantidae 247 248 The fossil-calibrated phylogeny (Fig. 4) shows each genus of the Atlantidae as a 249 well-supported monophyletic group and provides evidence (posterior probability 250 >85%) for additional key clades, including the common ancestor of Protatlanta and 251 Oxygyrus, and confirmation for the grouping of smaller ornamented, and larger less 252 ornamented species of Atlanta. 253 254 The calibration fossil for the oldest member of the superfamily Pterotracheoidea 255 (heteropods) roots the molecular clock analyses within the Early Jurassic (Fig. 4). 256 The order , in which Pterotracheoidea belongs, also originated in the 257 Early Jurassic [37]. Therefore, it is probable that little time transpired between the 8 258 origins of the Littorinimorpha and Pterotracheoidea groups [16]. These gastropods 259 likely adopted a holoplanktonic lifestyle in response to several environmental 260 pressures that made the seafloor an unfavourable habitat. During the Marine 261 Mesozoic Revolution (251.9–66.0 Ma) a re-shuffling of the marine realm took place 262 [38]. Throughout the Jurassic and Cretaceous, gastropods underwent great 263 diversification, with benthic gastropods generally showing a strengthening of their 264 shell that is thought to have been caused by increased predation pressure [38]. 265 Therefore, a move to a holoplanktonic lifestyle for gastropods such as Coelodiscus 266 minutus may have been an escape from benthic predators. Anoxic bottom waters are 267 also known to have occurred during the Jurassic [16]. Teichert and Nützel [16] 268 suggest that increasing frequency of dysoxic episodes and hostile benthic conditions 269 likely stimulated planktotrophic gastropod larvae to extend their planktonic phase, 270 eventually evolving into holoplanktonic species. Elsewhere in the marine realm 271 during the Jurassic there was a clear expansion and diversification of marine 272 microplankton with the appearance of the first planktonic foraminifera and 273 coccolithophores [38], suggesting favourable conditions for calcifiers to colonise the 274 upper ocean. 275 276 The molecular dating analyses propose a Mid-Cretaceous Albian origin for the family 277 Atlantidae (109–101 Ma, Fig. 4, Table 3). This was a time of widespread changes in 278 the ocean climate system driven by tectonic processes and volcanism. Sea levels

279 rose, and increased atmospheric CO2 induced global warming, leading to changes in 280 ocean circulation and ocean stratification [39]. With the continuation of the Marine 281 Mesozoic Revolution, there was a turnover of calcifying marine plankton with high 282 rates of extinction accompanied by a dramatic increase in speciation and plankton 283 diversity [39]. In the Albian, ocean carbonate chemistry was altered, potentially 284 through hydrothermal activity, and began to favour calcium carbonate producing 285 plankton [40]. There was a marked increase in marine productivity and calcification in 286 planktonic foraminifera and calcareous nanoplankton despite the rise in atmospheric

287 CO2. This was potentially made possible by nutrient supply from submarine 288 volcanism and a greater flux of nutrients to the ocean from intensified terrestrial 289 weathering [39]. 290 291 Due to the limited atlantid fossil record, it is not possible to determine whether the 292 atlantids diversified during the Late Cretaceous, Paleocene or Eocene, only that the

9 293 ancestor of Protatlanta and Oxygyrus split from the ancestor of Atlanta in the Mid- 294 Cretaceous (Albian, Fig. 4). However, the family Atlantidae does persist over the 295 Cretaceous-Paleogene (KPg or KT, ~66 Ma) extinction event and the Paleocene- 296 Eocene Thermal Maximum (PETM, ~56 Ma), both times of intense environmental 297 change and ocean acidification [7, 8]. All major lineages of the aragonite shelled 298 pteropods also lived through these periods [6, 41], experiencing a reduction in 299 surface ocean pH during the PETM on the order of 0.3–0.4 units [42]. It is thought 300 that euthecosome pteropods even diversified during the PETM [6], possibly in 301 response to increased nutrient levels and ocean warming [42]. 302 303 Our analyses estimate that from ~28–23 Ma to the Present day, considerable 304 radiation of the Atlantidae occurred, including the origin of all extant genera and 305 species. In particular, there has been rapid diversification in the genus Atlanta during 306 the last ~25 Ma (Fig. 4). Estimated times for the common ancestor of the three 307 atlantid genera were 25.46 Ma (28.46–23.42 Ma), 14.50 Ma (15.32–13.92 Ma) and 308 8.11 Ma (13.04–3.66 Ma) for Atlanta, Protatlanta and Oxygyrus, respectively (Table 309 3). This dating supports the morphology-based evolutionary theory that a conchiolin 310 shell and conchiolin keel are more derived characters in the family Atlantidae. 311 312 Two important vicariance events occurred in the last 25 Ma, including the Terminal 313 Tethyan Event (TTE) of the Mid-Miocene at ~18–12 Ma [43] and the uplift of the 314 Isthmus of Panama (IoP) in the Pliocene at ~3 Ma [44]. These geographical events 315 had a pronounced effect on the ocean and the evolution of marine organisms. During 316 the period of oceanographic and climate change surrounding the closure of the 317 Miocene Tethys Sea, which separated the Atlantic Ocean from the Indian Ocean, the 318 atlantids underwent rapid diversification, with the appearance of all of the modern 319 species groups (except the group Fig. 4, Table 3). Diversification of 320 the euthecosome pteropods also occurred at this time, with many of the extant 321 genera originating in the Mid-Miocene [41]. For the atlantids, this is also the first 322 extinction event detectable within the fossil record, with three species becoming 323 extinct at ~13.82 Ma [5]. This could be a considerable proportion of the atlantid 324 species alive at that time, and only Atlantidea rotundata and an unidentified Atlanta 325 sp. are known to have survived this event [5]. 326

10 327 Molecular dating analyses indicate that most modern species arose following the 328 TTE in the Tortonian at ~12–10 Ma (Fig. 4). However, our results suggest that 329 several atlantid morphospecies also split into multiple clades within the last 5 Ma, 330 including Atlanta peronii A, B and C, Atlanta rosea A and B, Atlanta meteori A and B, 331 Atlanta oligogyra B and C (Fig. 4). This may have been a response to the Pliocene 332 uplift of the IoP at ~3 Ma, which closed the link between the Atlantic Ocean and the 333 Pacific Ocean [44]. All of these clades (apart from A. peronii) show clear 334 geographical separation, with one clade being present in the Atlantic Ocean only, 335 and the other being present in the Pacific and Indian Oceans [11]. A second large- 336 scale and global (known from deposits in the Caribbean Sea, Mediterranean Sea, 337 Philippines and Japan [5]) atlantid extinction event also took place during this time, 338 with 40% of atlantid species becoming extinct; five species at the Pliocene- 339 Pleistocene boundary (~2.58 Ma) and Atlanta cordiformis at ~5.33 Ma [5]. Therefore, 340 the rapid diversification of the genus Atlanta at this time was probably also 341 accompanied with population bottlenecks and (local) extinctions caused by ocean 342 changes related to the IoP. More recently, localised extinctions of Atlanta turriculata 343 and Atlanta plana in the Atlantic Ocean, and Protatlanta sculpta in the Indian Ocean 344 have been detected in the Quaternary fossil record [12–14]. These have occurred 345 over the last ~24 ka and may reflect ocean changes during the period following the 346 Last Glacial Maximum. 347 348 Conclusions - Implications for a changing ocean 349 350 Calcifying plankton are widely accepted to be amongst the most sensitive and first 351 affected by current and predicted future warming and acidification of the world 352 oceans [45]. The results of this study show that the upper ocean inhabiting, aragonite 353 shell bearing atlantid heteropods were able to persist through past climate crises, 354 including the C-Pg (KT) extinction event, and the PETM. The PETM is of particular 355 interest, as it is considered the most analogous geological event to the current 356 Anthropogene climate crisis. However, the current rates of change are 357 unprecedented, even in comparison to the PETM [46] and there is really no 358 analogous climatic event with which to compare the predicted future conditions [7]. 359 Many marine organisms are unlikely to have sufficient time to adapt at the current 360 rate of change. 361

11 362 The present study shows that although global-scale environmental changes over the 363 last 25 Ma have caused large scale extinction of atlantids, they have also resulted in 364 periods of exceptional diversification. Past ocean changes, largely resulting from 365 vicarance events provided opportunities for speciation and have driven evolution 366 within this family. Vermeij [47] hypothesised that when raw materials (e.g. from

367 submarine volcanism) and energy (e.g. CO2 induced global warming) become 368 available to organisms at unusually high rates, there are increased opportunities for 369 evolution and diversification. Planktonic organisms have high evolutionary potential 370 and are considered to be well poised for evolutionary responses to global change 371 [48]. Therefore, if atlantids are able to keep up with the rate of anthropogenic ocean 372 changes, they may be able to not only survive, but even diversify in the changing 373 ocean. 374 375 [Main text 3,559 words] 376 377

12 378 Methods 379 Specimen collection 380 381 A total of 595 specimens from all 34 atlantid clades [30], including all 24 currently 382 described atlantid morphospecies, and one carinarid species were analysed in this 383 study (Table S1, Fig. S4). For the concatenated gene phylogeny, a total of 105 384 specimens were selected to provide good geographical coverage for each clade (Fig. 385 S4). Of these specimens, 37 were collected from 19 stations in the Atlantic Ocean 386 during the Atlantic Meridional Transect cruises in 2014 (AMT24, N = 29) and 2017 387 (AMT27, N = 8). A total of 24 specimens were collected from nine stations in the 388 Indian Ocean during oceanographic cruises SN105 (N = 18) and VANC10MV (N = 389 6). In the Pacific Ocean, 44 specimens were collected from 23 stations during cruises 390 ACE-ASIA (N = 1), DRFT (N = 2), KH1110 (N = 16), KM1109 (N = 2), KOK1703 (N = 391 3), S226 (N = 4), SO255 (N = 15) and WCOA16 (N = 1). In addition, for the 392 concatenated gene phylogeny, two specimens of the partially shelled heteropod 393 genus , collected during the oceanographic cruise SN105 (N = 2), were 394 used as outgroup taxa. 395 396 Collection methods included the use of a variety of plankton nets (e.g. ring, bongo, 397 midwater trawl). These have been previously described for most of the 398 oceanographic cruises listed here [30, 49–53]. Collection techniques for cruises 399 SO255, KOK1703 and AMT27 have not been previously published and we describe 400 them here. Cruise SO255 took place on board the RV Sonne to the north east of 401 New Zealand between March and April 2017. Specimens were collected using a ring 402 net with an aperture of 1 m diameter, a mesh size of 350 µm and a maximum 403 sampling time of 30 minutes. At stations SO255_041 and SO255_057, vertical net 404 hauls were carried out from 200 m water depth to the surface. At all other stations, 405 oblique tows were made in the upper 100 m. Cruise KOK1703 took place offshore of 406 Hawaii, around station ALOHA, on board the RV Ka’Imikai-O-Kanaloa in March 2017. 407 Sampling was carried out using either a 0.71 m diameter CalBOBL bongo net with a 408 mesh size of 200 µm, or a ring net with a 2 m diameter and mesh size 505 µm. For 409 all stations, oblique tows were conducted in the upper 200 m for a maximum of 44 410 minutes. During cruise AMT27, specimens were collected using a 0.71 m diameter 411 bongo net and a 1 m diameter ring net, both with a mesh size of 200 µm. Oblique

13 412 bongo net tows sampled a range of maximum depths from 233–388 m and ring net 413 tows sampled a range of maximum depths from 56–99 m. 414 415 DNA extraction and amplification 416 417 Prior to DNA extraction, all specimens were imaged using stacking microscopy on a 418 Zeiss Discovery V20 or V12 microscope (images deposited in BOLD, accession 419 numbers in Table S1). DNA was extracted from whole specimens using two 420 methods. For most specimens, the NucleoMag 96 Tissue kit (Macherey-Nagel) was 421 used on a Thermo Scientific KingFisher Flex magnetic particle processor, with a final 422 elution volume of 75 µl. For some specimens DNA was extracted using the DNeasy 423 Blood and Tissue spin-column protocol with a final elution volume of 100 µL. An 424 archive of DNA extracts, collection information and images for all specimens is stored 425 at Naturalis Biodiversity Center, Leiden under the accession numbers in 426 Supplementary Table 1. 427 428 Three commonly used genes were amplified. A ~570 bp fragment of the 429 mitochondrial cytochrome c oxidase subunit 1 gene (mtCO1) was amplified using 430 primers jgLCO1490 (5’–TITCIACIAAYCAYAARGAYATTGG–3’) and jgHCO2198 431 (5’–TAIACYTCIGGRTGICCRAARAAYCA–3’) [54]. A ~1000 bp fragment of nuclear 432 28S rRNA was amplified using primers C1-F (5’-ACCCGCTGAATTTAAGCAT-3’) [55] 433 and D3-R (5’-GACGATCGATTTGCACGTCA-3’) [56]. A ~970 bp fragment of nuclear 434 18S rRNA was amplified using primers 18S-KP-F (5’-TGGAGGGCAAGTCTGGTG-3’) 435 [41] and 1800R (5’-GATCCTTCCGCAGGTTCACCTACG-3’) [56]. Primers were tailed 436 with M13F and M13R for sequencing [57]. 437 438 All PCR reactions contained 17.30 µl ultra pure water (mQ), 2.50 µl 10x Qiagen PCR 439 buffer, 0.50 µl 25mM MgCl2, 1.00 µl 100mM BSA, 1.00 µl 10mM of each primer, 0.50 440 µl 2.5mM dNTPs and 0.25 µl 5U Qiagen Taq, with 1.00 µl of template DNA, which 441 was diluted up to 100 times for some samples. The same PCR steps were performed 442 for all three genes using an initial denaturation step of 180 s at 96 °C, followed by 40 443 cycles of 15 s at 96 °C, 30 s at 50 °C and 40 s at 72 °C, and finishing with a final 444 extension of 300 s at 72 °C. Sequencing of forward and reverse strands was carried 445 out by either Macrogen Europe (Amsterdam), or Baseclear (Leiden). 446 14 447 Phylogenetic analyses 448 449 For individual gene phylogenies, a total of 235 new 28S sequences, 230 new 18S 450 sequences, and 99 new and 475 previously published (5,29,30) CO1 sequences of 451 atlantids were included (Table S1). The closely related genus Carinaria was used as 452 an outgroup with 14 CO1, three 28S and four 18S sequences included from 14 453 specimens collected in the Indian Ocean. 454 455 For the concatenated gene (3-gene) phylogeny, at least one specimen from each 456 atlantid clade was included from each ocean basin in which that clade resides. As far 457 as possible, all three genes were combined from a single specimen. In two cases, for 458 Atlanta plana and Atlanta selvagensis, it was necessary to combine genes from 459 different specimens at the same station (A. plana SN105 station 19, A. selvagensis 460 AMT24 station 16), in order to obtain complete taxon sampling for all genes. All three 461 markers were obtained for each clade in each region, except for Atlanta gaudichaudi, 462 which was only successful for CO1 and 18S, and Atlanta californiensis for which only 463 CO1 was sequenced. A total of 103 CO1, 102 28S and 103 18S sequences are 464 included in the concatenated gene phylogeny. 465 466 New sequences were verified and edited using Geneious R8 and all sequences were 467 aligned using MEGA 7 [58]. All gaps in the alignments of 28S and 18S were trimmed 468 resulting in final alignments of 851 bp for 28S and 964 bp for 18S. The alignment of 469 CO1 was checked for stop codons and then all 657 sites were included in the 470 analyses. The concatenated gene alignment was a total of 2472 bp. 471 472 Single gene and 3-gene phylogenetic relationships were resolved using maximum 473 likelihood analyses in RaxmlGUI 1.5b2 [59]. Using jModelTest, the most appropriate 474 evolutionary model was determined to be the General Time Reversible (GTR) model 475 with a proportion of invariable sites (+I) and gamma distributed rate variation among 476 sites (+G) independently for each gene as well as for the 3-gene alignment. For the 477 single gene phylogenies, a maximum likelihood search was performed with thorough 478 bootstrapping analysis of 1000 replicates applied for CO1, and 1500 replicates 479 applied for 28S and 18S. The same analysis was carried out for the concatenated 480 gene analysis, but with the three genes partitioned and 3000 replicates applied. 481

