Detection of Pathogenic Bacteria Staphylococcus Aureus and Salmonella Sp. from Raw Milk Samples of Different Cities of Pakistan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gut Microbiota of the Egyptian Mongoose As an Early Warning Indicator of Ecosystem Health in Portugal
International Journal of Environmental Research and Public Health Article The Gut Microbiota of the Egyptian Mongoose as an Early Warning Indicator of Ecosystem Health in Portugal Mónica V. Cunha 1,2,3,* , Teresa Albuquerque 1, Patrícia Themudo 1, Carlos Fonseca 4, Victor Bandeira 4 and Luís M. Rosalino 2,4 1 National Institute for Agrarian and Veterinary Research (INIAV, IP), Wildlife, Hunting and Biodiversity R&D Unit, 2780-157 Oeiras, Portugal; [email protected] (T.A.); [email protected] (P.T.) 2 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] 3 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal 4 Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; [email protected] (C.F.); [email protected] (V.B.) * Correspondence: [email protected]; Tel.: +351-214-403-500 Received: 1 April 2020; Accepted: 27 April 2020; Published: 29 April 2020 Abstract: The Egyptian mongoose is a carnivore mammal species that in the last decades experienced a tremendous expansion in Iberia, particularly in Portugal, mainly due to its remarkable ecological plasticity in response to land-use changes. However, this species may have a disruptive role on native communities in areas where it has recently arrived due to predation and the potential introduction of novel pathogens. We report reference information on the cultivable gut microbial landscape of widely distributed Egyptian mongoose populations (Herpestes ichneumon, n = 53) and related antimicrobial tolerance across environmental gradients. -
Microbiology (Cbcs Structure)
B.Sc. (HONOURS) MICROBIOLOGY (CBCS STRUCTURE) Proposed Scheme for Choice Based Credit System in B.Sc. Honours in Microbiology Year Semester Core Course Ability Skill enhancement Discipline Specific Generic (14 Papers) enhancement course (SEC)(any 2 Elective Course Elective Course 6 credits compulsory papers) (2 Credits (any 4 papers)(6 (any 4 papers) each course each) credits each (6 credits each) (AECC)(2 papers) (2 credits each) I Paper 1 AECC-1 GE-1/2 Paper 2 Paper 1/2 1 (Any one) II Paper 3 AECC-2 GE-1/2 Paper 3/4 Paper 4 (Any one) III Paper 5 SEC-Paper 1/2 GE-1/2 Paper 6 (Any one) Paper 1/2 2 Paper 7 (Any one) IV Paper 8 SEC-Paper 3/4 GE-1/2 Paper 9 (Any one) Paper 3/4 Paper 10 (Any one) V Paper 11 DSE- Paper 1/2(Any one) Paper 12 DSE- Paper 3/4 (Any one) 3 VI Paper 13 DSE- Paper 5/6 Paper 14 (Any one) DSE- Paper 7/8 (Any one) UNIVERSITY OF NORTH BENGAL Page 1 B.Sc. (HONOURS) MICROBIOLOGY (CBCS STRUCTURE) Overall distribution of credits and marks in B.Sc.(Hons.) In Microbiology Course Total Credits /per Total papers Theory Practical Credits I.Core 14 4 2 14X6=84 Courses II.DSE 4 4 2 4X6=24 III.GE 4 4 2 4X6=24 IV.AECC 2 2 - 2x2=4 V.SEC 2 2 - 2x2=4 Grand 140 total UNIVERSITY OF NORTH BENGAL Page 2 B.Sc. (HONOURS) MICROBIOLOGY (CBCS STRUCTURE) Structure of B. -
XL Agar Base • XLD Agar
XL Agar Base • XLD Agar clinical evaluations have supported the claim for the relatively Intended Use high efficiency of XLD Agar in the primary isolation ofShigella XL (Xylose Lysine) Agar Base is used for the isolation and and Salmonella.5-9 differentiation of enteric pathogens and, when supplemented with appropriate additives, as a base for selective enteric media. XLD Agar is a selective and differential medium used for the isolation and differentiation of enteric pathogens from clinical XLD Agar is the complete Xylose Lysine Desoxycholate Agar, specimens.10-12 The value of XLD Agar in the clinical laboratory a moderately selective medium recommended for isolation and is that the medium is more supportive of fastidious enteric organ- differentiation of enteric pathogens, especially Shigella species. isms such as Shigella.12 XLD Agar is also recommended for the XLD Agar meets United States Pharmacopeia (USP), European testing of food, dairy products and water in various industrial Pharmacopoeia (EP) and Japanese Pharmacopoeia (JP)1-3 standard test methods.13-17 General Chapter <62> of the USP performance specifications, where applicable. describes the test method for the isolation of Salmonella from nonsterile pharmaceutical products using XLD Agar as the solid Summary and Explanation culture medium.1 A wide variety of media have been developed to aid in the selective isolation and differentiation of enteric pathogens. Due Principles of the Procedure to the large numbers of different microbial species and strains Xylose is incorporated into the medium because it is fermented with varying nutritional requirements and chemical resistance by practically all enterics except for the shigellae. -
