Phenotypes of Salmonella Sdia in Mice and Pigs

Total Page:16

File Type:pdf, Size:1020Kb

Phenotypes of Salmonella Sdia in Mice and Pigs Phenotypes of Salmonella sdiA in Mice and Pigs DISSERTATION Presented in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Graduate School of The Ohio State University By Matthew Charles Swearingen, M.S. The Ohio State University Graduate Program in Microbiology The Ohio State University 2013 Dissertation Committee: Associate Professor Brian Ahmer, Ph.D., Thesis Advisor Professor John Gunn, Ph.D. Professor Daniel Wozniak. Ph.D. Assistant Professor Sheryl Justice, Ph.D. Copyright by Matthew Charles Swearingen 2013 Abstract Bacteria of the Salmonella genera encode a solo LuxR homolog, SdiA, capable of detecting N-acylhomoserine lactone molecules (acyl-HSLs) produced by other bacteria. In response to acyl-HSLs, SdiA activates seven putative host- interaction genes, however, it is unclear if acyl-HSLs exist in mammalian intestines. Previously, we demonstrated that Salmonella enterica serovar Typhimurium could detect Yersinia enterocolitica acyl-HSLs through SdiA in the mouse gut, but acyl-HSL detection did not result in an sdiA fitness phenotype. We attempted to study sdiA phenotypes modeling S. Typhimurium – Y. enterocolitica co-infections in conventional pigs because pigs are a known reservoir of both Salmonella and Yersinia. We measured SdiA activity using an S. Typhimurium in vivo reporter system (RIVET) during an S. Typhimurium – Y. enterocolitica co-infection, and observed SdiA activity occurring in pig mesenteric lymph node samples (MLN). We did not, however, observe an sdiA fitness phenotype. We probed the Human Microbiome Project (HMP) gene catalog and ii reviewed the literature for gut-commensal organisms with the potential to produce acyl-HSLs. We found that Hafnia alvei, Edwardsiella tarda, a Ralstonia species (HMP), and Acinetobacter baumannii, Citrobacter rodentium, Pseudomonas aeruginosa, and Serratia odorifera (literature) all encode LuxI homologs. The human gut microbiome is biologically diverse and densely populated, but the Proteobacteria comprise ≤ 4% of the community. Disturbances in the gut community, however, result in a shift in the community that favors a bloom of proteobacterial species. Indeed, Salmonella-induced gut inflammation results in a proteobacterial bloom. Conventional mice are useful for studying invasive salmonellosis, but do not develop gastroenteritis after S. Typhimurium infection. However, germ-free mice colonized with human gut flora are susceptible to Salmonella infection, and do develop cecal inflammation. Thus, we hypothesized that SdiA detects the commensal proteobacteria bloom that occurs during Salmonella -induced inflammation. To test this hypothesis, we orally gavaged germ-free Swiss Webster mice with the feces of a healthy human donor, and infected them with the S. Typhimurium RIVET reporter. We did not detect SdiA activity in humanized mice, suggesting that acyl-HSLs were not present in the humanized mouse gut. We are currently investigating SdiA activity in mice during Salmonella-induced inflammation in a long-term persistence model in CBA/J mice. We tested the hypothesis that Salmonella-induced inflammation, which causes a proteobacterial bloom, would lead to the overgrowth of proteobacterial members that synthesize acyl-HSLs, and that SdiA would detect the quorum sensing molecules. Using a srgE-tnpR RIVET, we have iii indeed observed SdiA activity for WT Salmonella recovered in the feces of CBA/J mice in the third week of infection, but no activity was observed for the sdiA mutant. Thus far, we can conclude that SdiA is active during long-term persistence in the CBA/J mouse gut, but more work is needed to determine I.) when inflammation begins and ends II.) the mouse gut microbial composition before, during, and after Salmonella-induced inflammation III.) how SdiA activity corresponds to inflammation, and IV.) which member(s) of the gut flora are responsible for acyl-HSL production. iv Dedication This research was conducted whole-heartedly and in the name of science, however, this work is dedicated to the hundreds of mice and pigs that died by my hands. v Acknowledgements I would like to thank my advisor, Dr. Brian M. M. Ahmer, for his guidance and support. Dr. Ahmer encouraged me to think critically & independently, and allowed me to be creative. I would also like to thank my esteemed committee members, Dr. John Gunn, Dr. Dan Wozniak, and Dr. Sheryl Justice for their guidance and support throughout this dissertation. Never before have I met a wittier assemblage of scientists. I would like to sincerely thank my parents Glenn and Rebecca, who have devoted their lives to the success of all of their children, and I am no exception. I would like to thank my siblings Susan, Annie, Mike and Charlie for their love and support. Finally, I thank my best friend and wife, Nikki, who has stood by me through challenging times and shared the joy of the good times. vi Vita October 1984 Born in Steubenville, Ohio May 2007 B.S., Biology, Bethany College Bethany, West Virginia June 2008 - Present. M.S., Ph.D. candidate, The Ohio State University Columbus, Ohio Publications Swearingen MC and Ahmer BMM. Are there acyl-homoserine lactones within mammalian intestines? J. Bacteriol. 2012 Jan 195(2): 173-9. Swearingen MC, Porwollik S, Desai PT, McClelland M, Ahmer BMM. Mouse Virulence of 32 Strains of Salmonella . PLoS ONE 2012 7(4): e36043. doi:10.1371/journal.pone.0036043 Dyszel JL, Smith JN, Lucas DE, Soares JA, Swearingen MC, Vross MA, Young GM, Ahmer BM. Salmonella enterica serovar Typhimurium can detect acyl homoserine lactone production by Yersinia enterocolitica in mice. J Bacteriol. 