15 482 Fossil-calibrated phylogeny 483 484 A subset of 34 atlantid and one Carinaria concatenated gene sequences were 485 included in the fossil-calibrated phylogeny, including a single representative of each 486 clade identified in previous CO1 phylogenies [30] from each ocean region (35 CO1, 487 33 28S, 34 18S). The topology of this dataset was explored using RaxmlGUI, using 488 the same methods as the 3-gene phylogenetic analysis. 489 490 Fossil-calibrated analysis was carried out using BEAST 2.5.0 [60]. A GTR site model 491 and relaxed log-normal molecular clock were applied in BEAUti 2.5.0. A Yule model 492 was calibrated using log-normal distributions of several fossil dates (summarised in 493 Table 1). The crown node of the superfamily Pterotracheoidea was calibrated using 494 the earliest potential heteropod, Coelodiscus minutus [16] from the Pliensbachian of 495 the Early Jurassic (190.8–182.7 Ma). For the remaining calibration, the oldest known 496 fossils for the family Atlantidae (Bellerophina minuta [21]) and the genera Atlanta 497 (Atlanta sp. [24]) and Protatlanta (Protatlanta kbiraensis [24]) were used as crown 498 calibrations (Table 1). The Eocene genus Eoatlanta and the species Eoatlanta 499 spiruloides were not included in the calibrations because E. spiruloides is now 500 thought to be a benthic gastropod in the superfamily Vanikoroidea [61, 62]. The 501 extinct species Atlantidea rotundata [25], a common ancestor of the genera Oxygyrus 502 and Protatlanta was also used in the calibration. This species exhibits morphological 503 characters in common with both genera, having larval shell ornamentation similar to 504 Oxygyrus, but an adult shell similar to Protatlanta and a smooth periphery suggesting 505 a conchiolin keel (common to Oxygyrus and Protatlanta). Finally, the morphospecies 506 Atlanta peronii, which is made up of three clades, was used to calibrate more recent 507 speciation [15]. The fossil genus Freboldia (163.5–157.3 Ma) was not included in the 508 calibrations because, unlike B. minuta, this species does not show morphological 509 similarity to the Atlantidae and we are unconfident in its current placement [17]. Two 510 independent MCMC chains were run with 108 generations each and combined using 511 LogCombiner 2.5.0 [60]. Trees and log-likelihood values were sampled at every 104 512 generations. Maximum clade credibility trees were selected using TreeAnnotator 513 2.5.0 [60]. Calibration points were checked by running multiple analyses and leaving 514 out one calibration fossil each time. 515 516 [Methods 1,502 words]

16 517 Declarations 518 519 Ethics approval and consent to participate 520 Not applicable 521 522 Consent for publication 523 Not applicable 524 525 Availability of data and materials 526 The molecular dataset supporting the results of this article, including specimen 527 images and collection information, is available from the Barcode of Life Data System 528 (BOLDSYSTEMS) repository (DOI requested[63]). Individual specimen accession 529 numbers can be found in Supplementary Table 1. Single gene and concatenated 530 alignments are available from Figshare (DOI requested[64]). Voucher DNA extracts 531 are held at the Naturalis Biodiversity Center under museum accession numbers 532 presented in Supplementary Table 1. 533 534 Competing interests 535 The authors declare that they have no competing interests 536 537 Funding 538 The R/V Sonne cruise SO255 was funded by the German Federal Ministry of 539 Education and Research (BMBF; grant 03G0255A). The Atlantic Meridional Transect 540 (AMT22, AMT24, AMT27) is funded by the UK Natural Environment Research 541 Council through its National Capability Long-term Single Centre Science Programme, 542 Climate Linked Atlantic Sector Science (grant number NE/R015953/1). This study 543 contributes to the international IMBeR project and is contribution number 336 of the 544 AMT programme. This project has received funding from the European Union’s 545 Horizon 2020 research and innovation programme under the Marie Sklodowska- 546 Curie grant agreement No 746186 [POSEIDoN, DWP]. EG and fieldwork on several 547 cruises was supported by US National Science Foundation grants OCE-1029478 and 548 OCE-1338959. KTCAP and fieldwork were supported by a Vidi grant 016.161351 549 from the Netherlands Organisation of Scientific Research (NWO). 550 17 551 Authors’ contributions 552 DW-P and KTCAP designed the study, DW-P, KTCAP, EG, LM collected specimens, 553 DW-P carried out sample preparation and analysis. DW-P and LQC carried out data 554 analysis. All authors contributed to manuscript preparation. 555 556 Acknowledgements 557 We thank Atushi Tsuda from the University of Tokyo for contributing atlantid 558 specimens. We would like to acknowledge the scientists, captain and crew who took 559 part in cruises SO255, KOK1703 and AMT27 (DY084/085), as well as the Atlantic 560 Meridional Transect (AMT) programme. 561 562 References 563 564 1. Karakas F, D’Oliveira D, Maas AE, Murphy DW. Using a shell as a wing: pairing of 565 dissimilar appendages in atlantiid heteropod swimming. The Journal of Experimental 566 Biology. 2018;221:jeb192062.

567 2. Lalli CM, Gilmer RW. Pelagic snails: the biology of holoplanktonic mollusks. California: 568 Stanford University Press; 1989.

569 3. Newman LJ. The , distribution and biology of Atlanta gaudichaudi Souleyet, 570 1852 (Gastropoda, Heteropoda) from the Great Barrier Reef, Australia. American 571 Malacological Bulletin. 1990;8:85–94.

572 4. Thiriot-Quiévreux C. Heteropoda. Oceanography and Marine Biology, an Annual 573 Review. 1973;11:237–61.

574 5. Wall-Palmer D, Smart CW, Kirby R, Hart MB, Peijnenburg KTCA, Janssen AW. A review 575 of the ecology, palaeontology and distribution of atlantid heteropods (: 576 Pterotracheoidea: Atlantidae). Journal of Molluscan Studies. 2016;82:221–34.

577 6. Peijnenburg KTCA, Janssen AW, Wall-Palmer D, Goetze E, Maas A, Todd JA, et al. The 578 origin and diversification of pteropods predate past perturbations in the Earth’s carbon 579 cycle. bioRxiv. 2019. doi:10.1101/813386.

580 7. Zeebe RE, Ridgwell A, Zachos JC. Anthropogenic carbon release rate unprecedented 581 during the past 66 million years. Nature Geoscience. 2016;9:325.

582 8. Henehan MJ, Ridgwell A, Thomas E, Zhang S, Alegret L, Schmidt DN, et al. Rapid ocean 583 acidification and protracted Earth system recovery followed the end-Cretaceous 584 Chicxulub impact. Proceedings of the National Academy of Sciences. 2019;116:22500–4.

585 9. Manno C, Bednaršek N, Tarling GA, Peck VL, Comeau S, Adhikari D, et al. Shelled 586 pteropods in peril: Assessing vulnerability in a high CO 2 ocean. Earth-Science Reviews. 587 2017;169:132–45.

18 588 10. Wall-Palmer D, Mekkes L, Ramos-Silva P, Dämmer L, Goetze E, Bakker K, et al. 589 Current and future ocean chemistry influences shell growth and gene expression 590 atlantid heteropods. In review.

591 11. Wall-Palmer D, Burridge AK, Goetze E, Stokvis FR, Janssen AW, Mekkes L, et al. 592 Biogeography and genetic diversity of the atlantid heteropods. Progress in 593 Oceanography. 2018;160:1–25.

594 12. Wall-Palmer D, Smart CW, Hart MB. Data report: the Late Quaternary fossil record of 595 holoplanktonic gastropods at IODP Sites U1395 and U1394. In: Proceedings of the 596 Integrated Ocean Drilling Program. 2015.

597 13. Janssen AW. Holoplanktonic molluscan assemblages (Gastropoda, Heteropoa, 598 Thecosomata) from the Pliocene of Estepona (Spain, Ma´ laga). Palaeontos. 2004;5:103– 599 31.

600 14. Janssen AW. Early Pliocene heteropods and pteropods (, Gastropoda) from 601 Le Puget-sur-Argens (Var), France. Cainozoic Research. 2012;9:145–87.

602 15. Janssen AW. Holoplanktonic Mollusca Gastropoda: Pterotracheoides, Janthinoidea, 603 Thecosomata and Gymnosomata) from the Pliocene of Pangasinan (Luzon, Philippines). 604 Scripta Geologica. 2007;135:29–177.

605 16. Teichert S, Nützel A. Early Jurassic anoxia triggered the evolution of the oldest 606 holoplanktonic gastropod Coelodiscus minutus by means of heterochrony. Acta 607 Palaeontologica Polonica. 2015. doi:10.4202/app.00145.2014.

608 17. Nützel A, Schneider S, Hülse P, Kelly SRA, Tilley L, Veit R. A new Early Jurassic 609 gastropod from Ellesmere Island, Canadian Arctic – an ancient example of 610 holoplanktonic gastropods. Bulletin of Geosciences. 2016;91:1–14.

611 18. Bandel K, Hemleben C. Jurassic heteropods and their modern counterparts 612 (planktonic Gastropoda, Mollusca). Neues Jahrbuch für Geologie und Paläontologie, 613 Abhandlungen. 1987;174:1–22.

614 19. Nützel A, Gründel J. Early Jurassic (Pliensbachian) gastropods from Franconia, 615 Southern Germany. Palaeontographica Abteilung A. 2015;:1–89.

616 20. Schulbert C, Nützel A. Gastropods from the Early/Middle Jurassic transition of 617 Franconia (Southern Germany). Bull Geosci. 2013;88:723–78.

618 21. Sowerby J. The mineral conchology of Great Britain, Vol. 1, part 10. London: 619 Sowerby; 1814.

620 22. Tracey S. Gastropods. In: Fossils of the Gault Clay. London: Palaeontological 621 Association; 2010.

622 23. Destombes P. Recherches sur la mésofaune de l’Albien inférieur de Bully-Saint- 623 Martin l’Horbier (Pays de Bray). Bulletin Trimestriel de la Société Géologique de 624 Normandie et des Amis du Musée du Havre. 1984;70:41–54.

19 625 24. Janssen AW. Systematics and biostratigraphy of holoplanktonic mollusca from the 626 Oligo-Miocene of the Maltese Archipelago. Museo Regionale di Scienze Naturali Torino, 627 Bullettino. 2012;28:191–601.

628 25. Pilsbury HA. Revision of W.M. Gabb’s Tertiary Mollusca of Santa Domingo. 629 Proceedings of the Academy of Natural Sciences of Philadelphia. 1922;73:305–435.

630 26. Richter G. Die radula der Atlantiden (Heteropoda, prosobranchia) und ihre 631 Bedeutung für die Systematik und Evolution der Familie. Zeitschrift für Morphologie 632 und Ökologie der Tiere. 1961;50:163–238.

633 27. Richter G. Die Heteropoden der Meteor Expedition in den Indischen Ozean 1964/65. 634 Meteor Forschungsergebnisse. 1974;17:55–78.

635 28. Richter G. Heteropoden und Heteropodenlarven im Oberflächenplankton des Golfs 636 von Neapel. Pubblicazioni della Stazione Zoologica di Napoli. 1968;36:346–400.

637 29. Richter G. Zur Stammesgeschichte pelagischer Gastropoden. Natur und Museum. 638 1973;:265–75.

639 30. Wall-Palmer D, Burridge AK, Goetze E, Stokvis FR, Janssen AW, Mekkes L, et al. 640 Biogeography and genetic diversity of the atlantid heteropods. Progress in 641 Oceanography. 2018;160:1–25.

642 31. Wall-Palmer D, Hegmann M, Goetze E, Peijnenburg KTCA. Resolving species 643 boundaries in the Atlanta brunnea species group (Gastropoda, Pterotracheoidea). 644 ZooKeys. 2019;899:59–84.

645 32. Seapy RR. Atlantidae Rang, 1829. Version 01 April 2010 (under construction). 646 http://tolweb.org/Atlantidae/28732/2010.04.01 in The Tree of Life Web Project, 647 http://tolweb.org/. 2010.

648 33. Thiriot-Quiévreux C, Seapy RR. Chromosome studies of three families of pelagic 649 heteropod molluscs (Atlantidae, Carinariidae, and Pterotracheidae) from Hawaiian 650 waters. Canadian Journal of Zoology. 1997;75:237–44.

651 34. Janssen AW, Peijnenburg KTCA. An overview of the fossil record of 652 (Mollusca, Gastropoda, ). Cainozoic Research. 2017;17:3–10.

653 35. Garvie CL, Goedert JL, Janssen AW. Paleogene and Late Cretaceous Pteropoda 654 (Mollusca, Gastropoda, Heterobranchia) from North America. Zootaxa. In review.

655 36. Janssen AW. Late Quaternary to Recent holoplanktonic Mollusca (Gastropoda) from 656 bottom samples of the eastern Mediterranean Sea: systematics, morphology. Bollettino 657 Malacologico. 2012;48:1–105.

658 37. Zapata F, Wilson NG, Howison M, Andrade SCS, Jorger KM, Schrodl M, et al. 659 Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. 660 Proceedings of the Royal Society B: Biological Sciences. 2014;281:20141739–20141739.

661 38. Vermeij GJ. The Mesozoic Marine Revolution: Evidence from Snails, Predators and 662 Grazers. Paleobiology. 1977;3:245–58.

20 663 39. Leckie RM, Bralower TJ, Cashman R. Oceanic anoxic events and plankton evolution: 664 Biotic response to tectonic forcing during the mid-Cretaceous: OCEANIC ANOXIC 665 EVENTS AND PLANKTON EVOLUTION. Paleoceanography. 2002;17:13-1-13–29.

666 40. Stanley SM, Hardie LA. Secular oscillations in the carbonate mineralogy of 667 reefbuilding and sediment-producing organisms driven by tectonically forced shifts in 668 seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology. 1998;144:3– 669 19.

670 41. Burridge AK, Hörnlein C, Janssen AW, Hughes M, Bush SL, Marlétaz F, et al. Time- 671 calibrated molecular phylogeny of pteropods. PLOS ONE. 2017;12:e0177325.

672 42. Janssen AW, Sessa J A, Thomas E. Pteropoda (Mollusca, Gastropoda, Thecosomata) 673 from the Paleocene-Eocene Thermal Maximum (United States Atlantic Coastal Plain). 674 Palaeontologia Electronica. 2016;19.3.47A:1–26.

675 43. Cowman PF, Bellwood DR. Vicariance across major marine biogeographic barriers: 676 temporal concordance and the relative intensity of hard versus soft barriers. 677 Proceedings of the Royal Society B: Biological Sciences. 2013;280:20131541–20131541.

678 44. O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, et al. 679 Formation of the Isthmus of Panama. Science Advances. 2016;2:e1600883.

680 45. Guinotte JM, Fabry VJ. Ocean Acidification and Its Potential Effects on Marine 681 Ecosystems. Annals of the New York Academy of Sciences. 2008;1134:320–42.

682 46. Zeebe RE, Zachos JC. Long-term legacy of massive carbon input to the Earth system: 683 Anthropocene versus Eocene. Philosophical Transactions of the Royal Society A: 684 Mathematical, Physical and Engineering Sciences. 2013;371:20120006.

685 47. Vermeij GJ. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology. 686 1995;21:125–52.

687 48. Peijnenburg KTCA, Goetze E. High evolutionary potential of marine zooplankton. 688 Ecology and Evolution. 2013;3:2765–81.

689 49. Burridge AK, Goetze E, Wall-Palmer D, Le Double SL, Huisman J, Peijnenburg KTCA. 690 Diversity and abundance of pteropods and heteropods along a latitudinal gradient 691 across the Atlantic Ocean. Progress in Oceanography. 2017;158:213–23.

692 50. Goetze E. Global population genetic structure and biogeography of the oceanic 693 copepods Eucalanus hyalinus and E. spinifer. Evolution. 2005;59:2378.

694 51. Goetze E. Cryptic speciation on the high seas; global phylogenetics of the copepod 695 family Eucalanidae. Proceedings of the Royal Society of London Series B: Biological 696 Sciences. 2003;270:2321–31.

697 52. Halbert KMK, Goetze E, Carlon DB. High Cryptic Diversity across the Global Range of 698 the Migratory Planktonic Copepods Pleuromamma piseki and P. gracilis. PLoS ONE. 699 2013;8:e77011.

