Download Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Flint River Observer a Frac Special Edition The
1 How it happened is an intriguing tale. Many astronomers considered the change to be a long- THE overdue step in advancing astronomy as a science -- and as many others regarded it as a deception perpetrated by the International Astronomical FLINT RIVER Union (IAU). Curiously, both sides were right. I’ve written about it before, but this Special OBSERVER Edition of the Observer is broader in scope. Written 22 yrs. after the event, it tells both sides of NEWSLETTER OF THE FLINT the story in far greater depth than previously. RIVER ASTRONOMY CLUB (Incidentally, this project began as a brief “This ‘n That” newsletter item about an article that An Affiliate of the appeared in Astronomy Magazine but quickly grew Astronomical League into something much larger. You’ll see what I was writing about on p. 6.) Special Edition October, 2018 -Bill __________________________________________ * * * A FRAC SPECIAL EDITION THE PLUTO QUESTION: What is a Planet? Beginnings. The discovery of Neptune by William Lassell in 1846 brought the solar system’s planet total to eight. However, wobbles in the by Bill Warren orbital paths of Uranus and Neptune led the American astronomer, founder and director of __________________ Lowell Observatory, Percival Lowell, to conclude that a ninth planet -- he called it Planet X – lay Introduction. If you were born before 1990, you somewhere beyond Neptune and was tugging probably remember how upset people were when gravitationally on that planet and Uranus. Lowell Pluto was removed from the solar system’s family died in 1916, but in 1929 Vesto Slipher, his of planets in 1996. -
Tessar and Dagor Lenses
Tessar and Dagor lenses Lens Design OPTI 517 Prof. Jose Sasian Important basic lens forms Petzval DB Gauss Cooke Triplet little stress Stressed with Stressed with Low high-order Prof. Jose Sasian high high-order aberrations aberrations Measuring lens sensitivity to surface tilts 1 u 1 2 u W131 AB y W222 B y 2 n 2 n 2 2 1 1 1 1 u 1 1 1 u as B y cs A y 1 m Bstop ystop n'u' n 1 m ystop n'u' n CS cs 2 AS as 2 j j Prof. Jose Sasian Lens sensitivity comparison Coma sensitivity 0.32 Astigmatism sensitivity 0.27 Coma sensitivity 2.87 Astigmatism sensitivity 0.92 Coma sensitivity 0.99 Astigmatism sensitivity 0.18 Prof. Jose Sasian Actual tough and easy to align designs Off-the-shelf relay at F/6 Coma sensitivity 0.54 Astigmatism sensitivity 0.78 Coma sensitivity 0.14 Astigmatism sensitivity 0.21 Improper opto-mechanics leads to tough alignment Prof. Jose Sasian Tessar lens • More degrees of freedom • Can be thought of as a re-optimization of the PROTAR • Sharper than Cooke triplet (low index) • Compactness • Tessar, greek, four • 1902, Paul Rudolph • New achromat reduces lens stress Prof. Jose Sasian Tessar • The front component has very little power and acts as a corrector of the rear component new achromat • The cemented interface of the new achromat: 1) reduces zonal spherical aberration, 2) reduces oblique spherical aberration, 3) reduces zonal astigmatism • It is a compact lens Prof. Jose Sasian Merte’s Patent of 1932 Faster Tessar lens F/5.6 Prof. -
Cooke Triplet
Cooke triplet Lens Design OPTI 517 Prof. Jose Sasian Cooke triplet • A new design • Enough variables to correct all third– order aberrations • Thought of as an afocal front and an imaging rear • 1896 • Harold Dennis Taylor Prof. Jose Sasian Cooke triplet field-speed trade-off’s 24 deg @ f/4.5 27 deg @ f/5.6 Prof. Jose Sasian Aberration correction • Powers, glass, and separations for: power, axial chromatic, field curvature, lateral color, and distortion. Lens bendings, for spherical aberration, coma, and astigmatism. Symmetry. •Power: yaa ybb ycc ya 2 2 2 •Axial color: ya a /Va yb b /Vb yc c /Vc 0 • Lateral color: ya yaa /Va yb ybb /Vb yc ycc /Vc 0 • Field curvature: a / na b / nb c / nc 0 Prof. Jose Sasian • Crossing of the sagittal and tangential field is an indication of the balancing of third-order, fifth-order astigmatism, field curvature, and defocus. Prof. Jose Sasian The strong power of the first positive lens leads to spherical aberration of the pupil which changes the chief ray high whereby inducing significant higher order aberrations. Y y ay 3 Y 2 y 2 2ay 4 a2 y 6 2 W222 Y 2 W422 ay W222 Prof. Jose Sasian Cooke triplet example from Geiser OE •5 waves scale •visible F1=34 mm F2=-17 mm F3=24 mm 1 STANDARD 23.713 4.831 LAK9 2 STANDARD 7331.288 5.86 STO STANDARD -24.456 0.975 SF5 4 STANDARD 21.896 4.822 5 STANDARD 86.759 3.127 LAK9 6 STANDARD -20.4942 41.10346 IMA STANDARD Infinity From Geiser OE f/4 at +/- 20 deg. -