2010 Jan;192(1):29-37. Dyszel JL, Soares JA, Swearingen MC, Lindsay A, Smith JN, Ahmer BM. E. coli K-12 and EHEC genes regulated by SdiA. PLoS One. 2010 Jan 28;5(1):e8946. Fields of Study: Microbiology vii Table of Contents Abstract ................................................................................................................ ii Dedication ............................................................................................................ v Acknowledgements ............................................................................................ vi Vita ...................................................................................................................... vii Table of Contents ............................................................................................. viii List of Figures ...................................................................................................... x List of Tables ...................................................................................................... xii List of Abbreviations ........................................................................................ xiii 1. Introduction ...................................................................................................... 1 1.1 Significance ................................................................................................................. 1 1.2 Bacterial Quorum Sensing Phenomena ...................................................................... 2 1.3 Gram Negative Bacterial Quorum Sensing ................................................................. 3 1.3.1 LuxI-LuxR type quorum sensing systems .................................................... 3 1.3.2 LuxI-type enzymes synthesize HSLs ........................................................... 5 1.3.3 LuxR homologous transcription factors ........................................................ 7 1.4 Quorum Sensing Mediated Pathogenicity ................................................................. 10 1.5 Escherichia coli sdiA ................................................................................................. 12 1.6 Salmonella sdiA ........................................................................................................ 15 1.3.1 Salmonella eavesdropping ......................................................................... 19 2. Virulence of 32 Salmonella strains in mice ................................................. 24 2.1 Abstract ..................................................................................................................... 25 2.3 Results ...................................................................................................................... 28 2.3.1 Mouse virulence assays ............................................................................. 28 2.3.2 Fecal shedding and assessment of cross-protection ................................. 28 2.4 Discussion ................................................................................................................. 30 2.5 Methods .................................................................................................................... 33 2.5.1 Ethics statement ......................................................................................... 33 2.5.2 Bacterial strains and media ........................................................................ 33 2.5.3 Mouse virulence and fecal shedding .......................................................... 33 viii 2.5.4 LD50 determinations .................................................................................... 34 3. The contribution of sdiA to Salmonella fitness in pigs and mice ............. 45 3.1 Abstract ..................................................................................................................... 46
Recommended publications
  • The Gut Microbiota of the Egyptian Mongoose As an Early Warning Indicator of Ecosystem Health in Portugal
    International Journal of Environmental Research and Public Health Article The Gut Microbiota of the Egyptian Mongoose as an Early Warning Indicator of Ecosystem Health in Portugal Mónica V. Cunha 1,2,3,* , Teresa Albuquerque 1, Patrícia Themudo 1, Carlos Fonseca 4, Victor Bandeira 4 and Luís M. Rosalino 2,4 1 National Institute for Agrarian and Veterinary Research (INIAV, IP), Wildlife, Hunting and Biodiversity R&D Unit, 2780-157 Oeiras, Portugal; [email protected] (T.A.); [email protected] (P.T.) 2 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] 3 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal 4 Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; [email protected] (C.F.); [email protected] (V.B.) * Correspondence: [email protected]; Tel.: +351-214-403-500 Received: 1 April 2020; Accepted: 27 April 2020; Published: 29 April 2020 Abstract: The Egyptian mongoose is a carnivore mammal species that in the last decades experienced a tremendous expansion in Iberia, particularly in Portugal, mainly due to its remarkable ecological plasticity in response to land-use changes. However, this species may have a disruptive role on native communities in areas where it has recently arrived due to predation and the potential introduction of novel pathogens. We report reference information on the cultivable gut microbial landscape of widely distributed Egyptian mongoose populations (Herpestes ichneumon, n = 53) and related antimicrobial tolerance across environmental gradients.