21 700 53. Hirai J, Tsuda A, Goetze E. Extensive genetic diversity and endemism across the 701 global range of the oceanic copepod Pleuromamma abdominalis. Progress in 702 Oceanography. 2015;138:77–90.

703 54. Geller J, Meyer C, Parker M, Hawk H. Redesign of PCR primers for mitochondrial 704 cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa 705 biotic surveys. Molecular Ecology Resources. 2013;13:851–61.

706 55. Dayrat B, Tillier A, Lecointre G, Tillier S. New Clades of Euthyneuran Gastropods 707 (Mollusca) from 28S rRNA Sequences. Molecular Phylogenetics and Evolution. 708 2001;19:225–35.

709 56. Vonnemann V, Schrödl M, Klussmann-Kolb A, Wägele H. Reconstruction of the 710 phylogeny of the Opisthobranchia (Mollusca: Gastropoda) by means of 18S and 28S 711 rRNA gene sequences. Journal of Molluscan Studies. 2005;71:113–25.

712 57. Messing J. New M13 vectors for cloning. Methods in Enzymology. 1983;101:20–78.

713 58. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis 714 Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. 2016;33:1870–4.

715 59. Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Organisms 716 Diversity & Evolution. 2012;12:335–7.

717 60. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: A 718 Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology. 719 2014;10:e1003537.

720 61. Lozouet P. Position syste´matique de quelques gaste´ropodes de l’E´ oce`ne a` dernier 721 tour disjoint (Mollusca, Gastropoda, Caenogastropoda): Delphinula conica, Omalaxis, 722 Eoatlanta. Cossmanniana. 2012;14:57–66.

723 62. Schnetler KI. Eoatlanta ravni nov. sp. (Mollusca: Gastropoda, ?Hipponicidae) from 724 the Danian (early Paleocene) of Faxe, Denmark. Cainozoic Research. 2013;10:3–7.

725 63. Wall-Palmer D, Janssen AW, Goetze E, Choo LQ, Mekkes L, Peijnenburg KTCA. 726 Molecular data from: Fossil-calibrated molecular phylogeny of atlantid heteropods 727 (Gastropoda, Pterotracheoidea). Barcode of Life Data System repository. 2020.

728 64. Wall-Palmer D, Janssen AW, Goetze E, Choo LQ, Mekkes L, Peijnenburg KTCA. Gene 729 alignments from: Fossil-calibrated molecular phylogeny of atlantid heteropods 730 (Gastropoda, Pterotracheoidea). Figshare digital repository. 2020.

731 65. Janssen AW, Peijnenburg KTCA. Holoplanktonic Mollusca: development in the 732 Mediterranean basin during the last 30 million years and their future. In: The 733 Mediterranean Sea. Dordrecht: Springer; 2014. p. 341–62.

734 66. Seapy RR. Atlantidae. Tree of Life web project. 2011. http://tolweb.org/Atlantidae.

735 736 737

22 738 Figure legends 739 Figure 1. Adult representatives of the three extant Atlantidae genera. A) Protatlanta 740 souleyeti, B) Atlanta peronii, C) Oxygyrus inflatus. All specimens were collected and 741 photographed during the AMT27 cruise from the Atlantic Ocean. 742 743 Figure 2. Comparisons in shell morphology between the oldest fossil heteropods and 744 larval shells of extant members of the Atlantidae. A) Juvenile Atlanta selvagensis 745 collected live from the Atlantic Ocean in 2010, B) Juvenile A. selvagensis, a recent 746 fossil from the Caribbean sediments, C–D) The oldest potential heteropod, 747 Coelodiscus minutus from the Early-Middle Jurassic (190.8–170.3 Ma). Specimens 748 BSPG 2008 XXIX 42c and BSPG 2008 XXIX 56f, images from Teichert and Nützel 749 [16], E–F) Juvenile Oxygyrus inflatus collected live from the Atlantic Ocean in 2010, 750 G–H) The oldest potential Atlantidae, Belerophina minuta from the Early Cretaceous 751 (~113–100.5 Ma). Images from Janssen and Peijnenburg [65]. 752 753 Figure 3. Maximum likelihood phylogeny of the family Atlantidae based on a 754 concatenated dataset of cytochrome c oxidase subunit 1 mitochondrial DNA (CO1), 755 28S and 18S ribosomal rRNA (total 2472 bp). Black squares represent bootstrap 756 support >80%. Species groups based on morphology are highlighted with coloured 757 boxes (see Table 2). 758 759 Figure 4. The fossil-calibrated phylogeny of the family Atlantidae. Error bars shown in 760 purple (95%) are presented for clades with posterior probabilities ≥85%. Calibration 761 fossils are indicated with letters A-F. Major geological events, including the 762 Cretaceous-Paleogene extinction event (KT), the Paleocene-Eocene Thermal 763 Maximum (PETM), the Terminal Tethyan Event (TTE) and the uplift of the Isthmus of 764 Panama (IoP) are highlighted in orange. 765 766 767 768 769 770 771

23 772 Tables 773 774 Table 1. Settings for the molecular clock calibration using a Yule model. 775

Calibration Oldest Youngest Prior Calibrated node Age M S Offset Reference type age (Ma) age (Ma) dist. Fossil: Superfamily Log- Coelodiscus Pliensbachian 190.8 170.3 3.00 0.80 182.7 (8) Pterotracheoidea normal minutus Fossil: Log- Family Atlantidae Bellerophina Albian 113 100.5 4.00 1.00 100.5 (14) normal minuta Fossil: Atlanta Log- Genus Atlanta Chattian 28.1 23.03 2.40 0.55 23.03 (16) sp. normal Genus Fossil: Log- Protatlanta and Atlantidea Langhian 15.97 13.82 0.90 0.65 13.82 (17) normal Oxygyrus rotundata Fossil: Genus Log- Protatlanta Langhian 15.97 13.82 0.90 0.65 13.82 (16) Protatlanta normal kbiraensis Clade Atlanta Fossil: Atlanta Log- Piacenzian 3.6 2.58 0.51 0.50 2.58 (31) peronii peronii normal 776

24 777 Table 2. A summary of the morphology based species groups, key morphological 778 characters for each group [66], and the phylogenetic support obtained for each group 779 in our analyses. 780 Species group Species Is the group (morphology based) Radula Shell and keel Morphological characters supported by the type composition of this group 3-gene phylogeny? Atlanta brunnea Atlanta brunnea Gray, 1850 I Small shell (<2mm) with a Yes tall keel. Larval shell is tall, Atlanta turriculata d’Orbigny, 1836 I conical, covered with Both aragonite ornamentation and with a Atlanta vanderspoeli Wall-Palmer, Hegmann I prominent carina slightly & Peijnenburg, 2019 above mid-whorl height Atlanta inflata Atlanta ariejansseni Wall-Palmer, Burridge & I Small-medium sized shell Yes Peijnenburg, 2016 (<4 mm) with a short or tall Atlanta californiensis Seapy & Richter, 1993 I keel. Larval shell is flattened, or low conical and either smooth, or Atlanta helicinoidea (A and B) Gray, 1850 I Both aragonite ornamented with evenly Atlanta inflata Gray, 1850 I spaced spiral ridges or punctae. Atlanta selvagensis de Vera & Seapy, 2006 I

Atlanta lesueurii Atlanta lesueurii Gray, 1850 I The larval shell is very Yes - species small, with only 2.5 whorls. group together but Both aragonite Atlanta oligogyra (A, B and C) Tesch, 1906 I node support is low (37%). Atlanta gaudichaudi Atlanta echinogyra Richter, 1972 I Small-medium shell (<4 Yes, but node mm). Larval shell flattened support is Atlanta gaudichaudi Gray, 1850 I Both aragonite to conical with varying moderate (75%). numbers of spiral lines Atlanta plana Richter, 1972 I (only 1 in A. gaudichaudi).

Atlanta peronii Richter, 1993 II Medium-large sized shell No - species do (<10 mm). Larval shell is not group together. Atlanta frontieri Richter, 1993 II flattened or low conical A. frontieri groups Both aragonite with no ornamentation with A. gibbosa Atlanta peronii (A, B and C) Lesueur, 1817 II (except A. frontieri). group.

Atlanta rosea (A, B and C) Gray, 1850 II

Atlanta inclinata Atlanta inclinata Gray, 1850 II Large shell (<6 mm) with a Yes tall keel. Larval shell large, Atlanta tokiokai van der Spoel & Troost, 1972 II conical and globose, tilted Both aragonite relative to the adult shell. Larval shell covered with small tubercula. Atlanta gibbosa Atlanta gibbosa Souleyet, 1852 II Medium shell (<4 mm) with No - species group a tall keel that is very thin together with A. Atlanta meteori (A and B) Richter, 1972 II and transparent. Larval frontieri. Low node Both aragonite shell large, conical and support (32%). globose, tilted relative to the adult shell. Larval shell smooth. Oxygyrus Oxygyrus inflatus (A, B and C) Benson, 1835 I Large shell (<14 mm) very Yes rounded, almost spherical and involute with a tall Inner shell conchiolin keel. LArval aragonite, outer shell heavily ornamented shell and keel of with zig-zig spiral lines. conchiolin. The final whorl of the adult shell is partially composed of conchiolin. Protatlanta Protatlanta sculpta Issel, 1911 I Small shell (<2 mm) of Yes aragonite with a tall Aragonite shell, (Smith, 1888) I conchiolin keel. Larval conchiolin keel shell is low conical with 2.5-3 whorls. 781

25 782 Table 3. Overview of calibrated node ages resulting from two independent runs of 783 108 generations (for nodes with a fossil calibration), and derived node ages either 784 resulting from independent runs that did not include a calibration for that node (for 785 nodes with a fossil calibration), or derived from two independent runs using all 786 calibrations (all nodes without a fossil calibration). A derived age was not possible for 787 the node calibrated by C. rotundata because the tree topology changed when this 788 fossil was removed. 789

Calibrated Age of crown (95% Calibration Node Calibration type or derived confidence intervals, age(Ma) age Ma) Fossil: Coelodiscus 190.8- Calibrated 185.39 (189.76-182.86) Earliest heteropod minutus 170.3 Derived 113.68 (138.62-100.83)

Fossil: Bellerophina minuta 113-100.5 Calibrated 103.44 (109.19-100.59) Family Atlantidae Derived 46.71 (75.23-27.10)

Fossil: Atlanta sp. 28.1-23.03 Calibrated 25.46 (28.46-23.42) Genus Atlanta Derived 35.88 (58.41-16.17) Fossil: Atlantidea 15.97- Calibrated 19.18 (24.22-15.47) Genus Protatlanta and rotundata 13.82 Oxygyrus Derived N/A

Fossil: Protatlanta 15.97- Calibrated 14.50 (15.32-13.92) kbiraensis 13.82 Genus Protatlanta Derived 8.08 (12.53-3.59)

Genus Oxygyrus Derived 8.11 (13.04-3.66)

Atlanta brunnea group Derived 10.92 (15.95-5.84)

Atlanta inflata group Derived 15.69 (21.41-9.88)

Atlanta lesueurii group Derived 16.48 (21.50-11.62)

Atlanta peronii group Derived 15.32 (20.62-9.80) Atlanta gaudichaudi Derived 13.35 (19.34-7.56) group Atlanta inclinata group Derived 4.75 (9.78-1.10)

Atlanta gibbosa group Derived 11.78 (17.64-6.31)

Fossil: Atlanta peronii 3.6-2.58 Calibrated 3.24 (3.98-2.72) Clade Atlanta peronii Derived 9.38 (15.27-4.03) 790 791 792 793 794 795 796 797 798 799

26 800 Figures

801 802 Figure 1. Adult representatives of the three extant Atlantidae genera. A) Protatlanta 803 souleyeti, B) Atlanta peronii, C) Oxygyrus inflatus. All specimens were collected and 804 photographed during the AMT27 cruise from the Atlantic Ocean.

27 272 ACTA PALAEONTOLOGICA POLONICA 60 (2), 2015

A B C

500 µm 300 µm 300 µm D A E F B E F

50 µm 50 µm 100 µm 100272 µm 100 µm ACTA PALAEONTOLOGICA100 µm POLONICA 60 (2), 2015 100 µm G HI C A D B CG H

300 µm 300 µm 100 µm 500 µm 300 µm 300 µm Fig. 2. Occurrence and morphology of the holoplanktonic300 µm gastropod Coelodiscus minutus (Schübler in Zieten,300 1833), µm Posidonia Shale Formation, Lower 1 mm Toarcian; Altdorf near Nuremberg, Northern Bavaria,D Southern Germany. A. BSPG 2008 XXIX 36a, superabundanceE in the limestone concretions.F B. BSPG 2008 XXIX 56f, 805lowspired shell, wider than high. C. BSPG 2008 XXIX 42a, elevated but somewhat depressed spire. D. BSPG 2008 XXIX 26a, abrupt transition from to teleoconch. E. BSPG 2008 XXIX 56c, fine spiral lirae separated by wide interspaces. F. BSPG 2008 XXIX 56a, opisthocyrt growth lines806 with the backmost point situated in adapical direction. G. BSPG 2008 XXIX 24a, growth abnormality represented by loss of ornamentation. H. BSPG 2008 XXIX 42c, growth abnormality represented by a swell of the shell. I. BSPG 2008 XXIX 62c, small specimen with well-preserved ensuring an attribution to C. minutus. from Northern and Southern807 Germany Figure (Röhl 1998) and2. from Comparisons has also been reported infrom shellthe Early Pliensbachianmorphology of Ar- between the oldest fossil heteropods and the bituminous Lower Toarcian shales of England (Hallam gentina (Gründel 2001). However, the preservation quality of 1967; Morris 1979). Another species of the genus Coelodis- these specimens is not sufficient to make a statement of their cus, Coelodiscus wrightianus808 Tate inlarval Tate and Blake, shells 1876, potential of extant mode of life. members Though a holoplanktonic of the mode ofAtlantidae. A) Juvenile Atlanta selvagensis has been reported from the Early Pliensbachian (Prodac- life cannot be excluded, it would also be possible that those tylioceras davoei Ammonite809 Zone) ofcollected England together with live organisms from represent the50 benthic µmAtlantic precursors, Oceanwhich 50had µm a plank- in 2010, B) Juvenile100 µm A. selvagensis, a recent the species of Tatediscus which represent another possible totrophic larval development. The holoplanktonic mode of example of planktonic gastropods (Todd andG Munt 2010). An life could have evolvedHI in response to local hostile bottom unidentified species representing810 Coelodiscusfossil or Tatediscusfrom conditionsthe andCaribbean proliferation of holoplanktonic sediments, gastropods C–D) The oldest potential heteropod, 811 Coelodiscus minutus from the Early-Middle Jurassic (190.8–170.3 Ma). Specimens 812 BSPG 2008 XXIX 42c and BSPG 2008 XXIX 56f, images from Teichert and Nützel 813 [16], E–F) Juvenile Oxygyrus inflatus collected live from the Atlantic Ocean in 2010,

300 µm 300 µm 100 µm 814 G–H) The oldest potential Atlantidae, Belerophina minuta from the Early Cretaceous Fig. 2. Occurrence and morphology of the holoplanktonic gastropod Coelodiscus minutus (Schübler in Zieten, 1833), Posidonia Shale Formation, Lower Toarcian; Altdorf near Nuremberg, Northern Bavaria, Southern Germany. A. BSPG 2008 XXIX 36a, superabundance in the limestone concretions. 815 (~113B. BSPG– 2008100.5 XXIX 56f, lowspiredMa). shell, Bellerophina wider than high. C. BSPG 2008 i magesXXIX 42a, elevated courtesy but somewhat depressed of spire. Steven D. BSPG 2008 TraceyXXIX . 26a, abrupt transition from protoconch to teleoconch. E. BSPG 2008 XXIX 56c, fine spiral lirae separated by wide interspaces. F. BSPG 2008 XXIX 56a, opisthocyrt growth lines with the backmost point situated in adapical direction. G. BSPG 2008 XXIX 24a, growth abnormality represented by loss of ornamentation. H. BSPG 2008 XXIX 42c, growth abnormality represented by a swell of the shell. I. BSPG 2008 XXIX 62c, small specimen with well-preserved sculpture ensuring an attribution to C. minutus.