The Safety of Ready-To-Eat Meals Under Different Consumer Handling Conditions
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Safety of Ready-to-Eat Meals Under Different Consumer Handling Conditions A thesis presented in partial fulfilment of the requirements for the degree of Master in Food Technology at Massey University, 0DQDZDWnj, New Zealand Fan Jiang 2016 i Abstract Microbial count is an important index to measure the safety status of a food. This trial aimed to determine the safety of eight meals (four meats and four vegetarians) by using the agar plate counting method to measure the populations of total bacteria and specific pathogenic microorganisms during four day’ abusing. The results showed that chicken & lemon sauce, pork & cranberry loaf and lasagne veg can be considered as acceptable after a series of handling steps including heating and holding in different environments. BBQ beef, quiche golden and pie rice & vegetable were all marginal for the microbial load before heating, but afterwards all of them were acceptable. Casserole chickpea and hot pot sausage were in marginal for the microbial load by the end of trial. Keywords: microbial count; eight meals; pathogenic microorganisms ii Acknowledgements I am like to acknowledge my chief supervisor Prof. Steve Flint for his consistent support and guidance. Without his insightful advice, this project would not go smoothly. I learnt a lot from him how to deal with the challenges faced in the research. I am also grateful to Mrs Julia Good at the Microbiology Laboratory for providing me with her expert guidance on the experimental operation. -
Salmonella Typhimurium Infection Disrupts but Continuous Feeding of Bacillus Based Probiotic Restores Gut Microbiota in Infected Hens Samiullah Khan and Kapil K
Khan and Chousalkar Journal of Animal Science and Biotechnology (2020) 11:29 https://doi.org/10.1186/s40104-020-0433-7 RESEARCH Open Access Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens Samiullah Khan and Kapil K. Chousalkar* Abstract Background: The gut microbiota plays an important role in the colonisation resistance and invasion of pathogens. Salmonella Typhimurium has the potential to establish a niche by displacing the microbiota in the chicken gut causing continuous faecal shedding that can result in contaminated eggs or egg products. In the current study, we investigated the dynamics of gut microbiota in laying chickens during Salmonella Typhimurium infection. The optimisation of the use of an infeed probiotic supplement for restoration of gut microbial balance and reduction of Salmonella Typhimurium load was also investigated. Results: Salmonella infection caused dysbiosis by decreasing (FDR < 0.05) the abundance of microbial genera, such as Blautia, Enorma, Faecalibacterium, Shuttleworthia, Sellimonas, Intestinimonas and Subdoligranulum and increasing the abundance of genera such as Butyricicoccus, Erysipelatoclostridium, Oscillibacter and Flavonifractor. The higher Salmonella Typhimurium load resulted in lower (P < 0.05) abundance of genera such as Lactobacillus, Alistipes, Bifidobacterium, Butyricimonas, Faecalibacterium and Romboutsia suggesting Salmonella driven gut microbiota dysbiosis. Higher Salmonella load led to increased abundance of genera such as Caproiciproducens, Acetanaerobacterium, Akkermansia, Erysipelatoclostridium, Eisenbergiella, EscherichiaShigella and Flavonifractor suggesting a positive interaction of these genera with Salmonella in the displaced gut microbiota. Probiotic supplementation improved the gut microbiota by balancing the abundance of most of the genera displaced by the Salmonella challenge with clearer effects observed with continuous supplementation of the probiotic. -