    [Show full text]
  • Microbiology (Cbcs Structure)
    B.Sc. (HONOURS) MICROBIOLOGY (CBCS STRUCTURE) Proposed Scheme for Choice Based Credit System in B.Sc. Honours in Microbiology Year Semester Core Course Ability Skill enhancement Discipline Specific Generic (14 Papers) enhancement course (SEC)(any 2 Elective Course Elective Course 6 credits compulsory papers) (2 Credits (any 4 papers)(6 (any 4 papers) each course each) credits each (6 credits each) (AECC)(2 papers) (2 credits each) I Paper 1 AECC-1 GE-1/2 Paper 2 Paper 1/2 1 (Any one) II Paper 3 AECC-2 GE-1/2 Paper 3/4 Paper 4 (Any one) III Paper 5 SEC-Paper 1/2 GE-1/2 Paper 6 (Any one) Paper 1/2 2 Paper 7 (Any one) IV Paper 8 SEC-Paper 3/4 GE-1/2 Paper 9 (Any one) Paper 3/4 Paper 10 (Any one) V Paper 11 DSE- Paper 1/2(Any one) Paper 12 DSE- Paper 3/4 (Any one) 3 VI Paper 13 DSE- Paper 5/6 Paper 14 (Any one) DSE- Paper 7/8 (Any one) UNIVERSITY OF NORTH BENGAL Page 1 B.Sc. (HONOURS) MICROBIOLOGY (CBCS STRUCTURE) Overall distribution of credits and marks in B.Sc.(Hons.) In Microbiology Course Total Credits /per Total papers Theory Practical Credits I.Core 14 4 2 14X6=84 Courses II.DSE 4 4 2 4X6=24 III.GE 4 4 2 4X6=24 IV.AECC 2 2 - 2x2=4 V.SEC 2 2 - 2x2=4 Grand 140 total UNIVERSITY OF NORTH BENGAL Page 2 B.Sc. (HONOURS) MICROBIOLOGY (CBCS STRUCTURE) Structure of B.
    [Show full text]
  • XL Agar Base • XLD Agar
    XL Agar Base • XLD Agar clinical evaluations have supported the claim for the relatively Intended Use high efficiency of XLD Agar in the primary isolation ofShigella XL (Xylose Lysine) Agar Base is used for the isolation and and Salmonella.5-9 differentiation of enteric pathogens and, when supplemented with appropriate additives, as a base for selective enteric media. XLD Agar is a selective and differential medium used for the isolation and differentiation of enteric pathogens from clinical XLD Agar is the complete Xylose Lysine Desoxycholate Agar, specimens.10-12 The value of XLD Agar in the clinical laboratory a moderately selective medium recommended for isolation and is that the medium is more supportive of fastidious enteric organ- differentiation of enteric pathogens, especially Shigella species. isms such as Shigella.12 XLD Agar is also recommended for the XLD Agar meets United States Pharmacopeia (USP), European testing of food, dairy products and water in various industrial Pharmacopoeia (EP) and Japanese Pharmacopoeia (JP)1-3 standard test methods.13-17 General Chapter <62> of the USP performance specifications, where applicable. describes the test method for the isolation of Salmonella from nonsterile pharmaceutical products using XLD Agar as the solid Summary and Explanation culture medium.1 A wide variety of media have been developed to aid in the selective isolation and differentiation of enteric pathogens. Due Principles of the Procedure to the large numbers of different microbial species and strains Xylose is incorporated into the medium because it is fermented with varying nutritional requirements and chemical resistance by practically all enterics except for the shigellae.