from Northern and Southern Germany (Röhl 1998) and from has also been reported from the Early Pliensbachian of Ar- the bituminous Lower Toarcian shales of England (Hallam gentina (Gründel 2001). However, the preservation quality of 1967; Morris 1979). Another species of the genus Coelodis- these specimens is not sufficient to make a statement of their cus, Coelodiscus wrightianus Tate in Tate and Blake, 1876, potential mode of life. Though a holoplanktonic mode of has been reported from the Early Pliensbachian (Prodac- life cannot be excluded, it would also be possible that those tylioceras davoei Ammonite Zone) of England together with organisms represent benthic precursors, which had a plank- the species of Tatediscus which represent another possible totrophic larval development. The holoplanktonic mode of example of planktonic gastropods (Todd and Munt 2010). An life could have evolved in response to local hostile bottom unidentified species representing Coelodiscus or Tatediscus conditions and proliferation of holoplanktonic gastropods

28 Carinaria sp. IND 100 Protatlanta sculpta SATL Protatlanta sculpta NATL 100 Protatlanta souleyeti NPAC Protatlanta souleyeti NPAC Protatlanta 100 Protatlanta souleyeti SPAC group Protatlanta souleyeti SPAC Genus

Protatlanta souleyeti NATL Protatlanta Protatlanta souleyeti SATL Oxygyrus inflatus C NPAC Oxygyrus inflatus C SPAC 100 Oxygyrus inflatus C IND 100 Oxygyrus inflatus B SATL Oxygyrus Oxygyrus inflatus B NATL group Oxygyrus inflatus A SPAC

Oxygyrus inflatus A SPAC Genus Oxygyrus Oxygyrus inflatus A NATL Oxygyrus inflatus A SATL 100 Atlanta inflata IND Atlanta inflata SPAC Atlanta californiensis NPAC 100 Atlanta ariejansseni SATL 98 Atlanta ariejansseni SPAC 100 Atlanta selvagensis SATL Atlanta selvagensis SATL Atlanta selvagensis NATL 100 Atlanta helicinoidea A NATL Atlanta helicinoidea A SPAC Atlanta inflata 100 Atlanta helicinoidea A SPAC group Atlanta helicinoidea A SATL 100 Atlanta helicinoidea A SATL Atlanta helicinoidea A IND Atlanta helicinoidea A IND 100 Atlanta helicinoidea B IND 95 Atlanta helicinoidea B NPAC Atlanta helicinoidea B IND

Atlanta helicinoidea B SPAC Atlanta 100 Atlanta lesueurii IND Atlanta lesueurii NATL Atlanta oligogyra A SPAC 100 Atlanta Atlanta oligogyra A NPAC Genus Atlanta oligogyra A IND lesueurii Atlanta oligogyra A IND group 100 Atlanta oligogyra C NATL 100 Atlanta oligogyra B SPAC Atlanta oligogyra B IND 97 Atlanta oligogyra B IND 100 Atlanta turriculata IND

Atlanta turriculata NPAC Atlanta Smaller ornamented species Radula type I type Radula species ornamented Smaller 100 Atlanta turriculata SPAC brunnea 100 Atlanta brunnea NATL 100 Atlanta brunnea IND group Atlanta vanderspoeli SPAC Atlanta gaudichaudi IND 100 100 Atlanta plana IND Atlanta Atlanta plana NPAC gaudichaudi Atlanta echinogyra IND 100 Atlanta echinogyra SPAC group Atlanta echinogyra SPAC 100 Atlanta fragilis NATL Atlanta fragilis NATL Atlanta fragilis SPAC Atlanta fragilis SATL Atlanta rosea A SPAC Atlanta rosea A IND Atlanta rosea A SPAC 100 100 Atlanta rosea A SPAC Atlanta rosea B NATL 100 Atlanta rosea B SATL Atlanta rosea C NATL Atlanta rosea C SATL 100 Atlanta rosea C SATL Atlanta rosea C SPAC Atlanta peronii Atlanta rosea C SPAC Atlanta rosea C SPAC group Atlanta peronii A SATL Atlanta peronii A NPAC

7 Atlanta peronii A IND Atlanta peronii A SPAC Atlanta peronii A NATL 100 Atlanta peronii B NPAC Atlanta 91 Atlanta peronii B NATL Atlanta peronii B SPAC 100 Atlanta peronii C SATL

Atlanta peronii C NATL Genus 100 Atlanta peronii C SPAC

Atlanta peronii C SPAC ornamented species Radula type II type Radula species ornamented

100 Atlanta frontieri IND - Atlanta frontieri SPAC 100 Atlanta gibbosa IND NATL: North Atlantic Ocean Atlanta gibbosa NPAC SATL: South Atlantic Ocean 100 Atlanta meteori A SPAC Atlanta gibbosa 100 Atlanta meteori A IND group Atlanta meteori B SATL

100 non Larger IND: Indian Ocean Atlanta meteori B NATL Atlanta inclinata NPAC NPAC: North Pacific Ocean Atlanta inclinata NATL SPAC: South Pacific Ocean 100 Atlanta inclinata IND Atlanta inclinata 100 Atlanta tokiokai NATL Atlanta tokiokai IND group Atlanta tokiokai SPAC Atlanta tokiokai SPAC

816 0.1 817 Figure 3. Maximum likelihood phylogeny of the family Atlantidae based on a 818 concatenated dataset of cytochrome c oxidase subunit 1 mitochondrial DNA (CO1), 819 28S and 18S ribosomal rRNA (total 2472 bp). Black squares represent bootstrap 820 support >80%. Species groups based on morphology are highlighted with coloured 821 boxes (see Table 2).

29 822 823

Jurassic Cretaceous Paleogene Neogene Q

Early Middle Late Early Late P'cene Eocene O'cene Miocene Pli

Pli

Tit

Sin

Alb

To a Aal Baj

Val

Cal

To r

Ser Sel

Bar Bat Ber Apt

Pri

Ypr Lut

Tu r

Bur

Lan

Oxf Rup

Bar

San

Kim Cen Cha Aqu

Tha

Zan

Hau Con

Maa Dan

Mes Cam Carinaria sp IND E Protatlanta sculpta NATL Protatlanta souleyeti PAC D Oxygyrus inflatus PAC Oxygyrus inflatus SATL Oxygyrus inflatus NATL A Atlanta inflata PAC Atlanta helicinoidea A SATL Atlanta helicinoidea B IND Atlanta selvagensis NATL B Atlanta ariejansseni SATL Atlanta californiensis PAC Atlanta lesueurii IND Atlanta oligogyra A PAC Atlanta oligogyra B IND Atlanta oligogyra C NATL Atlanta turriculata IND Atlanta brunnea NATL Atlanta vanderspoeli PAC C Atlanta gaudichaudi IND Atlanta echinogyra IND Atlanta plana PAC Atlanta frontieri IND Atlanta inclinata NATL Atlanta tokiokai NATL A - Coelodiscus minutus Atlanta gibbosa IND B - Bellerophina minuta Atlanta meteori A IND Atlanta meteori B SATL C - Atlanta sp. Atlanta fragilis NATL D - Chriskingia rotundata Atlanta rosea A PAC E - Protatlanta kbiraensis Atlanta rosea B SATL Atlanta rosea C SATL F - Atlanta peronii Atlanta peronii C PAC

F Atlanta peronii A NATL

KT extinction KT Albian tectonic forcing tectonic Albian TTE PETM Atlanta peronii B PAC 200 175 150 125 100 75 50 25 0 Million years IoP 824 825 826 Figure 4. The fossil-calibrated phylogeny of the family Atlantidae. Error bars shown in 827 purple (95%) are presented for clades with posterior probabilities ≥85%. Calibration 828 fossils are indicated with letters A-F. Major geological events, including the 829 Cretaceous-Paleogene extinction event (KT), the Paleocene-Eocene Thermal 830 Maximum (PETM), the Terminal Tethyan Event (TTE) and the uplift of the Isthmus of 831 Panama (IoP) are highlighted in orange. 832 833 834 835 836

30 837 Supplementary material 838 839 Supplementary Table 1. Specimens included in this study. 840

BOLD process ID or GenBank (GB) accession number, (number of sequences) Reference Museum accession Ocean Cruise Station Species Latitude Longitude phylogeny phylogeny CO1 28S 18S 28SPhylogeny 18Sphylogeny calibrated Time CO1phylogeny Combinedgene KX343177 - RMNH.MOL.341284, Atlanta ariejansseni Atlantic AMT24 26 -37.89 -28.74 x KX343178 (GB) Wall-Palmer et al. 2016 RMNH.MOL.341286 (2) RMNH.MOL.341282, KX343179 - RMNH.MOL.341293, KX343183/ATCP KX343183/ATCP Wall-Palmer et al. 2016 Atlanta ariejansseni Atlantic AMT24 27 -40.12 -30.91 x x x x x KX343183 (GB) RMNH.MOL.341289, 364-19 (1) 364-19 (1) + New (5) RMNH.MOL.341296, RMNH.MOL.341295 KX343184 (GB) Atlanta ariejansseni Atlantic AMT24 28 -41.48 -33.86 x Wall-Palmer et al. 2016 RMNH.MOL.341287 (1) RMNH.MOL.341288, RMNH.MOL.341291, KX343185/ATCP KX343185/ATCP KX343185 - RMNH.MOL.341294, 365-19, 365-19, Wall-Palmer et al. 2016 Atlanta ariejansseni Atlantic AMT24 29 -43.02 -37.14 x x x KX343191 (GB) RMNH.MOL.341297, KX343187/ATCP KX343187/ATCP + New (7) RMNH.MOL.341298, 366-19 (2) 366-19 (2) RMNH.MOL.341285, RMNH.MOL.341283 KX343192 - KX343192/ATCP KX343192/ATCP Wall-Palmer et al. 2016 RMNH.MOL.341290, Atlanta ariejansseni Pacific DRFT 14 -38.32 -161.14 x x x x KX343193 (GB) 367-19 (1) 367-19 (1) + New RMNH.MOL.341292 (2) Wall-Palmer et al. 2018 Atlanta brunnea Atlantic AMT24 5 34.75 -26.62 x x x x x AGD001-17 (1) AGD001-17 (1) AGD001-17 (1) RMNH.MOL.341299 + New Atlanta brunnea Atlantic AMT27 9 -6.87 -25.04 x x ATCP003-19 (1) ATCP003-19 (1) New RMNH.MOL.341308

Atlanta brunnea Atlantic AMT27 37 -6.87 -25.04 x ATCP004-19 (1) New RMNH.MOL.341309

Atlanta brunnea Atlantic AMT27 41 -12.63 -25.05 x x ATCP006-19 (1) ATCP006-19 (1) New RMNH.MOL.341311

Atlanta brunnea Atlantic AMT27 47 -24.00 -25.02 x ATCP007-19 (1) New RMNH.MOL.341312 Wall-Palmer et al. 2018 Atlanta brunnea Pacific KH1110 5 -23.00 180.01 x x AGD002-17 (1) AGD002-17 (1) RMNH.MOL.341313 + New ATCP001-19, ATCP001-19, RMNH.MOL.341306, Atlanta brunnea Pacific KOK1703 7 23.62 -157.61 x x New ATCP002-19 (2) ATCP002-19 (2) RMNH.MOL.341307 AGD008-17 - Wall-Palmer et al. 2018 RMNH.MOL.341304, Atlanta brunnea Indian SN105 4 8.02 67.08 x x AGD008-17 (1) AGD009-17 (2) + New RMNH.MOL.341305 RMNH.MOL.341300, AGD010-17 - Wall-Palmer et al. 2018 RMNH.MOL.341301, Atlanta brunnea Indian SN105 8 4.38 67.00 x x x x AGD011-17 (1) AGD011-17 (1) AGD013-17 (4) + New RMNH.MOL.341302, RMNH.MOL.341303

Atlanta brunnea Pacific SO255 100 -28.52 179.59 x x ATCP005-19 (1) ATCP005-19 (1) New RMNH.MOL.341310

Atlanta brunnea Pacific ACAS 2 28.21 -162.14 x ATCP187-19 (1) New RMNH.MOL.341318

RMNH.MOL.341320, AGD003-17 - Wall-Palmer et al. 2018 Atlanta vanderspoeli Pacific KH1110 15 -23.00 -119.27 x x x x x AGD005-17 (1) AGD005-17 (1) RMNH.MOL.341321, AGD005-17 (3) + New RMNH.MOL.341322 AGD006-17 - RMNH.MOL.341323, ATCP013-19, AGD006-17, Wall-Palmer et al. 2018 Atlanta vanderspoeli Pacific KH1110 21 -23.00 -100.00 x x x AGD007-17, RMNH.MOL.341324, AGD007-17 (2) AGD007-17 (2) + New ATCP013-19 (3) RMNH.MOL.341325

Atlanta vanderspoeli Pacific SO255 57 -29.95 -178.73 x ATCP012-19 (1) New RMNH.MOL.341319

Atlanta californiensis Pacific WCOA16 24 31.62 -116.91 x AGD014-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341336

Atlanta californiensis Pacific WCOA16 30 33.16 -118.42 x AGD015-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341334

Atlanta californiensis Pacific WCOA16 31 32.77 -119.23 x x x AGD016-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341331

Wall-Palmer et al. 2018 Atlanta echinogyra Pacific KH1110 15 -23.00 -119.27 x x x x AGD017-17 (1) AGD017-17 (1) AGD017-17 (1) RMNH.MOL.341350 + New AGD018-17, AGD018-17, RMNH.MOL.341351, AGD018-17 - Wall-Palmer et al. 2018 Atlanta echinogyra Pacific KH1110 21 -23.00 -100.00 x x x AGD019-17, AGD019-17, RMNH.MOL.341352, AGD020-17 (3) + New AGD020-17 (3) AGD020-17 (3) RMNH.MOL.341353 Wall-Palmer et al. 2018 Atlanta echinogyra Pacific S226 10 13.08 -159.34 x x x AGD021-17 (1) AGD021-17 (1) AGD021-17 (1) RMNH.MOL.341354 + New RMNH.MOL.341343, AGD022-17 - RMNH.MOL.341344, Atlanta echinogyra Indian SN105 4 8.02 67.08 x Wall-Palmer et al. 2018 AGD025-17 (4) RMNH.MOL.341345, RMNH.MOL.341341 AGD026-17 - Wall-Palmer et al. 2018 RMNH.MOL.341340, Atlanta echinogyra Indian SN105 8 4.38 67.00 x x x AGD026-17 (1) AGD026-17 (1) AGD027-17 (2) + New RMNH.MOL.341342 RMNH.MOL.341337, AGD028-17 - Wall-Palmer et al. 2018 Atlanta echinogyra Indian SN105 19 -2.95 66.99 x x x x x AGD029-17 (1) AGD029-17 (1) RMNH.MOL.341338, AGD030-17 (3) + New RMNH.MOL.341339

Atlanta echinogyra Pacific SO255 57 -29.95 -178.73 x x x ATCP022-19 (1) ATCP022-19 (1) ATCP022-19 (1) New RMNH.MOL.341346

Atlanta echinogyra Pacific SO255 73 -28.13 179.02 x x x x ATCP023-19 (1) ATCP023-19 (1) ATCP023-19 (1) New RMNH.MOL.341347

Atlanta echinogyra Pacific SO255 80 -29.10 -179.72 x x x ATCP024-19 (1) ATCP024-19 (1) ATCP024-19 (1) New RMNH.MOL.341348 841 Atlanta echinogyra Pacific SO255 143 -32.87 -179.78 x ATCP025-19 (1) New RMNH.MOL.341349 842

31 843 Atlanta fragilis Atlantic AMT24 9 20.45 -29.27 x x x x ATCP026-19 (1) ATCP026-19 (1) ATCP026-19 (1) New RMNH.MOL.341360 AGD032-17 - Wall-Palmer et al. 2018 RMNH.MOL.341374, Atlanta fragilis Atlantic AMT24 13 7.29 -26.49 x x x x x AGD032-17 (1) AGD032-17 (1) AGD033-17 (2) + New RMNH.MOL.341378

Atlanta fragilis Atlantic AMT24 19 -14.66 -25.07 x AGD034-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341358

Atlanta fragilis Atlantic AMT24 20 -18.32 -25.09 x AGD035-17 (1) RMNH.MOL.341359 Wall-Palmer et al. 2018