The Wide Field Cassegrain: Exploring Solution Space Peter Ceravolo Ceravolo Optical Systems [email protected]
The Wide Field Cassegrain: Exploring Solution Space Peter Ceravolo Ceravolo Optical Systems www.ceravolo.com [email protected] Abstract This article illustrates the use of an internal aperture stop in a high speed, wide field Cassegrain optical system. The astrograph features a well corrected and uniformly illuminated focal plane. Opto-mechanical design and manufacturing issues are also discussed. 1. Introduction Of all the conventional astronomical telescope Aperture Stop designs used in amateur astronomy the Cassegrain is the least likely to be considered a candidate for wide field imaging applications. This perception is a hangover from the era of visual observing where minimizing the central obscuration was critical to preserving image fidelity. The resulting long focal length, slow telescopes did not lend themselves to photography. The central obscuration in reflector astrographs need not be so constrained since ground based amateur instruments never achieve diffraction limited performance, primarily due to poor seeing, image sampling limitations and tracking errors. Cassegrain astrographs with a large obscuration (50% of the aperture diameter or greater) and a fast primary will permit a relatively short overall focal length, a wider field of view and more uniform focal plane illumination. While the larger obscuration does reduce system through put, the light loss can be compensated for with longer exposures. Figure 1, internal stop Cassegrain astrograph In addition to the benefits of a larger obscuration, allowing the aperture stop position to move from the primary mirror to a more central location in the Cassegrain optical system offers the potential to achieve very wide fields of view in a fast system 2. -
Comets in UV
Comets in UV B. Shustov1 • M.Sachkov1 • Ana I. G´omez de Castro 2 • Juan C. Vallejo2 • E.Kanev1 • V.Dorofeeva3,1 Abstract Comets are important “eyewitnesses” of So- etary systems too. Comets are very interesting objects lar System formation and evolution. Important tests to in themselves. A wide variety of physical and chemical determine the chemical composition and to study the processes taking place in cometary coma make of them physical processes in cometary nuclei and coma need excellent space laboratories that help us understand- data in the UV range of the electromagnetic spectrum. ing many phenomena not only in space but also on the Comprehensive and complete studies require for ad- Earth. ditional ground-based observations and in-situ exper- We can learn about the origin and early stages of the iments. We briefly review observations of comets in evolution of the Solar System analogues, by watching the ultraviolet (UV) and discuss the prospects of UV circumstellar protoplanetary disks and planets around observations of comets and exocomets with space-born other stars. As to the Solar System itself comets are instruments. A special refer is made to the World Space considered to be the major “witnesses” of its forma- Observatory-Ultraviolet (WSO-UV) project. tion and early evolution. The chemical composition of cometary cores is believed to basically represent the Keywords comets: general, ultraviolet: general, ul- composition of the protoplanetary cloud from which traviolet: planetary systems the Solar System was formed approximately 4.5 billion years ago, i.e. over all this time the chemical composi- 1 Introduction tion of cores of comets (at least of the long period ones) has not undergone any significant changes. -
J'/ 7 ~,J,,F42~OD'/ 4~Z T 0014- AL4 '4 N 444 4 V-~ V~'4,,/C4D4 ;/L X' 3* ''(N I /I -- -K
4'T,4 "~ J, itI' ~ " 4 4~~~~~~t f"- N'. 4 tV34 '' '4~~~~~~~r "''',) m/4' - 4 / .,~~~~t 4f {'NW ' I, '~ / . 4 4'~~~~~-' ~~~~-"" ' ' A '' " I \ ' o A4 j'/ 7 ~,j,,f42~OD'/ 4~z t 0014- AL4 '4 N 444 4 v-~ v~'4,,/C4D4 ;/l x' 3* ''(N I /I -- -K . 2 . /-, -, 1 '> 97 (; ' '-I' -4 )-' Ni\iS ,L -I-' "1/ iT h 'i l I .=.,, ca ec~- fr ain ivsoOd* .: 25 C , '-A- ", ---.- a a en .- -_ . - ; . - - '1 (N, -< I' 4 -I --. N ?