    [Show full text]
  • The Safety of Ready-To-Eat Meals Under Different Consumer Handling Conditions
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Safety of Ready-to-Eat Meals Under Different Consumer Handling Conditions A thesis presented in partial fulfilment of the requirements for the degree of Master in Food Technology at Massey University, 0DQDZDWnj, New Zealand Fan Jiang 2016 i Abstract Microbial count is an important index to measure the safety status of a food. This trial aimed to determine the safety of eight meals (four meats and four vegetarians) by using the agar plate counting method to measure the populations of total bacteria and specific pathogenic microorganisms during four day’ abusing. The results showed that chicken & lemon sauce, pork & cranberry loaf and lasagne veg can be considered as acceptable after a series of handling steps including heating and holding in different environments. BBQ beef, quiche golden and pie rice & vegetable were all marginal for the microbial load before heating, but afterwards all of them were acceptable. Casserole chickpea and hot pot sausage were in marginal for the microbial load by the end of trial. Keywords: microbial count; eight meals; pathogenic microorganisms ii Acknowledgements I am like to acknowledge my chief supervisor Prof. Steve Flint for his consistent support and guidance. Without his insightful advice, this project would not go smoothly. I learnt a lot from him how to deal with the challenges faced in the research. I am also grateful to Mrs Julia Good at the Microbiology Laboratory for providing me with her expert guidance on the experimental operation.
    [Show full text]
  • Salmonella Species
    MICROBIAL FACTSHEET SERIES ISSUE NO. 1 | SEPTEMBER 2011 Salmonella species 1. What are Salmonella spp.? Salmonella spp. are a group of bacteria which reside in the intestinal tract of human beings and warm blooded animals and are capable of causing disease. They are the second most common cause of bacterial foodborne illness in Ireland (Campylobacter spp. is the most frequent cause). They are facultative anaerobic Gram- negative rods. Salmonella spp. are members of the Enterobacteriaceae group. The genus Salmonella contains 2 species: • Salmonella enterica • Salmonella bongori Salmonella enterica is an important agent of foodborne illness. This species is sub-classified into 6 subspecies of which S. enterica subspecies enterica is the most important for human health. The genus Salmonella can be subdivided into more than 2,400 serotypes. Salmonella enterica subsp. enterica serotype Typhimurium (S. Typhimurium) and Salmonella enterica subsp. enterica serotype Enteritidis (S. Enteritidis) are the most frequently isolated serotypes in humans in Ireland. Serotypes are further sub- divided by their resistance to bacteriophages (phage types or lystotypes), antibiotics or heavy metals; their biochemical characteristics (biovars or biotypes) or their sensitivity to or production of bacteriocins. 2. Growth and Survival Characteristics Table 1. Factors affecting the growth of Salmonella spp. COndITIOnS MInIMuM OpTIMuM MAxIMuM Temperature (ºC) 5.2* 35 – 43 46.2 pH 3.8 7 – 7.5 9.5 Water activity (aw) 0.94 0.99 >0.99 * Most serotypes fail to grow at < 7ºC Salmonella spp. are not particularly heat resistant and most serotypes are killed by normal cooking conditions, i.e. cooking to a core temperature of 75ºC instantaneously or an equivalent time temperature combination, e.g.