Atlanta fragilis Atlantic AMT24 21 -20.86 -25.08 x AGD036-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341373

RMNH.MOL.341377, AGD037-17 - AGD039-17, AGD039-17, RMNH.MOL.341355, Atlanta fragilis Atlantic AMT24 22 -24.46 -25.04 x x x AGD040-17 (4) AGD040-17 (2) AGD040-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341356, + New RMNH.MOL.341357

RMNH.MOL.341375, AGD041-17 - RMNH.MOL.341376, Atlanta fragilis Atlantic AMT24 27 -40.12 -30.91 x x x x AGD041-17 (1) AGD041-17 (1) AGD044-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341379, + New RMNH.MOL.341372

Atlanta fragilis Indian VANC 9 -31.83 52.61 x AGD051-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341363

Atlanta fragilis Indian VANC 16 -19.75 78.01 x AGD052-17 (1) RMNH.MOL.341364 Wall-Palmer et al. 2018 Wall-Palmer et al. 2018 Atlanta fragilis Indian VANC 17 -18.43 80.92 x x AGD053-17 (1) AGD053-17 (1) + New RMNH.MOL.341368

Atlanta fragilis Pacific KH1110 15 -23.00 -119.27 x AGD046-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341371

RMNH.MOL.341366, AGD047-17 - Atlanta fragilis Pacific KH1110 18 -30.00 -107.00 x x AGD049-17 (1) RMNH.MOL.341367, AGD049-17 (3) Wall-Palmer et al. 2018 + New RMNH.MOL.341369

Atlanta fragilis Pacific KH1110 21 -23.00 -100.00 x AGD050-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341370

Atlanta fragilis Pacific ACAS 8 31.24 173.92 x AGD031-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341380

Atlanta fragilis Pacific DRFT 11 -36.05 -149.29 x AGD045-17 (1) RMNH.MOL.341365 Wall-Palmer et al. 2018

Atlanta fragilis Pacific SO255 41 -34.27 -178.87 x x x x ATCP028-19 (1) ATCP028-19 (1) ATCP028-19 (1) New RMNH.MOL.341362

Atlanta fragilis Pacific SO255 143 -32.87 -179.78 x x ATCP027-19 (1) ATCP027-19 (1) New RMNH.MOL.341361

RMNH.MOL.341389, RMNH.MOL.341390, AGD059-17 - Atlanta frontieri Indian SN105 1 11.89 66.97 x RMNH.MOL.341392, AGD063-17 (5) Wall-Palmer et al. 2018 RMNH.MOL.341385, + New RMNH.MOL.341387

RMNH.MOL.341391, AGD064-17 - RMNH.MOL.341393, Atlanta frontieri Indian SN105 4 8.02 67.08 x x x AGD064-17 (1) AGD064-17 (1) AGD067-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341386, + New RMNH.MOL.341388

RMNH.MOL.341381, AGD055-17 - RMNH.MOL.341382, Atlanta frontieri Indian SN105 8 4.38 67.00 x x x x x AGD055-17 (1) AGD055-17 (1) AGD058-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341383, + New RMNH.MOL.341384

Atlanta frontieri Pacific KH1110 2 -23.00 160.00 x AGD054-17 (1) New RMNH.MOL.341398

Atlanta frontieri Pacific KOK1703 5 22.65 -157.69 x x ATCP029-19 (1) ATCP029-19 (1) New RMNH.MOL.341394

Atlanta frontieri Pacific KOK1703 6 23.52 -156.78 x x ATCP030-19 (1) ATCP030-19 (1) New RMNH.MOL.341395

ATCP031-19, ATCP031-19, ATCP031-19, RMNH.MOL.341396, Atlanta frontieri Pacific SO255 73 -28.13 179.02 x x x x ATCP032-19 (2) ATCP032-19 (2) ATCP032-19 (2) New RMNH.MOL.341397

Wall-Palmer et al. 2018 Atlanta gaudichaudi Indian VANC 1 -35.05 23.73 x x x x AGD068-17 (1) AGD068-17 (1) + New RMNH.MOL.341399

AGD070-17 - RMNH.MOL.341401, Atlanta gibbosa Indian SN105 8 4.38 67.00 x x x x x AGD070-17 (1) AGD070-17 (1) Wall-Palmer et al. 2018 AGD071-17 (2) + New RMNH.MOL.341400 Wall-Palmer et al. 2018 Atlanta gibbosa Pacific S226 29 1.48 -160.13 x x x AGD069-17 (1) AGD069-17 (1) + New RMNH.MOL.341402

RMNH.MOL.341403, AGD072-17 - Atlanta helicinoidea A Atlantic AMT24 6 31.30 -27.73 x x x x AGD072-17 (1) AGD072-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341405, AGD074-17 (3) + New RMNH.MOL.341406

Atlanta helicinoidea A Atlantic AMT24 7 27.50 -28.89 x AGD075-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341404

Atlanta helicinoidea A Atlantic AMT24 8 24.06 -29.91 x AGD076-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341422

AGD077-17 - RMNH.MOL.341423, Atlanta helicinoidea A Atlantic AMT24 13 7.29 -26.49 x AGD078-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341424

Atlanta helicinoidea A Atlantic AMT24 14 3.80 -25.78 x AGD079-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341425

RMNH.MOL.341426, AGD080-17 - AGD080-17, AGD080-17, Atlanta helicinoidea A Atlantic AMT24 16 -3.89 -25.03 x x x x x Wall-Palmer et al. 2018 RMNH.MOL.341417, AGD082-17 (3) AGD081-17 (2) AGD081-17 (2) + New RMNH.MOL.341419

Atlanta helicinoidea A Atlantic AMT24 20 -18.32 -25.09 x AGD083-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341427

RMNH.MOL.341416, AGD084-17 - Atlanta helicinoidea A Atlantic AMT24 22 -24.46 -25.04 x RMNH.MOL.341418, AGD086-17 (3) 844 Wall-Palmer et al. 2018 RMNH.MOL.341420 32 845 AGD087-17 - RMNH.MOL.341407, Atlanta helicinoidea A Atlantic AMT24 25A -34.18 -27.21 x AGD088-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341408 Wall-Palmer et al. 2018 Atlanta helicinoidea A Atlantic AMT24 27 -40.12 -30.91 x x x x AGD089-17 (1) AGD089-17 (1) AGD089-17 (1) RMNH.MOL.341421 + New Wall-Palmer et al. 2018 Atlanta helicinoidea A Atlantic AMT27 43 -15.96 -25.07 x x x ATCP034-19 (1) ATCP034-19 (1) ATCP034-19 (1) + New RMNH.MOL.341411

Atlanta helicinoidea A Atlantic AMT27 58 -41.16 -30.00 x ATCP035-19 (1) New RMNH.MOL.341412 Wall-Palmer et al. 2018 Atlanta helicinoidea A Indian SN105 8 4.38 67.00 x x x x AGD104-17 (1) AGD104-17 (1) AGD104-17 (1) + New RMNH.MOL.341409 Wall-Palmer et al. 2018 Atlanta helicinoidea A Indian VANC 5 -34.36 37.73 x x x x AGD105-17 (1) AGD105-17 (1) AGD105-17 (1) RMNH.MOL.341415 + New

AGD098-17 - RMNH.MOL.341413, Atlanta helicinoidea A Pacific KH1110 15 -23.00 -119.27 x x x x AGD099-17 (1) AGD099-17 (1) Wall-Palmer et al. 2018 AGD099-17 (2) + New RMNH.MOL.341414

Atlanta helicinoidea A Pacific SO255 100 -28.52 179.59 x x x x ATCP033-19 (1) ATCP033-19 (1) ATCP033-19 (1) New RMNH.MOL.341410

RMNH.MOL.341430, AGD101-17 - AGD101-17, AGD101-17, Atlanta helicinoidea B Indian SN105 8 4.38 67.00 x x x x x RMNH.MOL.341429, AGD103-17 (3) AGD103-17 (2) AGD103-17 (2) Wall-Palmer et al. 2018 + New RMNH.MOL.341431

Atlanta helicinoidea B Indian VANC 17 -18.43 80.92 x AGD106-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341441

Wall-Palmer et al. 2018 Atlanta helicinoidea B Indian VANC 22 -12.86 94.29 x x x AGD107-17 (1) AGD107-17 (1) AGD107-17 (1) RMNH.MOL.341443 + New Wall-Palmer et al. 2018 Atlanta helicinoidea B Indian VANC 24 -13.21 104.66 x x x x AGD108-17 (1) AGD108-17 (1) AGD108-17 (1) + New RMNH.MOL.341433

RMNH.MOL.341444, AGD090-17 - RMNH.MOL.341434, Atlanta helicinoidea B Pacific KH1110 2 -23.00 160.00 x x x AGD092-17 (1) AGD092-17 (1) AGD093-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341436, + New RMNH.MOL.341438 AGD094-17 - RMNH.MOL.341439, Atlanta helicinoidea B Pacific KH1110 5 -23.00 180.01 x AGD095-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341442

AGD096-17 - Wall-Palmer et al. 2018 RMNH.MOL.341435, Atlanta helicinoidea B Pacific KH1110 8 -22.79 -158.10 x x x AGD096-17 (1) AGD096-17 (1) AGD097-17 (2) + New RMNH.MOL.341437

Wall-Palmer et al. 2018 Atlanta helicinoidea B Pacific S226 9 13.87 -159.12 x x x x AGD100-17 (1) AGD100-17 (1) AGD100-17 (1) RMNH.MOL.341440 + New

Atlanta helicinoidea B Pacific SO255 57 -29.95 -178.73 x x x x ATCP037-19 (1) ATCP037-19 (1) ATCP037-19 (1) New RMNH.MOL.341432

Atlanta inclinata Atlantic AMT24 12 10.78 -27.21 x AGD109-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341481

RMNH.MOL.341485, AGD110-17 - Atlanta inclinata Atlantic AMT24 13 7.29 -26.49 x RMNH.MOL.341479, AGD112-17 (3) Wall-Palmer et al. 2018 RMNH.MOL.341480

RMNH.MOL.341476, AGD113- RMNH.MOL.341482, AGD113-17 - Atlanta inclinata Atlantic AMT24 14 3.80 -25.78 x x x 17,AGD116-17 AGD116-17 (1) RMNH.MOL.341484, AGD117-17 (5) (2) Wall-Palmer et al. 2018 RMNH.MOL.341478, + New RMNH.MOL.341483 AGD118-17 - Wall-Palmer et al. 2018 RMNH.MOL.341464, Atlanta inclinata Atlantic AMT24 15 0.08 -25.02 x x x x x AGD118-17 (1) AGD118-17 (1) AGD119-17 (2) + New RMNH.MOL.341466

RMNH.MOL.341462, AGD120-17 - Atlanta inclinata Atlantic AMT24 16 -3.89 -25.03 x RMNH.MOL.341463, AGD122-17 (3) Wall-Palmer et al. 2018 RMNH.MOL.341465

AGD123-17 - Wall-Palmer et al. 2018 RMNH.MOL.341460, Atlanta inclinata Atlantic AMT24 18 -11.04 -25.05 x x x AGD124-17 (1) AGD124-17 (1) AGD124-17 (2) + New RMNH.MOL.341461

Atlanta inclinata Atlantic AMT27 33 -0.72 -24.97 x ATCP055-19 (1) New RMNH.MOL.341473

ATCP056-19 - ATCP056-19 - RMNH.MOL.341474, Atlanta inclinata Atlantic AMT27 35 -3.54 -25.01 x x x ATCP057-19 (1) ATCP057-19 (2) ATCP057-19 (2) New RMNH.MOL.341475

ATCP053-19, RMNH.MOL.341471, Atlanta inclinata Atlantic AMT27 37 -6.87 -25.04 x x ATCP054-19 (1) ATCP054-19 (2) New RMNH.MOL.341472

AGD126-17 - Wall-Palmer et al. 2018 RMNH.MOL.341467, Atlanta inclinata Indian SN105 4 8.02 67.08 x x AGD127-17 (1) AGD127-17 (2) + New RMNH.MOL.341470

AGD128-17 - Wall-Palmer et al. 2018 RMNH.MOL.341468, Atlanta inclinata Indian SN105 19 -2.95 66.99 x x x x AGD128-17 (1) AGD128-17 (1) AGD129-17 (2) + New RMNH.MOL.341469 Wall-Palmer et al. 2018 Atlanta inclinata Pacific S226 45 9.47 -154.42 x x x x AGD125-17 (1) AGD125-17 (1) AGD125-17 (1) + New RMNH.MOL.341477

AGD137-17 - RMNH.MOL.341494, Atlanta inflata Indian SN105 1 11.89 66.97 x AGD138-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341495

RMNH.MOL.341487, AGD139-17 - Atlanta inflata Indian SN105 8 4.38 67.00 x x x AGD139-17 (1) AGD140-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341488, AGD141-17 (3) + New RMNH.MOL.341489

RMNH.MOL.341492, RMNH.MOL.341493, AGD142-17 - Atlanta inflata Indian SN105 19 -2.95 66.99 x x x x AGD142-17 (1) AGD142-17 (1) RMNH.MOL.341486, AGD146-17 (5) Wall-Palmer et al. 2018 RMNH.MOL.341490, + New RMNH.MOL.341491

AGD130-17 - AGD130-17 - Wall-Palmer et al. 2018 RMNH.MOL.341502, Atlanta inflata Pacific KH1110 2 -23.00 160.00 x x x AGD131-17 (1) 846 AGD131-17 (2) AGD131-17 (2) + New RMNH.MOL.341503 847

33 RMNH.MOL.341499, AGD132-17 - RMNH.MOL.341504, Atlanta inflata Pacific KH1110 5 -23.00 180.01 x x x AGD135-17 (1) AGD135-17 (1) AGD135-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341500, + New RMNH.MOL.341501 Wall-Palmer et al. 2018 Atlanta inflata Pacific KH1110 8 -22.79 -158.10 x x x AGD136-17 (1) AGD136-17 (1) AGD136-17 (1) RMNH.MOL.341505 + New

Atlanta inflata Pacific KOK1703 7 23.62 -157.61 x ATCP180-19 (1) New RMNH.MOL.341496

Atlanta inflata Pacific SO255 57 -29.95 -178.73 x x x x x ATCP058-19 (1) ATCP058-19 (1) ATCP058-19 (1) New RMNH.MOL.341497

Atlanta inflata Pacific SO255 100 -28.52 179.59 x x x ATCP059-19 (1) ATCP059-19 (1) ATCP059-19 (1) New RMNH.MOL.341498

AGD147-17 - RMNH.MOL.341507, Atlanta lesueurii Atlantic AMT24 11 14.21 -27.93 x AGD148-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341508 Wall-Palmer et al. 2018 Atlanta lesueurii Atlantic AMT24 15 0.08 -25.02 x x x x AGD149-17 (1) AGD149-17 (1) AGD149-17 (1) RMNH.MOL.341506 + New RMNH.MOL.341515, AGD150-17 - AGD150-17 - AGD150-17, RMNH.MOL.341516, Atlanta lesueurii Atlantic AMT24 16 -3.89 -25.03 x x x AGD151-17, AGD153-17 (4) AGD151-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341517, AGD153-17 (3) + New RMNH.MOL.341514

Atlanta lesueurii Atlantic AMT27 21 16.56 -29.10 x x x ATCP060-19 (1) ATCP060-19 (1) ATCP060-19 (1) New RMNH.MOL.341512