Detection of Staphylococcus Aureus and Other Coagulase Positive Staphylococci in Bovine Raw Milk in Khartoum State by Ikhtyar Ah
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace Detection of Staphylococcus aureus and other Coagulase Positive Staphylococci in Bovine Raw Milk in Khartoum State By Ikhtyar Ahmed Hassan Ali B.C.Sc (2003) Supervisor Prof. Mohammed Taha Shigiddi Department of Microbiology Faculty of Veterinary medicine A dissertation submitted to University of Khartoum in partial fulfillment for the requirement of the Degree of Master of Science in Microbiology Department of Microbiology Faculty of veterinary Medicine University of Khartoum 2010 Dedication to my father, mother, brothers and sisters with love I Table of Contents Subject Page Dedication………………………………………………………. I Table of Contents………………………………………………. II List of Figures…………………………………………………… VII List of Table…………………………………………………….. VIII Acknowledgments………………………………………………. IX Abstract…………………………………………………………. X Abstract (Arabic)……………………………………………… XI Introduction…………………………………………………… 1 Chapter One: Literature Review…………………………….. 3 1.1. Health Hazards of Raw Milk…………………………………… 4 1.2. Pathogenic bacteria in milk........................................................ 5 1.3. Microbial quality of raw milk.................................................... 6 1.4. Staphylococci........................................................................... 7 1.4.1. Coagulase positive staphylococci (CPS)……………………… 8 1.4.2. Coagulase negative staphylococci (CNS)……………………… 10 1.5. Staphylococcus aureus………………………………………… 10 1.5.1. Virulence characteristics of S. -
Mannitol Salt Agar, Product Information
MANNITOL SALT AGAR (7143) Intended Use Mannitol Salt Agar is used for the isolation of staphylococci in a laboratory setting. Mannitol Salt Agar is not intended for use in the diagnosis of disease or other conditions in humans. Conforms to Harmonized USP/EP/JP Requirements.1,2,3 Product Summary and Explanation Chapman formulated Mannitol Salt Agar to isolate staphylococci by inhibiting growth of most other bacteria with a high salt concentration.4 Chapman added 7.5% Sodium Chloride to Phenol Red Mannitol Agar, and noted pathogenic strains of staphylococci (coagulase-positive staphylococci) grew luxuriantly and produced yellow colonies with yellow zones. Nonpathogenic staphylococci produced small red colonies with no color change to the surrounding medium. Mannitol Salt Agar is highly selective, and specimens from heavily contaminated sources may be streaked onto this medium without danger of overgrowth.5 Mannitol Salt Agar is recommended for isolating pathogenic staphylococci from specimens, cosmetics, and microbial limit tests.1,2,3,5,6 Principles of the Procedure Enzymatic Digest of Casein, Enzymatic Digest of Animal Tissue, and Beef Extract provide the nitrogen, vitamins, and carbon in Mannitol Salt Agar. D-Mannitol is the carbohydrate source. In high concentrations, Sodium Chloride inhibits most bacteria other than staphylococci. Phenol Red is the pH indicator. Agar is the solidifying agent. Bacteria that grow in the presence of a high salt concentration and ferment mannitol produce acid products, turning the Phenol Red pH indicator from red to yellow. Typical pathogenic staphylococci ferment mannitol and form yellow colonies with yellow zones. Typical non-pathogenic staphylococci do not ferment mannitol and form red colonies. -
Mannitol Salt Agar
MANNITOL SALT AGAR INTENDED USE Remel Mannitol Salt Agar is a solid medium recommended for use in qualitative procedures for selective and differential isolation of staphylococci. SUMMARY AND EXPLANATION In 1942, Koch reported the use of 7.5% sodium chloride as a selective agent for the isolation of staphylococci.1 Chapman confirmed the results of Koch and suggested the addition of 7.5% sodium chloride to phenol red mannitol agar.2 Most strains of coagulase-positive staphylococci grow on Mannitol Salt Agar, producing yellow zones as a result of mannitol fermentation. Coagulase-negative strains of staphylococci produce small colonies with red-colored zones in the surrounding medium. PRINCIPLE Casein and meat peptones supply nitrogen, amino acids, and peptides necessary for bacterial growth. Sodium chloride in a concentration of 7.5% is a selective agent which inhibits many bacteria other than staphylococci. Phenol red is a pH indicator which causes a color change in the medium from red-orange to yellow when acid is produced. Staphylococci colonies that ferment mannitol will be surrounded by a yellow zone, while those that do not ferment mannitol will have a red zone. REAGENTS (CLASSICAL FORMULA)* Sodium Chloride.............................................................. 