    [Show full text]
  • Salmonella Typhimurium Infection Disrupts but Continuous Feeding of Bacillus Based Probiotic Restores Gut Microbiota in Infected Hens Samiullah Khan and Kapil K
    Khan and Chousalkar Journal of Animal Science and Biotechnology (2020) 11:29 https://doi.org/10.1186/s40104-020-0433-7 RESEARCH Open Access Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens Samiullah Khan and Kapil K. Chousalkar* Abstract Background: The gut microbiota plays an important role in the colonisation resistance and invasion of pathogens. Salmonella Typhimurium has the potential to establish a niche by displacing the microbiota in the chicken gut causing continuous faecal shedding that can result in contaminated eggs or egg products. In the current study, we investigated the dynamics of gut microbiota in laying chickens during Salmonella Typhimurium infection. The optimisation of the use of an infeed probiotic supplement for restoration of gut microbial balance and reduction of Salmonella Typhimurium load was also investigated. Results: Salmonella infection caused dysbiosis by decreasing (FDR < 0.05) the abundance of microbial genera, such as Blautia, Enorma, Faecalibacterium, Shuttleworthia, Sellimonas, Intestinimonas and Subdoligranulum and increasing the abundance of genera such as Butyricicoccus, Erysipelatoclostridium, Oscillibacter and Flavonifractor. The higher Salmonella Typhimurium load resulted in lower (P < 0.05) abundance of genera such as Lactobacillus, Alistipes, Bifidobacterium, Butyricimonas, Faecalibacterium and Romboutsia suggesting Salmonella driven gut microbiota dysbiosis. Higher Salmonella load led to increased abundance of genera such as Caproiciproducens, Acetanaerobacterium, Akkermansia, Erysipelatoclostridium, Eisenbergiella, EscherichiaShigella and Flavonifractor suggesting a positive interaction of these genera with Salmonella in the displaced gut microbiota. Probiotic supplementation improved the gut microbiota by balancing the abundance of most of the genera displaced by the Salmonella challenge with clearer effects observed with continuous supplementation of the probiotic.
    [Show full text]
  • Salmonella Bongori Provides Insights Into the Evolution of the Salmonellae
    Salmonella bongori Provides Insights into the Evolution of the Salmonellae Maria Fookes1", Gunnar N. Schroeder2", Gemma C. Langridge1", Carlos J. Blondel3, Caterina Mammina4, Thomas R. Connor1, Helena Seth-Smith1, Georgios S. Vernikos1, Keith S. Robinson2, Mandy Sanders1, Nicola K. Petty1, Robert A. Kingsley1, Andreas J. Ba¨umler5, Sean-Paul Nuccio5,Ine´s Contreras3, Carlos A. Santiviago3, Duncan Maskell6, Paul Barrow7, Tom Humphrey8, Antonino Nastasi9, Mark Roberts10, Gad Frankel2, Julian Parkhill1, Gordon Dougan1, Nicholas R. Thomson1* 1 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom, 2 Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom, 3 Departamento de Bioquı´mica y Biologı´a Molecular, Facultad de Ciencias Quı´micas y Farmace´uticas, Universidad de Chile, Santiago, Chile, 4 Dept. Sciences for Health Promotion ‘‘G. D’Alessandro’’, University of Palermo, Palermo, Italy, 5 Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United State of America, 6 Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 7 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom, 8 National Centre for Zoonosis Research, University of Liverpool, Leahurst Campus, Neston, Wirral, United Kingdom, 9 Dipartimento di Sanita` Publica, Universita` di Firenze, Italy, 10 Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom Abstract The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S.
    [Show full text]
  • View Our Full Water Sampling Vials Product Offering
    TABLE OF CONTENTS Environmental Monitoring 1 Sample Prep and Dilution 8 Dehydrated Culture Media - Criterion™ 12 Prepared Culture Media 14 Chromogenic Media - HardyCHROM™ 18 CompactDry™ 20 Quality Control 24 Membrane Filtration 25 Rapid Tests 26 Lab Supplies/Sample Collection 27 Made in the USA Headquarters Distribution Centers 1430 West McCoy Lane Santa Maria, California Santa Maria, CA 93455 Olympia, Washington 800.266.2222 : phone Salt Lake City, Utah [email protected] Phoenix, Arizona HardyDiagnostics.com Dallas, Texas Springboro, Ohio Hardy Diagnostics has a Quality Lake City, Florida Management System that is certified Albany, New York to ISO 13485 and is a FDA licensed Copyright © 2020 Hardy Diagnostics Raleigh, North Carolina medical device manufacturer. Environmental Monitoring Hardy Diagnostics offers a wide selection of quality products intended to help keep you up to date with regulatory compliance, ensure the efficacy of your cleaning protocol, and properly monitor your environment. 