Atlanta lesueurii Atlantic AMT27 23 13.15 -28.25 x x ATCP061-19 (1) ATCP061-19 (1) New RMNH.MOL.341513 Wall-Palmer et al. 2018 Atlanta lesueurii Indian SN105 8 4.38 67.00 x x x AGD154-17 (1) AGD154-17 (1) AGD154-17 (1) RMNH.MOL.341511 + New Wall-Palmer et al. 2018 AGD155-17 - RMNH.MOL.341509, Atlanta lesueurii Indian SN105 19 -2.95 66.99 x x x x x AGD155-17 (1) AGD155-17 (1) AGD156-17 (2) + New RMNH.MOL.341510 AGD162-17 - RMNH.MOL.341523, Atlanta meteori A Indian SN105 1 11.89 66.97 x AGD163-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341524 RMNH.MOL.341527, AGD164-17 - RMNH.MOL.341525, Atlanta meteori A Indian SN105 4 8.02 67.08 x AGD167-17 (4) RMNH.MOL.341529, Wall-Palmer et al. 2018 RMNH.MOL.341521 AGD168-17 - Wall-Palmer et al. 2018 RMNH.MOL.341526, Atlanta meteori A Indian SN105 8 4.38 67.00 x x x AGD168-17 (1) AGD168-17 (1) AGD169-17 (2) + New RMNH.MOL.341528 RMNH.MOL.341519, AGD170-17 - AGD171-17, AGD171-17, RMNH.MOL.341520, Atlanta meteori A Indian SN105 19 -2.95 66.99 x x x x x AGD173-17 (4) AGD173-17 (2) AGD173-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341522, + New RMNH.MOL.341518 Wall-Palmer et al. 2018 Atlanta meteori A Pacific KH1110 8 -22.79 -158.10 x x x x AGD161-17 (1) AGD161-17 (1) AGD161-17 (1) RMNH.MOL.341532 + New ATCP181-19, RMNH.MOL.341530, Atlanta meteori A Pacific KOK1703 3 22.65 -157.69 x x ATCP062-19 (1) ATCP062-19 (2) New RMNH.MOL.341531 AGD157-17 - Wall-Palmer et al. 2018 RMNH.MOL.341537, Atlanta meteori B Atlantic AMT24 8 24.06 -29.91 x x x AGD157-17 (1) AGD157-17 (1) AGD158-17 (2) + New RMNH.MOL.341538 AGD159-17 - AGD159-17 - Wall-Palmer et al. 2018 RMNH.MOL.341533, Atlanta meteori B Atlantic AMT24 23 -27.76 -25.01 x x x x x AGD159-17 (1) AGD160-17 (2) AGD160-17 (2) + New RMNH.MOL.341534

Atlanta meteori B Atlantic AMT27 9 35.30 -26.28 x x x x ATCP063-19 (1) ATCP063-19 (1) ATCP063-19 (1) New RMNH.MOL.341535

Atlanta meteori B Atlantic AMT27 51 -30.22 -25.78 x x ATCP064-19 (1) ATCP064-19 (1) New RMNH.MOL.341536

RMNH.MOL.341546, AGD186-17 - RMNH.MOL.341547, Atlanta oligogyra A Indian SN105 1 11.89 66.97 x AGD188-17, RMNH.MOL.341549, AGD190-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341542 RMNH.MOL.341551, AGD192-17, RMNH.MOL.341543, Atlanta oligogyra A Indian SN105 4 8.02 67.08 x x x x AGD194-17 - AGD194-17 (1) AGD194-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341544, AGD196-17 (4) + New RMNH.MOL.341540 AGD197-17 - RMNH.MOL.341545, Atlanta oligogyra A Indian SN105 8 4.38 67.00 x AGD198-17, RMNH.MOL.341548, AGD200-17 (3) Wall-Palmer et al. 2018 RMNH.MOL.341550 AGD201-17 - Wall-Palmer et al. 2018 RMNH.MOL.341539, Atlanta oligogyra A Indian SN105 19 -2.95 66.99 x x x AGD201-17 (1) AGD201-17 (1) AGD202-17 (2) + New RMNH.MOL.341541 Wall-Palmer et al. 2018 Atlanta oligogyra A Indian VANC 2 -35.07 24.50 x x x x AGD207-17 (1) AGD207-17 (1) AGD207-17 (1) RMNH.MOL.341555 + New Wall-Palmer et al. 2018 Atlanta oligogyra A Indian PGO 119 8.97 69.74 x x AGD183-17 (1) AGD183-17 (1) RMNH.MOL.341556 + New

Atlanta oligogyra A Pacific KH1110 5 -23.00 180.01 x AGD181-17 (1) RMNH.MOL.341552 Wall-Palmer et al. 2018 Wall-Palmer et al. 2018 Atlanta oligogyra A Pacific KH1110 18 -30.00 -107.00 x x x x x AGD182-17 (1) AGD182-17 (1) AGD182-17 (1) RMNH.MOL.341554 + New Wall-Palmer et al. 2018 Atlanta oligogyra A Pacific S226 10 13.08 -159.34 x x x x AGD184-17 (1) AGD184-17 (1) AGD184-17 (1) + New RMNH.MOL.341553

AGD185-17, Wall-Palmer et al. 2018 RMNH.MOL.341558, Atlanta oligogyra B Indian SN105 1 11.89 66.97 x x x x x AGD185-17 (1) AGD185-17 (1) AGD189-17 (2) + New RMNH.MOL.341560 AGD191-17, Wall-Palmer et al. 2018 RMNH.MOL.341561, Atlanta oligogyra B Indian SN105 4 8.02 67.08 x x x AGD191-17 (1) AGD191-17 (1) AGD193-17 (2) + New RMNH.MOL.341557

Atlanta oligogyra B Indian SN105 8 4.38 67.00 x AGD199-17 (1) RMNH.MOL.341559 Wall-Palmer et al. 2018 RMNH.MOL.341566, AGD203-17 - Atlanta oligogyra B Indian VANC 1 -35.05 23.73 x x AGD204-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341568, AGD205-17 (3) + New RMNH.MOL.341569 Wall-Palmer et al. 2018 Atlanta oligogyra B Indian VANC 2 -35.07 24.50 x x x x AGD206-17 (1) AGD206-17 (1) AGD206-17 (1) RMNH.MOL.341571 + New RMNH.MOL.341572, AGD175-17 - Atlanta oligogyra B Pacific KH1110 2 -23.00 160.00 x x x x AGD177-17 (1) AGD177-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341573, AGD177-17 (3) + New RMNH.MOL.341564 RMNH.MOL.341570, AGD178-17 - Atlanta oligogyra B Pacific KH1110 5 -23.00 180.01 x x x AGD180-17 (1) AGD180-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341565, AGD180-17 (3) + New RMNH.MOL.341567

Atlanta oligogyra B Pacific KOK1703 6 23.52 -156.78 x x ATCP065-19 (1) ATCP065-19 (1) New RMNH.MOL.341562 848 Atlanta oligogyra B Pacific SO255 73 -28.13 179.02 x ATCP066-19 (1) New RMNH.MOL.341563 34 Atlanta oligogyra C Atlantic AMT24 19 -14.66 -25.07 x AGD174-17 (1) RMNH.MOL.341574 Wall-Palmer et al. 2018

Atlanta oligogyra C Atlantic AMT27 17 23.36 -29.22 x x x x x ATCP068-19 (1) ATCP068-19 (1) ATCP068-19 (1) New RMNH.MOL.341576

Atlanta oligogyra C Atlantic AMT27 33 -0.72 -24.97 x x ATCP067-19 (1) ATCP067-19 (1) New RMNH.MOL.341575

Wall-Palmer et al. 2018 Atlanta peronii A Atlantic AMT24 6 31.30 -27.73 x x x x x AGD210-17 (1) AGD210-17 (1) AGD210-17 (1) + New RMNH.MOL.341592 Wall-Palmer et al. 2018 Atlanta peronii A Atlantic AMT24 8 24.06 -29.91 x x x AGD211-17 (1) AGD211-17 (1) AGD211-17 (1) RMNH.MOL.341594 + New

Atlanta peronii A Atlantic AMT24 18 -11.04 -25.05 x AGD222-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341578 AGD226-17 - RMNH.MOL.341591, Atlanta peronii A Atlantic AMT24 21 -20.86 -25.08 x AGD227-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341593 AGD228-17 - AGD228-17 - AGD228-17 - Wall-Palmer et al. 2018 RMNH.MOL.341589, Atlanta peronii A Atlantic AMT24 22 -24.46 -25.04 x x x AGD229-17 (2) AGD229-17 (2) AGD229-17 (2) + New RMNH.MOL.341590 RMNH.MOL.341595, AGD230-17 - Atlanta peronii A Atlantic AMT24 23 -27.76 -25.01 x x x AGD231-17 (1) AGD231-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341596, AGD232-17 (3) + New RMNH.MOL.341598

Atlanta peronii A Atlantic AMT24 25 -34.18 -27.22 x AGD233-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341577 Wall-Palmer et al. 2018 Atlanta peronii A Atlantic AMT24 27 -40.12 -30.91 x x x x AGD234-17 (1) AGD234-17 (1) AGD234-17 (1) RMNH.MOL.341588 + New RMNH.MOL.341579, AGD241-17 - AGD241-17, AGD241-17, RMNH.MOL.341580, Atlanta peronii A Indian SN105 19 -2.95 66.99 x x x x AGD244-17 (4) AGD243-17 (2) AGD243-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341581, + New RMNH.MOL.341582 Wall-Palmer et al. 2018 Atlanta peronii A Pacific ACAS 2 28.21 -162.14 x x AGD208-17 (1) AGD208-17 (1) RMNH.MOL.341597 + New

Atlanta peronii A Pacific KOK1703 1 22.91 -157.72 x x ATCP070-19 (1) ATCP070-19 (1) New RMNH.MOL.341584

Atlanta peronii A Pacific KOK1703 3 22.65 -157.69 x x x x ATCP069-19 (1) ATCP069-19 (1) ATCP069-19 (1) New RMNH.MOL.341583

Atlanta peronii A Pacific SO255 13 -34.54 178.51 x ATCP073-19 (1) New RMNH.MOL.341587

Atlanta peronii A Pacific SO255 80 -29.10 -179.72 x x x ATCP071-19 (1) ATCP071-19 (1) New RMNH.MOL.341585

Atlanta peronii A Pacific SO255 143 -32.87 -179.78 x x ATCP072-19 (1) ATCP072-19 (1) New RMNH.MOL.341586

Atlanta peronii B Atlantic AMT22 27 17.70 -36.46 x AGD209-17 (1) RMNH.MOL.341601 Wall-Palmer et al. 2018

Atlanta peronii B Atlantic AMT24 8 24.06 -29.91 x AGD212-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341609 RMNH.MOL.341599, AGD215-17 - AGD215-17 - AGD215-17 - RMNH.MOL.341600, Atlanta peronii B Atlantic AMT24 9 20.45 -29.27 x x x x AGD218-17 (4) AGD216-17 (2) AGD216-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341610, + New RMNH.MOL.341611

Atlanta peronii B Atlantic AMT27 9 35.30 -26.28 x ATCP076-19 (1) New RMNH.MOL.341604

Atlanta peronii B Indian VANC 15 -21.04 75.14 x AGD245-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341606 AGD235-17 - AGD235-17 - Wall-Palmer et al. 2018 RMNH.MOL.341608, Atlanta peronii B Pacific DRFT 14 -38.32 -161.14 x x x x x AGD235-17 (1) AGD236-17 (2) AGD236-17 (2) + New RMNH.MOL.341607

Atlanta peronii B Pacific KH1110 18 -30.00 -107.00 x AGD237-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341612

Atlanta peronii B Pacific KOK1703 7 23.62 -157.61 x x x x ATCP074-19 (1) ATCP074-19 (1) ATCP074-19 (1) New RMNH.MOL.341602

Atlanta peronii B Pacific SO255 57 -29.95 -178.73 x x ATCP077-19 (1) ATCP077-19 (1) New RMNH.MOL.341605

Atlanta peronii B Pacific SO255 100 -28.52 179.59 x ATCP075-19 (1) New RMNH.MOL.341603

AGD213-17, Wall-Palmer et al. 2018 RMNH.MOL.341616, Atlanta peronii C Atlantic AMT24 9 20.45 -29.27 x x x x AGD213-17 (1) AGD213-17 (1) AGD214-17 (2) + New RMNH.MOL.341623 RMNH.MOL.341622, AGD219-17 - AGD219-17 - AGD219-17 - Atlanta peronii C Atlantic AMT24 16 -3.89 -25.03 x x x Wall-Palmer et al. 2018 RMNH.MOL.341620, AGD221-17 (3) AGD220-17 (2) AGD220-17 (2) + New RMNH.MOL.341621 RMNH.MOL.341614, AGD223-17 - AGD223-17 - AGD223-17 - Atlanta peronii C Atlantic AMT24 18 -11.04 -25.05 x x x x Wall-Palmer et al. 2018 RMNH.MOL.341615, AGD225-17 (3) AGD224-17 (2) AGD224-17 (2) + New RMNH.MOL.341613 RMNH.MOL.341624, AGD238-17 - AGD238-17 - AGD238-17 - Atlanta peronii C Pacific KH1110 21 -23.00 -100.00 x x x x x Wall-Palmer et al. 2018 RMNH.MOL.341625, AGD240-17 (3) AGD239-17 (2) AGD239-17 (2) + New RMNH.MOL.341626

Atlanta peronii C Pacific SO255 73 -28.13 179.02 x x ATCP080-19 (1) ATCP080-19 (1) New RMNH.MOL.341619 ATCP078-19, ATCP078-19, ATCP078-19, RMNH.MOL.341617, Atlanta peronii C Pacific SO255 80 -29.10 -179.72 x x x x New ATCP079-19 (2) ATCP079-19 (2) ATCP079-19 (2) RMNH.MOL.341618 RMNH.MOL.341631, AGD246-17 - Atlanta plana Indian SN105 4 8.02 67.08 x x x AGD246-17 (1) AGD248-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341632, AGD248-17 (3) + New RMNH.MOL.341633

Atlanta plana Indian SN105 8 4.38 67.00 x AGD257-17 (1) RMNH.MOL.341627 Wall-Palmer et al. 2018 RMNH.MOL.341628, AGD258-17 - Atlanta plana Indian SN105 19 -2.95 66.99 x x x x AGD260-17 (1) AGD258-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341629, AGD260-17 (3) + New RMNH.MOL.341630

Atlanta plana Indian VANC 1 -35.05 23.73 x AGD261-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341640

Atlanta plana Indian VANC 2 -35.07 24.50 x x AGD262-17 (1) AGD262-17 (1) RMNH.MOL.341643 Wall-Palmer et al. 2018 Wall-Palmer et al. 2018 Atlanta plana Pacific KM1109 9 21.333 -158.354 x x x x x AGD253-17 (1) AGD253-17 (1) AGD253-17 (1) + New RMNH.MOL.341638

Atlanta plana Pacific KM1109 10 21.414 -158.343 x AGD254-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341639 RMNH.MOL.341637, AGD249-17 - RMNH.MOL.341644, Atlanta plana Pacific KH1110 8 -22.79 -158.10 x AGD252-17 (4) RMNH.MOL.341645, Wall-Palmer et al. 2018 RMNH.MOL.341646 AGD255-17 - RMNH.MOL.341641, Atlanta plana Pacific S226 10 13.083 -159.343 x AGD256-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341642

Atlanta plana Pacific KOK1703 1 22.91 -157.72 x ATCP081-19 (1) New RMNH.MOL.341634 35ATCP082-19, RMNH.MOL.341635, Atlanta plana Pacific SO255 80 -29.10 -179.72 x x ATCP082-19 (1) 849 ATCP083-19 (2) New RMNH.MOL.341636 Wall-Palmer et al. 2018 Atlanta rosea A Indian VANC 15 -21.04 75.14 x x AGD285-17 (1) AGD285-17 (1) + New RMNH.MOL.341648 RMNH.MOL.341649, AGD286-17 - AGD286-17 - AGD286-17 - Atlanta rosea A Indian VANC 17 -18.43 80.92 x x x x Wall-Palmer et al. 2018 RMNH.MOL.341650, AGD288-17 (3) AGD287-17 (2) AGD287-17 (2) + New RMNH.MOL.341651 AGD275-17, AGD275-17, AGD275-17, Wall-Palmer et al. 2018 RMNH.MOL.341652, Atlanta rosea A Pacific KH1110 5 -23.00 180.01 x x x x x AGD277-17 (2) AGD277-17 (2) AGD277-17 (2) + New RMNH.MOL.341653 AGD278-17 - AGD278-17 - Wall-Palmer et al. 2018 RMNH.MOL.341660, Atlanta rosea A Pacific KH1110 15 -23.00 -119.27 x x x AGD279-17 (2) AGD279-17 (2) + New RMNH.MOL.341661 RMNH.MOL.341657, AGD282-17 - Atlanta rosea A Pacific KH1110 21 -23.00 -100.00 x x AGD282-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341658, AGD284-17 (3) + New RMNH.MOL.341659