75.0 g Beef Extract......................................................................1.0 g D-Mannitol....................................................................... 10.0 g Phenol Red.....................................................................25.0 mg Casein Peptone................................................................. 5.0 g Agar................................................................................15.0 g Meat Peptone.................................................................... 5.0 g Demineralized Water..................................................1000.0 ml pH 7.4 ± 0.2 @ 25°C *Adjusted as required to meet performance standards. PROCEDURE 1. Inoculate and streak the specimen as soon as possible after it is received in the laboratory. -
Antibiogram Pattern of Escherichia Coli, Salmonella Spp. and Staphylococcus Spp. Isolates from Broiler Chicken
Nepalese Vet. J. 36: 105 –110 Antibiogram Pattern of Escherichia coli, Salmonella spp. and Staphylococcus spp. Isolates from Broiler Chicken. S. Khanal1*, M. Kandel1, M. P. Shah2 1 Agriculture and Forestry University, Chitwan, Nepal 2Army Equine Breeding Center, Chitwan, Nepal *Corresponding author: [email protected] ABSTRACT This study was conducted on clinical cases of broiler chicken brought at National Avian Disease Investigation Laboratory (NADIL) and Veterinary Teaching Hospital, Agriculture and Forestry University during the period of December, 2018 to April, 2019. The study was aimed to find the antibiogram pattern of Escherichia coli, Salmonella species and Staphylococcus species. A total of 50 ill broiler liver samples were collected and inoculated in Nutrient Agar, XLD agar Mac- Conkey agar, EMB Agar and Mannitol Salt Agar and incubated for 24 hours at 370C. During microbiological examination, prevalence of E.coli was 36 %, Salmonella species was 2% and Staphylococcus species was 8% where as mixed infection was 40%. Antibiogram profile for E. coli isolates were sensitive to Amikacin (88.89%) followed by Colistin (66.67%), Ciprofloxacin (50%), Levofloxacin (42.10%) and Gentamycin (27.78%) while Ceftriaxone (11.11%) and Tetracycline (11.11%) was recorded as least sensitive, for Salmonella species isolates were highly sensitive to Amikacin (100%) and other remaining antibiotics; Ceftriaxone , Gentamicin, Levofloxacin, Ciprofloxacin, Colistin and Tetracycline were observed to be resistant and for Staphylococcus spp. isolates were sensitive to Amikacin (75%) followed by Gentamicin (25%) , Levofloxacin (25%), and Ciprofloxacin (25%) while Tetracycline and Colistin were resistant. In the conclusion, it is strongly recommended to decrease the unethical use of antibiotics to minimize the development of resistance strain of microbes in the future. -
View Our Full Water Sampling Vials Product Offering
TABLE OF CONTENTS Environmental Monitoring 1 Sample Prep and Dilution 8 Dehydrated Culture Media - Criterion™ 12 Prepared Culture Media 14 Chromogenic Media - HardyCHROM™ 18 CompactDry™ 20 Quality Control 24 Membrane Filtration 25 Rapid Tests 26 Lab Supplies/Sample Collection 27 Made in the USA Headquarters Distribution Centers 1430 West McCoy Lane Santa Maria, California Santa Maria, CA 93455 Olympia, Washington 800.266.2222 : phone Salt Lake City, Utah [email protected] Phoenix, Arizona HardyDiagnostics.com Dallas, Texas Springboro, Ohio Hardy Diagnostics has a Quality Lake City, Florida Management System that is certified Albany, New York to ISO 13485 and is a FDA licensed Copyright © 2020 Hardy Diagnostics Raleigh, North Carolina medical device manufacturer. Environmental Monitoring Hardy Diagnostics offers a wide selection of quality products intended to help keep you up to date with regulatory compliance, ensure the efficacy of your cleaning protocol, and properly monitor your environment. 