800.266.2222 [email protected] HardyDiagnostics.com 1 Environmental Monitoring Air Sampling TRIO.BAS™ Impact Air Samplers introduced the newest generation of microbial air sampling. These ergonomically designed instruments combine precise air sampling with modern connectivity to help you properly assess the air quality of your laboratory and simplify your process. MONO DUO Each kit includes: Each kit includes: TRIO.BAS™ MONO air sampler, induction TRIO.BAS™ DUO air sampler, battery battery charger and cable, aspirating charger
    [Show full text]
  • Molecular Typing and Evolutionary Relationships of Salmonella Enterica Serovar Typhi
    Molecular typing and evolutionary relationships of Salmonella enterica serovar Typhi Sophie Octavia School of Biotechnology and Biomolecular Sciences The University of New South Wales Australia A thesis submitted for the degree of Doctor of Philosophy March 2008 PLEASE TYPE 1.3.1 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Octavia First name: Sophie Other name/s: PhD in Microbiology Abbreviation for degree as given in the University calendar: School: Biotechnology and Biomolecular Sciences Faculty: Science Title: Molecular typing and evolutionary relationships of Salmonella enterica serovar Typhi Abstract 350 words maximum: (PLEASE TYPE) The evolutionary relationship between Salmonella enterica serovar Typhi, other typhoid-like enteric fever causing serovars and 10 non- Typhoid serovars from S. enterica subspecies I, could not be determined by comparative nucleotide sequences of six genes. Phylogenetic analyses of the dataset showed that the genes of interest underwent frequent recombination, suggesting a low level of clonality within subspecies I of S. enterica. To establish the evolutionary relationships within serovar Typhi, genome-wide Single Nucleotide Polymorphism (SNP) was explored as a marker for both typing purposes and phylogenetic analysis. Thirty eight SNPs were typed in 73 global Typhi isolates, including 18 isolates expressing the special flagellar antigen z66, using restriction enzyme digestion method. The isolates were differentiated into 23 SNP profiles and grouped into four distinct clusters. The z66 isolates were divided into four SNP profiles and were all grouped into one cluster, suggesting a single origin. An alternative SNP typing method using the hairpin real time PCR assay was investigated to type four additional SNPs, termed as biallelic polymorphisms (BiP).
    [Show full text]
  • Detection of Pathogenic Bacteria Staphylococcus Aureus and Salmonella Sp. from Raw Milk Samples of Different Cities of Pakistan
    https://www.scirp.org/journal/ns Natural Science, 2020, Vol. 12, (No. 5), pp: 295-306 Detection of Pathogenic Bacteria Staphylococcus aureus and Salmonella sp. from Raw Milk Samples of Different Cities of Pakistan Syeda Asma Bano1, Munazza Hayat1, Tayyaba Samreen1, Mohammad Asif2, Ume Habiba3, Bushra Uzair4 1Department of Microbiology, University of Haripur, Haripur, Pakistan; 2Pakistan Agricultural Research Council P. & D., Islamabad, Pakistan; 3Department of Wild Life and Management, University of Haripur, Haripur, Pakistan; 4Department of Biosciences, International Islamic University, Islamabad, Pakistan Correspondence to: Syeda Asma Bano, Keywords: Raw Milk, Staphylococcus aureus, Salmonella sp., Mannitol Salt Agar, Xylose Lysine Deoxycholate Agar (XLD) Received: March 22, 2020 Accepted: May 19, 2020 Published: May 22, 2020 Copyright © 2020 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access ABSTRACT Food-borne diseases are the main public health problem throughout the world. Milk is im- portant component of human diet including fats, proteins, vitamins and minerals. It is a best source of calcium and phosphorus. Different types of pathogenic bacteria like S. aureus and Salmonella enter in milk and then multiply, after multiplication they become active in causing diseases. These bacteria create serious problems for human health. This study aimed to isolate and identify pathogenic bacteria Staphylococcus aureus and Salmonella from raw milk samples of different cities of Pakistan. Primary screening of raw milk samples was done on the basis of morphological, cultural and biochemical techniques. The final identification was made using 16SrRNA sequence analysis.