Atlanta rosea A Pacific KOK1703 5 22.65 -157.69 x ATCP182-19 (1) New RMNH.MOL.341654

Atlanta rosea A Pacific SO255 100 -28.52 179.59 x x x ATCP085-19 (1) ATCP085-19 (1) ATCP085-19 (1) New RMNH.MOL.341655 ATCP084-19, ATCP084-19, RMNH.MOL.341647, Atlanta rosea A Pacific SO255 143 -32.87 -179.78 x x x x ATCP086-19 (1) New ATCP086-19 (2) ATCP086-19 (2) RMNH.MOL.341656 RMNH.MOL.341669, AGD263-17 - RMNH.MOL.341665, Atlanta rosea B Atlantic AMT24 6 31.30 -27.73 x x x x AGD263-17 (1) AGD263-17 (1) AGD266-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341666, + New RMNH.MOL.341667 Wall-Palmer et al. 2018 Atlanta rosea B Atlantic AMT24 7 27.50 -28.89 x x x AGD267-17 (1) AGD267-17 (1) AGD267-17 (1) RMNH.MOL.341668 + New RMNH.MOL.341662, AGD269-17 - AGD269-17 - AGD269-17 - Wall-Palmer et al. 2018 Atlanta rosea B Atlantic AMT24 19 -14.66 -25.07 x x x x x RMNH.MOL.341663, AGD271-17 (3) AGD270-17 (2) AGD270-17 (2) + New RMNH.MOL.341664 Wall-Palmer et al. 2018 Atlanta rosea C Atlantic AMT24 8 24.06 -29.91 x x x x AGD268-17 (1) AGD268-17 (1) AGD268-17 (1) RMNH.MOL.341675 + New Wall-Palmer et al. 2018 Atlanta rosea C Atlantic AMT24 19 -14.66 -25.07 x x x x AGD272-17 (1) AGD272-17 (1) AGD272-17 (1) RMNH.MOL.341671 + New

Atlanta rosea C Atlantic AMT24 21 -20.86 -25.08 x AGD273-17 (1) RMNH.MOL.341670 Wall-Palmer et al. 2018 Wall-Palmer et al. 2018 Atlanta rosea C Atlantic AMT24 27 -40.12 -30.91 x x x x x AGD274-17 (1) AGD274-17 (1) AGD274-17 (1) RMNH.MOL.341674 + New

Atlanta rosea C Atlantic AMT27 17 23.36 -29.22 x x x ATCP088-19 (1) ATCP088-19 (1) ATCP088-19 (1) New RMNH.MOL.341673 Wall-Palmer et al. 2018 Atlanta rosea C Pacific KH1110 5 -23.00 180.01 x x x x AGD276-17 (1) AGD276-17 (1) AGD276-17 (1) RMNH.MOL.341676 + New AGD280-17 - AGD280-17 - AGD280-17 - Wall-Palmer et al. 2018 RMNH.MOL.341677, Atlanta rosea C Pacific KH1110 18 -30.00 -107.00 x x x x AGD281-17 (2) AGD281-17 (2) AGD281-17 (2) + New RMNH.MOL.341678

Atlanta rosea C Pacific SO255 73 -28.13 179.02 x x x x ATCP087-19 (1) ATCP087-19 (1) ATCP087-19 (1) New RMNH.MOL.341672

KX343194/ATCP KX343194 (GB), RMNH.MOL.341688, Atlanta selvagensis Atlantic AMT24 5 34.75 -26.62 x x 368-19, AGD289- Wall-Palmer et al. 2016, AGD289-17 (2) RMNH.MOL.341679 17 (2) 2018 + New RMNH.MOL.341681, RMNH.MOL.341683, RMNH.MOL.341684, KX343195 - RMNH.MOL.341685, KX343197 (GB), KX343195/ATCP KX343195/ATCP Atlanta selvagensis Atlantic AMT24 6 31.30 -27.73 x x x x x RMNH.MOL.341686, AGD290-17 - 369-19 (1) 369-19 (1) RMNH.MOL.341687, AGD295-17 (9) RMNH.MOL.341695, Wall-Palmer et al. 2016, RMNH.MOL.341697, 2018 + New RMNH.MOL.341711 RMNH.MOL.341699, AGD296-17 - Atlanta selvagensis Atlantic AMT24 7 27.50 -28.89 x x x AGD296-17 (1) AGD296-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341701, AGD298-17 (3) + New RMNH.MOL.341703 RMNH.MOL.341705, AGD299-17 - Atlanta selvagensis Atlantic AMT24 8 24.06 -29.91 x x x AGD299-17 (1) AGD299-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341707, AGD301-17 (3) + New RMNH.MOL.341694 RMNH.MOL.341696, AGD302-17 - Atlanta selvagensis Atlantic AMT24 9 20.45 -29.27 x x x AGD302-17 (1) AGD302-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341698, AGD304-17 (3) + New RMNH.MOL.341700 RMNH.MOL.341709, AGD305-17 - AGD305-17 - Atlanta selvagensis Atlantic AMT24 10 17.82 -28.70 x x x AGD306-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341710, AGD307-17 (3) AGD306-17 (2) + New RMNH.MOL.341712 KX343198 (GB), RMNH.MOL.341680, Atlanta selvagensis Atlantic AMT24 14 3.80 -25.78 x x AGD308-17 - AGD308-17 (1) Wall-Palmer et al. 2016, RMNH.MOL.341689, AGD309-17 (3) 2018 + New RMNH.MOL.341682 RMNH.MOL.341693, AGD310-17 - RMNH.MOL.341708, Atlanta selvagensis Atlantic AMT24 15 0.08 -25.02 x AGD313-17 (4) RMNH.MOL.341713, Wall-Palmer et al. 2018 RMNH.MOL.341714 RMNH.MOL.341692, AGD314-17 - AGD315-17, AGD315-17, RMNH.MOL.341702, Atlanta selvagensis Atlantic AMT24 16 -3.89 -25.03 x x x x AGD317-17 (4) AGD317-17 (2) AGD317-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341704, + New RMNH.MOL.341706 ATCP089-19, ATCP089-19, RMNH.MOL.341690, Atlanta selvagensis Atlantic AMT27 37 -6.87 -25.04 x x x x ATCP090-19 (1) New ATCP090-19 (2) ATCP090-19 (2) RMNH.MOL.341691 Wall-Palmer et al. 2018 Atlanta tokiokai Atlantic AMT24 7 27.50 -28.89 x x x x x AGD319-17 (1) AGD319-17 (1) AGD319-17 (1) RMNH.MOL.341757 + New RMNH.MOL.341758, AGD320-17 - Atlanta tokiokai Atlantic AMT24 8 24.06 -29.91 x x x AGD321-17 (1) AGD321-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341759, AGD322-17 (3) + New RMNH.MOL.341760 RMNH.MOL.341715, AGD323-17 - AGD323-17 - RMNH.MOL.341716, Atlanta tokiokai Atlantic AMT24 9 20.45 -29.27 x x x AGD326-17 (1) AGD326-17 (4) AGD324-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341717, + New RMNH.MOL.341718 850 Atlanta tokiokai Atlantic AMT27 43 -15.96 -25.07 x x ATCP093-19 (1) ATCP093-19 (1) New RMNH.MOL.341746 851 852

36 RMNH.MOL.341730, RMNH.MOL.341731, RMNH.MOL.341732, RMNH.MOL.341733, AGD335-17 - Atlanta tokiokai Indian SN105 1 11.89 66.97 x RMNH.MOL.341734, AGD343-17 (9) RMNH.MOL.341735, RMNH.MOL.341736, RMNH.MOL.341741, Wall-Palmer et al. 2018 RMNH.MOL.341742 RMNH.MOL.341721, RMNH.MOL.341723, RMNH.MOL.341737, AGD344-17 - AGD344-17, AGD344-17, Atlanta tokiokai Indian SN105 4 8.02 67.08 x x x x RMNH.MOL.341738, AGD350-17 (7) AGD350-17 (2) AGD350-17 (2) RMNH.MOL.341739, Wall-Palmer et al. 2018 RMNH.MOL.341740, + New RMNH.MOL.341743 RMNH.MOL.341719, RMNH.MOL.341720, AGD351-17 - Atlanta tokiokai Indian SN105 8 4.38 67.00 x RMNH.MOL.341725, AGD355-17 (5) RMNH.MOL.341727, Wall-Palmer et al. 2018 RMNH.MOL.341729, RMNH.MOL.341722, AGD356-17 - RMNH.MOL.341724, Atlanta tokiokai Indian SN105 19 -2.95 66.99 x x AGD357-17 (1) AGD359-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341726, + New RMNH.MOL.341728, Wall-Palmer et al. 2018 Atlanta tokiokai Indian VANC 24 -13.21 104.66 x x AGD360-17 (1) AGD360-17 (1) RMNH.MOL.341755 + New Wall-Palmer et al. 2018 Atlanta tokiokai Pacific ACAS 14 32.86 149.52 x x AGD318-17 (1) AGD318-17 (1) RMNH.MOL.341756 + New

Atlanta tokiokai Pacific KH1110 8 -22.79 -158.10 x AGD327-17 (1) RMNH.MOL.341767 Wall-Palmer et al. 2018 RMNH.MOL.341761, AGD328-17 - AGD330-17, Atlanta tokiokai Pacific KH1110 15 -23.00 -119.27 x x x x AGD330-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341763, AGD330-17 (3) AGD328-17 (2) + New RMNH.MOL.341764 AGD331-17 - RMNH.MOL.341765, Atlanta tokiokai Pacific KH1110 18 -30.00 -107.00 x AGD332-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341766 AGD333-17 - Wall-Palmer et al. 2018 RMNH.MOL.341768, Atlanta tokiokai Pacific KH1110 21 -23.00 -100.00 x x x AGD333-17 (1) AGD333-17 (1) AGD334-17 (2) + New RMNH.MOL.341762

Atlanta tokiokai Pacific KOK1703 5 22.65 -157.69 x x ATCP091-19 (1) ATCP091-19 (1) New RMNH.MOL.341744 ATCP092-19, ATCP092-19, RMNH.MOL.341745, Atlanta tokiokai Pacific SO255 57 -29.95 -178.73 x x x x ATCP092-19 (1) ATCP096-19 (2) ATCP096-19 (2) New RMNH.MOL.341749

Atlanta tokiokai Pacific SO255 73 -28.13 179.02 x x ATCP098-19 (1) ATCP098-19 (1) New RMNH.MOL.341751 ATCP094-19, RMNH.MOL.341747, Atlanta tokiokai Pacific SO255 80 -29.10 -179.72 x x x ATCP094-19 (1) ATCP094-19 (1) ATCP099-19 (2) New RMNH.MOL.341752 ATCP095-19, ATCP095-19, ATCP095-19, RMNH.MOL.341748, Atlanta tokiokai Pacific SO255 100 -28.52 179.59 x x x ATCP100-19 (2) ATCP100-19 (2) ATCP100-19 (2) New RMNH.MOL.341753 ATCP101-19, RMNH.MOL.341750, Atlanta tokiokai Pacific SO255 143 -32.87 -179.78 x x ATCP097-19 (1) ATCP097-19 (2) RMNH.MOL.341754

RMNH.MOL.341779, RMNH.MOL.341780, AGD367-17 - RMNH.MOL.341781, Atlanta turriculata Indian SN105 1 11.89 66.97 x AGD372-17 (6) RMNH.MOL.341782, RMNH.MOL.341783, Wall-Palmer et al. 2018 RMNH.MOL.341775 RMNH.MOL.341784, AGD373-17 - RMNH.MOL.341785, Atlanta turriculata Indian SN105 4 8.02 67.08 x x x AGD373-17 (1) AGD373-17 (1) AGD376-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341776, + New RMNH.MOL.341774

RMNH.MOL.341786, AGD377-17 - RMNH.MOL.341777, Atlanta turriculata Indian SN105 8 4.38 67.00 x AGD380-17 (4) RMNH.MOL.341778, Wall-Palmer et al. 2018 RMNH.MOL.341769 RMNH.MOL.341770, AGD381-17 - RMNH.MOL.341771, Atlanta turriculata Indian SN105 19 -2.95 66.99 x x x x x AGD381-17 (1) AGD381-17 (1) AGD384-17 (4) Wall-Palmer et al. 2018 RMNH.MOL.341772, + New RMNH.MOL.341773 RMNH.MOL.341801, AGD361-17 - AGD362-17 - AGD362-17 - Atlanta turriculata Pacific KH1110 5 -23.00 180.01 x x x Wall-Palmer et al. 2018 RMNH.MOL.341802, AGD363-17 (3) AGD363-17 (2) AGD363-17 (2) + New RMNH.MOL.341797 RMNH.MOL.341798, AGD364-17 - Atlanta turriculata Pacific KH1110 8 -22.79 -158.10 x RMNH.MOL.341799, AGD366-17 (3) Wall-Palmer et al. 2018 RMNH.MOL.341800

Atlanta turriculata Pacific KOK1703 1 22.91 -157.72 x x x x ATCP103-19 (1) ATCP103-19 (1) ATCP103-19 (1) New RMNH.MOL.341788

Atlanta turriculata Pacific KOK1703 3 22.65 -157.69 x x ATCP102-19 (1) ATCP102-19 (1) New RMNH.MOL.341787

Atlanta turriculata Pacific KOK1703 5 22.65 -157.69 x x ATCP104-19 (1) ATCP104-19 (1) New RMNH.MOL.341789

Atlanta turriculata Pacific SO255 57 -29.95 -178.73 x x x x ATCP105-19 (1) ATCP105-19 (1) ATCP105-19 (1) New RMNH.MOL.341790

Atlanta turriculata Pacific SO255 73 -28.13 179.02 x x ATCP106-19 (1) ATCP106-19 (1) New RMNH.MOL.341791 ATCP107-19, ATCP107-19, RMNH.MOL.341792, ATCP107-19, ATCP108-19, ATCP108-19, RMNH.MOL.341793, Atlanta turriculata Pacific SO255 80 -29.10 -179.72 x x x ATCP108-19, New ATCP109-19, ATCP109-19, RMNH.MOL.341794, ATCP110-19 (3) ATCP110-19 (4) ATCP110-19 (4) RMNH.MOL.341795 853 Atlanta turriculata Pacific SO255 100 -28.52 179.59 x ATCP111-19 (1) New RMNH.MOL.341796 854 855

37 AGD389-17 - AGD389-17 - Wall-Palmer et al. 2018 RMNH.MOL.341862, Oxygyrus inflatus A1 Atlantic AMT24 7 27.50 -28.89 x x x AGD390-17 (1) AGD390-17 (2) AGD390-17 (2) + New RMNH.MOL.341863 Wall-Palmer et al. 2018 Oxygyrus inflatus A1 Atlantic AMT24 9 20.45 -29.27 x x AGD391-17 (1) AGD391-17 (1) RMNH.MOL.341864 + New

Oxygyrus inflatus A1 Atlantic AMT27 9 35.30 -26.28 x x x x ATCP164-19 (1) ATCP164-19 (1) ATCP164-19 (1) New RMNH.MOL.341861

Oxygyrus inflatus A1 Atlantic AMT27 37 -6.87 -25.04 x x ATCP162-19 (1) ATCP162-19 (1) New RMNH.MOL.341859

Oxygyrus inflatus A1 Atlantic AMT27 49 -27.58 -25.19 x x x x x ATCP163-19 (1) ATCP163-19 (1) ATCP163-19 (1) New RMNH.MOL.341860 Wall-Palmer et al. 2018 Oxygyrus inflatus A2 Pacific KH1110 8 -22.79 -158.10 x x x AGD399-17 (1) AGD399-17 (1) AGD399-17 (1) RMNH.MOL.341869 + New AGD403-17 - AGD403-17 - Wall-Palmer et al. 2018 RMNH.MOL.341870, Oxygyrus inflatus A2 Pacific KH1110 18 -30.00 -107.00 x x x x AGD403-17 (1) AGD404-17 (2) AGD404-17 (2) + New RMNH.MOL.341871

Oxygyrus inflatus A2 Pacific SO255 57 -29.95 -178.73 x ATCP166-19 (1) New RMNH.MOL.341866

Oxygyrus inflatus A2 Pacific SO255 73 -28.13 179.02 x x ATCP167-19 (1) ATCP167-19 (1) New RMNH.MOL.341867