- j -. Thspprpeet h veso h uhrs adde o eesr .I ~rf~c :";athethe vieio oddr Spce ight Cenbitr o: NASA r 7-ref e.'th viGods th~ar ddSpace', Fligt . enter. .. orN-/- " -- -' -- I / -I- _ . - " . -,t -" , *-*- . : TABLE OF CONTENTS Page LIST OF ATTENDEES 3 FOREWORD 6 INTRODUCTION TO SPACELAB/SHUTTLE 8 ASTRONOMY PAYLOADS 12 I. A Very High Resolution Spectrograph for Interstellar Matter 15 Research - E. Jenkins and D. York, Princeton University Observatory 2. Schmidt Camera/Spectrograph for Far Ultraviolet Sky Survey 20 G. Carruthers and C. Opal, Naval Research Laboratory 3. UV Telescope with Echelle Spectrometer - Y. Kondo and 25 C. Wells, Johnson Spacecraft Center 4. Small Infrared Cryogenic Telescope - R. Walker, Air Force 29 Cambridge Research Laboratory 5. Two EUV Experiments - S. Bowyer, University of California 33 at Berkeley 6. Ultraviolet Photometer - A. Code and R. Bless, University 39 of Wisconsin 7. Schwarzschild Camera - A. Smith, Goddard Space Flight Center 43 8. Three Rocket-Class Payloads for Spacelab - C. Lillie, 49 University of Colorado 9. Additional Payloads 57 ASTRONOMY MISSION STUDIES - W. Scull, Goddard Space Flight Center 60 SMALL INSTRUMENT POINTING SYSTEM (SIPS) - C. -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
May Term 2008 Astronomy Trip Results Michael Herriage, Jeanette Schofield, & Aaron Ward Department of Physics, Mcmurry University, Abilene, Texas 79697
May Term 2008 Astronomy Trip Results Michael Herriage, Jeanette Schofield, & Aaron Ward Department of Physics, McMurry University, Abilene, Texas 79697 Introduction Astraea Pluto Saturn In May of 2008, Dr. Keith and three McMurry students Astraea is an asteroid in the main asteroid belt. The Pluto was discovered in 1930 by Clyde Tombaugh at Saturn is the sixth planet from the Sun and is classified travelled to Flagstaff, Arizona to observe the stars for a asteroid was first discovered in 1845 by Karl Ludwig Lowell Observatory. While on the trip, we stopped by Lowell as a gas giant. One of Saturn's most distinctive features week on the National Undergraduate Research Hencke. We observed Astraea because its well-known Observatory and were able to see the actual device that are its rings which are composed of many small particles Observatory’s (NURO) 31" Telescope. We spent our nights location allowed us to easily practice locating a moving Tombaugh used to discover Pluto. The device, which is orbiting the planet. at the observatory taking data and went sightseeing during object. called a blink comparator, is shown below. We took images of Saturn to get practice in stacking the day. For four of the five nights we were there, we used The image on the right was taken approximately three images. Normally, images taken of Saturn are sharper and the telescope to take images of the night sky (on the fifth hours after the image on the left. By blinking the images do not have a yellow tint. The reason why are images are night, it snowed and we were unable to collect any back and forth quickly, we were able to locate the so fuzzy is due to the combination of a cloud cover the night data). -
Triplet Design Following Geary's Procedure
Optical System Design – S15 Triplets Triplet Design Following Geary’s Procedure (J. M. Geary, Intro. To Lens Design with Practical Zemax Examples, ch. 30, Willman-Bell, 2002) 1) For “rear half” = rear positive equi-convex element & plano-concave negative element, with the aperture stop located at the plano surface, Use equations from ch. 28 to calculate powers (half power for negative element) and lens separation. 1 2 3 4 2) Insert thin-lens solution into Zemax, add realistic thicknesses, and optimize with EFFL = desired EFL value and AXCL = 0 (variables on lens separation and curvatures of surface 2 & 3, with surface 4 slaved to 3. 3) Minimize spherical through lens bending. Let surfaces 2 and 3 vary (4 slaved to 3), but maintain the power of each element by holding EFLY equal to the initial value. Allow the airspace to vary over a reasonably limited range. 4) Add field angle (typically ~ 5°) and aperture stop value. Add COMA and ASTI to the merit function editor, turn off the EFLYs (weight = 0), and vary curvatures 2, 3 and the airspace to minimize astigmatism (weight = 0 for COMA, weight = 1 for ASTI). Use FCGT once for each field angle. Leave COMA to be dealt with through symmetry. 5) Slave the back half to the “front half” = front positive equi-convex & concave-plano negative elements (AS between plano surfaces). 6) Run initial optimization using EFFL = target value and AXCL = 0. Activate TRAC, set variables on positive-element surfaces and separations, and optimize iteratively (increase field if needed). 7) Unslave front & back halves and optimize to obtain best performance (often move stop outside). -
Journey to the Edge of the Solar System