    [Show full text]
  • File:UG-Microbiology CBCS.Pdf
    Semester Wise Microbiology Courses for B. Sc. (Honours) Sem-1 Sem-2 Sem-3 Sem-4 Sem-5 Sem-6 Core CC1 & 2 CC3 & 4 CC5,6 & 7 CC-8,9 &10 CC11 & 12 CC-13 & 14 Courses (CC) 2Th+2P 2Th+2P 3Th+3P 3Th+3P 2T+2P 2T+2P (2X4+2X2=12 (2X4+2X2=12 (3X4+3X2=18 (3X4+3X2=18 (2X4+2X2=12 (2X4+2X2=12 Credits) Credits) Credits) Credits) Credits) Credits) CC1: Introduction CC3: Biochemistry CC5: Virology CC8:Microbial CC11:Food and CC13:Immunology to microbiology CC6: Microbial Genetics Dairy Microbiology CC14:Medical and microbial CC4: Cell Biology physiology and CC9:Environmental CC12:Industrial Microbiology diversity metabolism Microbiology Microbiology CC7:Molecular CC10:Recombinant CC2: Bacteriology Biology DNA Technology Elective Courses: i) Generic 1Th+1P 1Th+1P 1Th+1P 1Th+1P Elective (GE) GE1 GE2 GE3 GE4 (1X4+1X2=6 (1X4+1X2=6 (1X4+1X2=6 (1X4+1X2=6 Credits) Credits) Credits) Credits) ii) Discipline DSE-A* DSE-A* Specific 2Th+2P Any two: 2Th+2P Any two: Elective (2X4+2X2=12 (2X4+2X2=12 Courses Credits) Credits) A1. Microbial A3.Plant Pathology Biotechnology nstrumentation and A2. Advances in Biotechniques Microbiology A4. Biomathematics DSE-B* and Biostatistics B1. Inheritance Biology DSE-B* B2.Microbes in B3. Instrumentation Sustainable and Biotechniques Agriculture and B4. Project Work Development Ability 1Th+0P 1Th+0P Enhance- AECC-1: AECC-2: ment Communicative Environmental Compulsory English Studies Course (2 Credits) (2 Credits) (AECC) Skill 1Th+0P 1Th+0P Enhance- SEC-A SEC-B ment (1X2=2 Credits) (1X2=2Credits) Courses Any one Any one (SEC) 1.Microbial 1.
    [Show full text]
  • Laboratory Methods for the Diagnosis of Epidemic Dysentery and Cholera Centers for Disease Control and Prevention Atlanta, Georgia 1999 WHO/CDS/CSR/EDC/99.8
    WHO/CDS/CSR/EDC/99.8 Laboratory Methods for the Diagnosis of Epidemic Dysentery and Cholera Centers for Disease Control and Prevention Atlanta, Georgia 1999 WHO/CDS/CSR/EDC/99.8 Laboratory Methods for the Diagnosis of Epidemic Dysentery and Cholera Centers for Disease Control and Prevention Atlanta, Georgia 1999 This manual was prepared by the National Center for Infectious Diseases (NCID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA, in cooperation with the World Health Organization Regional Office for Africa, (WHO/AFRO) Harare, Zimbabwe. Jeffrey P. Koplan, M.D., M.P.H., Director, CDC James M. Hughes, M.D., Director, NCID, CDC Mitchell L. Cohen, M.D., Director, Division of Bacterial and Mycotic Diseases, NCID, CDC Ebrahim Malek Samba, M.B.,B.S., Regional Director, WHO/AFRO Antoine Bonaventure Kabore, M.D., M.P.H., Director Division for Prevention and Control of Communicable Diseases, WHO/AFRO The following CDC staff members prepared this report: Cheryl A. Bopp, M.S. Allen A. Ries, M.D., M.P.H. Joy G. Wells, M.S. Production: J. Kevin Burlison, Graphics James D. Gathany, Photography Lynne McIntyre, M.A.L.S., Editor Cover: From top, Escherichia co//O157:H7 on sorbitol MacConkey agar, Vibrio cholerae O1 on TCBS agar, and Shige/la flexneri on xylose lysine desoxycholate agar. Acknowledgments Funding for the development of this manual was provided by the U.S. Agency for International Development, Bureau for Africa, Office of Sustainable Development. This manual was developed as a result of a joint effort by the World Health Organization Regional Office for Africa, WHO Headquarters, and the Centers for Disease Control and Prevention as part of the activities of the WHO Global Task Force on Cholera Control.
    [Show full text]