800.266.2222 [email protected] HardyDiagnostics.com 1 Environmental Monitoring Air Sampling TRIO.BAS™ Impact Air Samplers introduced the newest generation of microbial air sampling. These ergonomically designed instruments combine precise air sampling with modern connectivity to help you properly assess the air quality of your laboratory and simplify your process. MONO DUO Each kit includes: Each kit includes: TRIO.BAS™ MONO air sampler, induction TRIO.BAS™ DUO air sampler, battery battery charger and cable, aspirating charger -
File:UG-Microbiology CBCS.Pdf
Semester Wise Microbiology Courses for B. Sc. (Honours) Sem-1 Sem-2 Sem-3 Sem-4 Sem-5 Sem-6 Core CC1 & 2 CC3 & 4 CC5,6 & 7 CC-8,9 &10 CC11 & 12 CC-13 & 14 Courses (CC) 2Th+2P 2Th+2P 3Th+3P 3Th+3P 2T+2P 2T+2P (2X4+2X2=12 (2X4+2X2=12 (3X4+3X2=18 (3X4+3X2=18 (2X4+2X2=12 (2X4+2X2=12 Credits) Credits) Credits) Credits) Credits) Credits) CC1: Introduction CC3: Biochemistry CC5: Virology CC8:Microbial CC11:Food and CC13:Immunology to microbiology CC6: Microbial Genetics Dairy Microbiology CC14:Medical and microbial CC4: Cell Biology physiology and CC9:Environmental CC12:Industrial Microbiology diversity metabolism Microbiology Microbiology CC7:Molecular CC10:Recombinant CC2: Bacteriology Biology DNA Technology Elective Courses: i) Generic 1Th+1P 1Th+1P 1Th+1P 1Th+1P Elective (GE) GE1 GE2 GE3 GE4 (1X4+1X2=6 (1X4+1X2=6 (1X4+1X2=6 (1X4+1X2=6 Credits) Credits) Credits) Credits) ii) Discipline DSE-A* DSE-A* Specific 2Th+2P Any two: 2Th+2P Any two: Elective (2X4+2X2=12 (2X4+2X2=12 Courses Credits) Credits) A1. Microbial A3.Plant Pathology Biotechnology nstrumentation and A2. Advances in Biotechniques Microbiology A4. Biomathematics DSE-B* and Biostatistics B1. Inheritance Biology DSE-B* B2.Microbes in B3. Instrumentation Sustainable and Biotechniques Agriculture and B4. Project Work Development Ability 1Th+0P 1Th+0P Enhance- AECC-1: AECC-2: ment Communicative Environmental Compulsory English Studies Course (2 Credits) (2 Credits) (AECC) Skill 1Th+0P 1Th+0P Enhance- SEC-A SEC-B ment (1X2=2 Credits) (1X2=2Credits) Courses Any one Any one (SEC) 1.Microbial 1. -
Laboratory Methods for the Diagnosis of Epidemic Dysentery and Cholera Centers for Disease Control and Prevention Atlanta, Georgia 1999 WHO/CDS/CSR/EDC/99.8
WHO/CDS/CSR/EDC/99.8 Laboratory Methods for the Diagnosis of Epidemic Dysentery and Cholera Centers for Disease Control and Prevention Atlanta, Georgia 1999 WHO/CDS/CSR/EDC/99.8 Laboratory Methods for the Diagnosis of Epidemic Dysentery and Cholera Centers for Disease Control and Prevention Atlanta, Georgia 1999 This manual was prepared by the National Center for Infectious Diseases (NCID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA, in cooperation with the World Health Organization Regional Office for Africa, (WHO/AFRO) Harare, Zimbabwe. Jeffrey P. Koplan, M.D., M.P.H., Director, CDC James M. Hughes, M.D., Director, NCID, CDC Mitchell L. Cohen, M.D., Director, Division of Bacterial and Mycotic Diseases, NCID, CDC Ebrahim Malek Samba, M.B.,B.S., Regional Director, WHO/AFRO Antoine Bonaventure Kabore, M.D., M.P.H., Director Division for Prevention and Control of Communicable Diseases, WHO/AFRO The following CDC staff members prepared this report: Cheryl A. Bopp, M.S. Allen A. Ries, M.D., M.P.H. Joy G. Wells, M.S. Production: J. Kevin Burlison, Graphics James D. Gathany, Photography Lynne McIntyre, M.A.L.S., Editor Cover: From top, Escherichia co//O157:H7 on sorbitol MacConkey agar, Vibrio cholerae O1 on TCBS agar, and Shige/la flexneri on xylose lysine desoxycholate agar. Acknowledgments Funding for the development of this manual was provided by the U.S. Agency for International Development, Bureau for Africa, Office of Sustainable Development. This manual was developed as a result of a joint effort by the World Health Organization Regional Office for Africa, WHO Headquarters, and the Centers for Disease Control and Prevention as part of the activities of the WHO Global Task Force on Cholera Control.