Home / Space/ Special Reports Journey to the edge of the solar system History of a space discovery The existence of a planet beyond the orbit of Neptune had been predicted since the 1840s. Astronomers of the time, in fact, thought there was another large planet as yet unknown, situated on the edge of the Solar System, responsible for the disturbances and changes to the orbits of Uranus and Neptune. Complex mathematical calculations based on the known mass of Neptune showed, in fact, that its orbit, as well as that of nearby Uranus, did not perfectly correspond to the predictions on the motion of bodies in the Solar System. The search for the ninth planet started seriously in the twentieth century. Percival Lowell, founder astronomer (1894) and director of the Observatory in Flagstaff (Lowell Observatory), Arizona, dedicated the last eight years of his life to the search for Planet X, a phrase used to indicate a planet beyond Neptune. Lowell died in 1916, without being able to prove the existence of the missing planet. We had to wait another 14 years and more precisely 18 February 1930 to demonstrate the existence of Planet X. On that day, the twenty four year old Clyde Tombaugh was intent on observing celestial bodies with a blink comparator, an instrument that allows images of the sky obtained at different times to be compared. Clyde Tombaugh, a Kansas farmer with a great passion for astronomy, while never having carried out any formal studies on the subject, had got a job at the Lowell Observatory, thanks to drawings of Mars and Jupiter, which he had made using a telescope he had built with pieces of old farm machinery. -
MINIMO: a Search for Mini Proper Motion Stars in the Southern Sky
Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Theses Department of Physics and Astronomy 5-3-2007 MINIMO: A Search for Mini Proper Motion Stars in the Southern Sky Charlie Thomas Finch Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_theses Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Finch, Charlie Thomas, "MINIMO: A Search for Mini Proper Motion Stars in the Southern Sky." Thesis, Georgia State University, 2007. https://scholarworks.gsu.edu/phy_astr_theses/2 This Thesis is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. MINIMO: A SEARCH FOR MINI PROPER MOTION STARS IN THE SOUTHERN SKY by Charlie T. Finch Under the Direction of Todd J. Henry Abstract I report 1684 new proper motion systems in the southern sky (declinations ¡90± to ¡47±) with 000:50 yr¡1 > ¹ ¸ 000:18 yr¡1. This e®ort is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion search to lower proper motions than reported in Hambly et al. (2004); Henry et al. (2004); Subasavage et al. (2005a,b). Distance estimates are presented for the new systems, assuming that all stars are on the main sequence. I ¯nd that 34 systems are within 25 pc, including three systems | SCR 0838-5855, SCR 1826-6542, and SCR 0630-7643AB | anticipated to be within 10 pc. -
The Search for Planet X Transcript
The Search for Planet X Transcript Date: Thursday, 22 October 2009 - 12:00AM Location: Museum of London The Search for Planet X Professor Ian Morison The Hunt for Planet X This is a story that spanned over 200 years: from the discovery that Uranus was not following its predicted orbit and was thus presumably being perturbed by another, as yet undiscovered planet, Neptune, followed by the search for what Percival Lowell called "Planet X" that would lie beyond Neptune (where X means unknown), and finally the search for a tenth planet beyond Pluto (where X means ten as well). As we shall see, the search for a tenth planet effectively ended in August 2006 when Pluto was demoted from its status as a planet and the number of planets in the solar system was reduced to eight. Uranus Uranus was the first planet to have been discovered in modern times and though, at magnitude ~5.5, it is just visible to the unaided eye without a telescope it would have been impossible to show that it was a planet rather than a star, save for its slow motion across the heavens. Even when telescopes had come into use, their relatively poor optics meant that it was charted as a star many times before it was recognised as a planet by William Herschel in 1781. William Herschel had come to England from Hanover in Germany where his father, Isaac, was an oboist in the band of the Hanoverian Foot Guards. As well as giving his third child, Freidrich Wilhelm Herschel, a thorough grounding in music he gave him an interest in the heavens.