Oxygyrus inflatus A2 Pacific SO255 80 -29.10 -179.72 x x x x ATCP168-19 (1) ATCP168-19 (1) ATCP168-19 (1) New RMNH.MOL.341868

Oxygyrus inflatus Pacific SO255 100 -28.52 179.59 x ATCP188-19 (1) RMNH.MOL.341857

Oxygyrus inflatus A2 Pacific SO255 143 -32.87 -179.78 x x x ATCP165-19 (1) ATCP165-19 (1) ATCP165-19 (1) New RMNH.MOL.341865

RMNH.MOL.341872, AGD392-17 - AGD392-17 - Oxygyrus inflatus B Atlantic AMT24 14 3.80 -25.78 x x x x x AGD393-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341873, AGD394-17 (3) AGD393-17 (2) + New RMNH.MOL.341874 RMNH.MOL.341875, AGD395-17 - Oxygyrus inflatus B Atlantic AMT24 18 -11.04 -25.05 x x AGD396-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341876, AGD397-17 (3) + New RMNH.MOL.341877

Oxygyrus inflatus B Atlantic AMT27 33 -0.72 -24.97 x x ATCP169-19 (1) ATCP169-19 (1) New RMNH.MOL.341878

Oxygyrus inflatus B Atlantic AMT27 37 -6.87 -25.04 x x x x ATCP170-19 (1) ATCP170-19 (1) ATCP170-19 (1) New RMNH.MOL.341879

RMNH.MOL.341883, AGD406-17 - Oxygyrus inflatus C Indian SN105 4 8.02 67.08 x x x x x AGD406-17 (1) AGD406-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341884, AGD408-17 (3) + New RMNH.MOL.341885 RMNH.MOL.341886, AGD409-17 - Oxygyrus inflatus C Indian SN105 8 4.38 67.00 x RMNH.MOL.341887, AGD411-17 (3) Wall-Palmer et al. 2018 RMNH.MOL.341888 RMNH.MOL.341880, AGD412-17 - Oxygyrus inflatus C Indian SN105 19 -2.95 66.99 x x x AGD413-17 (1) AGD413-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341881, AGD414-17 (3) + New RMNH.MOL.341882 Wall-Palmer et al. 2018 Oxygyrus inflatus C Pacific KM1109 9 21.33 -158.35 x x x x AGD405-17 (1) AGD405-17 (1) AGD405-17 (1) RMNH.MOL.341891 + New

Oxygyrus inflatus C Pacific KH1110 2 -23.00 160.00 x AGD398-17 (1) RMNH.MOL.341892 Wall-Palmer et al. 2018 AGD401-17 - AGD401-17 - AGD401-17 - Wall-Palmer et al. 2018 RMNH.MOL.341893, Oxygyrus inflatus C Pacific KH1110 8 -22.79 -158.10 x x x x AGDF402-17 (2) AGD402-17 (2) AGD402-17 (2) + New RMNH.MOL.341890

Oxygyrus inflatus C Pacific KOK1703 5 22.65 -157.69 x x ATCP183-19 (1) ATCP183-19 (1) New RMNH.MOL.341889

KU841485 - RMNH.MOL.341901, KU841487/ATCP KU841487/ATCP Protatlanta sculpta Atlantic AMT24 9 20.45 -29.27 x x x KU841487 (GB) Wall-Palmer et al. RMNH.MOL.341894, 359-19 (1) 359-19 (1) (3) 2016b + New RMNH.MOL.341895 KU841488 (GB) Wall-Palmer et al. Protatlanta sculpta Atlantic AMT24 10 17.82 -28.70 x RMNH.MOL.341897 (1) 2016b RMNH.MOL.341910, AGD415-17 - AGD416-17, AGD416-17, RMNH.MOL.341909, Protatlanta sculpta Atlantic AMT24 13 7.29 -26.49 x x x AGD418-17 (4) AGD418-17 (2) AGD418-17 (2) Wall-Palmer et al. 2018 RMNH.MOL.341904, + New RMNH.MOL.341905 KU841489/ATCP KU841489 - RMNH.MOL.341896, 360-19, KU841489/ATCP Protatlanta sculpta Atlantic AMT24 16 -3.89 -25.03 x x x KU841491 (GB) RMNH.MOL.341898, KU841491/ATCP 360-19 (1) Wall-Palmer et al. (3) RMNH.MOL.341899 361-19 (2) 2016b + New RMNH.MOL.341906, AGD419-17 - Protatlanta sculpta Atlantic AMT24 20 -18.32 -25.09 x RMNH.MOL.341907, AGD421-17 (3) Wall-Palmer et al. 2018 RMNH.MOL.341908 KU841492 (GB) Wall-Palmer et al. Protatlanta sculpta Atlantic AMT24 25 -34.18 -27.22 x RMNH.MOL.341900 (1) 2016b

Protatlanta sculpta Atlantic AMT27 9 35.30 -26.28 x x x x x ATCP171-19 (1) ATCP171-19 (1) ATCP171-19 (1) New RMNH.MOL.341902

Protatlanta sculpta Atlantic AMT27 35 -3.54 -25.01 x x x x ATCP172-19 (1) ATCP172-19 (1) ATCP172-19 (1) New RMNH.MOL.341903

RMNH.MOL.341916, RMNH.MOL.341917, KU841493 - KU841493/ATCP KU841493/ATCP RMNH.MOL.341920, KU841497 (GB), 362-19, 362-19, Protatlanta souleyeti Atlantic AMT24 6 31.30 -27.73 x x x x RMNH.MOL.341911, AGD425-17 - KU841495/ATCP KU841495/ATCP RMNH.MOL.341912, AGD426-17 (7) 363-19 (2) 363-19 (2) Wall-Palmer et al. RMNH.MOL.341933, 2016b, 2018 + New RMNH.MOL.341935 KU841500 (GB) Wall-Palmer et al. Protatlanta souleyeti Atlantic AMT24 18 -11.04 -25.05 x RMNH.MOL.341919 (1) 2016b KU841501 - RMNH.MOL.341913, Protatlanta souleyeti Atlantic AMT24 19 -14.66 -25.07 x KU841502 (GB) Wall-Palmer et al. RMNH.MOL.341914 (2) 2016b RMNH.MOL.341931, AGD427-17 - Protatlanta souleyeti Atlantic AMT24 20 -18.32 -25.09 x x x x AGD427-17 (1) AGD427-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341932, AGD429-17 (3) + New RMNH.MOL.341934 KU841506 (GB) Wall-Palmer et al. Protatlanta souleyeti Atlantic AMT24 23 -27.76 -25.01 x RMNH.MOL.341915 (1) 2016b KU841507 (GB) KU841507/ATCP Wall-Palmer et al. Protatlanta souleyeti Atlantic AMT24 25A -34.18 -27.21 x x RMNH.MOL.341918 (1) 391-19 (1) 2016b + New AGD430-17 - Wall-Palmer et al. 2018 RMNH.MOL.341936, Protatlanta souleyeti Atlantic AMT24 27 -40.12 -30.91 x x x x AGD431-17 (1) AGD431-17 (1) AGD431-17 (2) + New RMNH.MOL.341937

Protatlanta souleyeti Atlantic AMT27 9 35.30 -26.28 x x x ATCP176-19 (1) ATCP176-19 (1) ATCP176-19 (1) New RMNH.MOL.341926

Protatlanta souleyeti Atlantic AMT27 17 23.36 -29.22 x x x ATCP177-19 (1) ATCP177-19 (1) ATCP177-19 (1) New RMNH.MOL.341928 856 Protatlanta souleyeti Indian VANC 2 -35.07 24.50 x ATCP190-19 (1) New RMNH.MOL.341930 38 AGD422-17 - AGD422-17 - AGD422-17 - Wall-Palmer et al. 2018 RMNH.MOL.341947, Protatlanta souleyeti Pacific ACAS 8 31.24 173.92 x x x x x AGD423-17 (2) AGD423-17 (2) AGD423-17 (2) + New RMNH.MOL.341950 Wall-Palmer et al. 2018 Protatlanta souleyeti Pacific ACAS 14 32.86 149.52 x x x AGD424-17 (1) AGD424-17 (1) AGD424-17 (1) + New RMNH.MOL.341939 RMNH.MOL.341941, AGD432-17 - AGD432-17 - AGD432-17 - Protatlanta souleyeti Pacific KH1110 2 -23.00 160.00 x x x x Wall-Palmer et al. 2018 RMNH.MOL.341943, AGD434-17 (3) AGD434-17 (3) AGD434-17 (3) + New RMNH.MOL.341945 AGD435-17 - AGD435-17 - Wall-Palmer et al. 2018 RMNH.MOL.341948, Protatlanta souleyeti Pacific KH1110 8 -22.79 -158.10 x x x AGD436-17 (1) AGD436-17 (2) AGD436-17 (2) + New RMNH.MOL.341951 RMNH.MOL.341938, AGD437-17 - AGD438-17 - Protatlanta souleyeti Pacific KH1110 18 -30.00 -107.00 x x x x AGD439-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341940, AGD439-17 (3) AGD439-17 (2) + New RMNH.MOL.341942 RMNH.MOL.341944, AGD440-17 - Protatlanta souleyeti Pacific KH1110 21 -23.00 -100.00 x x AGD440-17 (1) Wall-Palmer et al. 2018 RMNH.MOL.341946, AGD442-17 (3) + New RMNH.MOL.341949

Protatlanta souleyeti Pacific KOK1703 3 22.65 -157.69 x x x ATCP173-19 (1) ATCP173-19 (1) ATCP173-19 (1) New RMNH.MOL.341921

Protatlanta souleyeti Pacific SO255 57 -29.95 -178.73 x x ATCP186-19 (1) ATCP186-19 (1) New RMNH.MOL.341929

Protatlanta souleyeti Pacific SO255 73 -28.13 179.02 x x x ATCP174-19 (1) ATCP174-19 (1) ATCP174-19 (1) New RMNH.MOL.341922 ATCP175-19, RMNH.MOL.341923, Protatlanta souleyeti Pacific SO255 80 -29.10 -179.72 x x ATCP175-19 (1) ATCP189-19 (2) New RMNH.MOL.341927

Protatlanta souleyeti Pacific SO255 100 -28.52 179.59 x x ATCP184-19 (1) ATCP184-19 (1) New RMNH.MOL.341924

Protatlanta souleyeti Pacific SO255 143 -32.87 -179.78 x ATCP185-19 (1) New RMNH.MOL.341925

ATCP156-19, RMNH.MOL.341849, ATCP157-19, RMNH.MOL.341851, Carinaria sp. Indian SN105 1 11.89 66.97 x x x ATCP154-19 (1) ATCP154-19 (1) ATCP154-19, RMNH.MOL.341852, ATCP161-19 (4) New RMNH.MOL.341856 ATCP158-19, RMNH.MOL.341853, Carinaria sp. Indian SN105 4 8.02 67.08 x ATCP159-19, RMNH.MOL.341854, ATCP160-19 (3) New RMNH.MOL.341855 ATCP149-19, RMNH.MOL.341844, ATCP150-19, RMNH.MOL.341845, Carinaria sp. Indian SN105 8 4.38 67.00 x ATCP151-19, RMNH.MOL.341846, ATCP153-19 (4) New RMNH.MOL.341848 ATCP152-19, RMNH.MOL.341842, ATCP152-19, ATCP155-19, ATCP152-19, RMNH.MOL.341843, Carinaria sp. Indian SN105 19 -2.95 66.99 x x x x x ATCP155-19, ATCP147-19, ATCP155-19 (2) RMNH.MOL.341847, ATCP148-19 (3) 857 ATCP148-19 (4) New RMNH.MOL.341850

39 100 Carinaria sp. CO1 8 100 100 Oxygyrus inflatus C

8 Oxygyrus inflatus B

Oxygyrus inflatus A Genus 100 Oxygyrus 82 Protatlanta sculpta 100 100

Protatlanta souleyeti Genus Protatlanta 100 100 Atlanta inflata

Atlanta ariejansseni 100 Atlanta californiensis 100

Atlanta selvagensis

100 100 Atlanta helicinoidea A 100 Atlanta helicinoidea B 100 Atlanta lesueurii 100 100 Atlanta oligogyra C Atlanta Atlanta oligogyra B 100

Atlanta Genus oligogyra A

100 Smaller ornamented species ornamented Smaller Atlanta turriculata

100 Atlanta brunnea Atlanta vanderspoeli Atlanta gaudichaudi 100 Atlanta plana

Atlanta echinogyra 100 Atlanta fragilis

100 Atlanta rosea A Atlanta rosea B 100 Atlanta rosea C

Atlanta peronii A 100 9 Atlanta peronii B Atlanta peronii C 100 Atlanta frontieri

Atlanta 100 100 Atlanta gibbosa

ornamented species Atlanta meteori A - Atlanta meteori B Genus

100 Atlanta inclinata 100

Larger non

Atlanta tokiokai

0.09 858 859 Supplementary Figure 1. Maximum likelihood phylogeny of the family Atlantidae 860 based on cytochrome c oxidase subunit 1 mitochondrial DNA (CO1). Black squares 861 represent bootstrap support >80%. Species groups based on morphology are 862 highlighted with coloured boxes (See Table 2).

40 100 Carinaria sp. 28S Protatlanta sculpta 100

Protatlanta souleyeti Genus Protatlanta

100 Oxygyrus inflatus A, B and C Genus

Oxygyrus inflatus A Oxygyrus

Atlanta inflata 100 Atlanta ariejansseni

Atlanta selvagensis

Atlanta helicinoidea A and B Atlanta

100 Genus Genus 83

Atlanta lesueurii

Smaller ornamented species ornamented Smaller Atlanta 100 Atlanta oligogyra A

100 Atlanta oligogyra C Genus Genus Atlanta oligogyra B

100 Atlanta turriculata species ornamented Summer 100 Atlanta brunnea 100 Atlanta vanderspoeli Atlanta plana Atlanta echinogyra

100 Atlanta fragilis

Atlanta frontieri

Atlanta rosea A and B

98 Atlanta rosea C

Atlanta peronii A and B

Atlanta

ornamented species

-

Atlanta peronii C Genus

Atlanta inclinata

Larger nonLarger Atlanta tokiokai

Atlanta tokiokai

Atlanta meteori B Atlanta meteori A 100 Atlanta gibbosa 863 0.02 864 865 Supplementary Figure 2. Maximum likelihood phylogeny of the family Atlantidae 866 based on the nuclear gene 28S. Poorly supported branches (<60%) have been 867 collapsed to simplify the phylogeny. Black squares represent bootstrap support 868 >80%. Species groups based on morphology are highlighted with coloured boxes 869 (See Table 2).

41 100 Carinaria sp. 18S Protatlanta sculpta

100

Protatlanta souleyeti

Genus Genus Protatlanta

100 Oxygyrus inflatus

Genus Genus Oxygyrus

82 Atlanta inflata Atlanta ariejansseni

Atlanta selvagensis

97 s Atlanta helicinoidea A and B

Atlanta lesueurii

100 Atlanta Atlanta oligogyra A Atlanta oligogyra C

Atlanta oligogyra B Genus Genus

Atlanta turriculata Smaller ornamented specie ornamented Smaller Atlanta brunnea Atlanta vanderspoeli Atlanta gaudichaudi Atlanta plana

Atlanta echinogyra

Atlanta fragilis

Atlanta frontieri

Atlanta rosea A

Atlanta rosea B s Atlanta rosea C

Atlanta peronii A

Atlanta peronii B Atlanta

Atlanta peronii C Genus Genus

Atlanta inclinata Larger non-ornamented specie non-ornamented Larger

Atlanta tokiokai

Atlanta meteori A Atlanta meteori B Atlanta gibbosa

0.01 870 871 Supplementary Figure 3. Maximum likelihood phylogeny of the family Atlantidae 872 based on the nuclear gene 18S. Poorly supported branches (<60%) have been 873 collapsed to simplify the phylogeny. Black squares represent bootstrap support 874 >80%. Species groups based on morphology are highlighted with coloured boxes 875 (See Table 2).

42 876 877 878 Supplementary Figure 4. The distribution of all specimens used in this study 879 demonstrates the global coverage of the dataset. Filled circles represent specimens 880 used for the concatenated gene phylogeny. Data have been visualised using the 881 software QGIS. 882

43