13 Contraction

Total Page:16

File Type:pdf, Size:1020Kb

13 Contraction 13 Contraction Contents 13.1 Preliminaries 233 13.2 In¨on¨u–Wigner Contractions 233 13.3 Simple Examples of In¨on¨u–Wigner Contractions 234 13.3.1 The Contraction SO(3) → ISO(2) 234 13.3.2 The Contraction SO(4) → ISO(3) 235 13.3.3 The Contraction SO(4, 1) → ISO(3, 1)237 13.4 The Contraction U(2) → H4 239 13.4.1 Contraction of the Algebra 239 13.4.2 Contraction of the Casimir Operators 240 13.4.3 Contraction of the Parameter Space 240 13.4.4 Contraction of Representations 241 13.4.5 Contraction of Basis States 241 13.4.6 Contraction of Matrix Elements 242 13.4.7 Contraction of BCH Formulas 242 13.4.8 Contraction of Special Functions 243 13.5 Conclusion 244 13.6 Problems 245 New Lie groups can be constructed from old by a process called group contraction. Contraction involves reparameterization of the Lie group’s parameter space in such a way that the group multiplication properties, or commutation relations in the Lie algebra, remain well defined even in a singular limit. In general, the properties of the original Lie group have well-defined limits in the contracted Lie group. For example, the parame- ter space for the contracted group is well-defined and noncompact. Other properties with well-defined limits include: Casimir operators; basis states of representations; matrix elements of operators; and Baker–Campbell– Hausdorff formulas. Contraction provides limiting relations among the special functions of mathematical physics. We describe a particularly sim- ple class of contractions — the In¨on¨u–Wigner contractions — and treat one example of a contraction not in this class. 232 13.1 Preliminaries 233 13.1 Preliminaries It is possible to construct new Lie algebras from old by a certain lim- iting process called contraction. In this process a new set of basis vectors Yr is related to the initial set of basis vectors Xi through a i parameter-dependent change of basis: Yr = Mr (ǫ)Xi. The structure t constants have the transformation properties of a tensor: Crs (ǫ) = i j k 1 t Mr (ǫ)Ms (ǫ)Cij (M(ǫ)− )k (cf. Eq. 4.22). As long as the change of basis transformation is nonsingular the Lie algebra is unchanged. t If the transformation becomes singular, the structure constants Crs (ǫ) may still converge to a well-defined limit. It is often the case that the structure constants t t Crs (0) = lim Crs (ǫ) (13.1) ǫ 0 → exist and define a Lie algebra that is different from the original Lie algebra. 13.2 In¨on¨u–Wigner Contractions If a Lie algebra g has a subalgebra h and a complementary subspace p with commutation relations of the form g = h + p [h, h] h subalgebra ⊆ (13.2) [h, p] p this is important ⊆ [p, p] h + p this is always true ⊆ then the In¨on¨u–Wigner contraction of g g′ involves the following change → of basis transformation h I 0 h ′ = dim(h) (13.3) p 0 ǫ I p ′ dim(p) where dim(h) is the dimension of the subalgebra h. The commutation relations of g′ are well-defined for all values of ǫ, including the singular limit ǫ 0: → [h′, h′] = [h, h] h ⊆ [h′, p′] = [h,ǫp] = ǫ [h, p] limǫ 0 ǫp p′ 2 → 2 → [p′, p′] = [ǫp,ǫp] = ǫ [p, p] limǫ 0 ǫ (h + p) 0 → → (13.4) In the limit ǫ 0 the contracted algebra g′ is the semidirect sum of the → original subalgebra h and the subalgebra p′, where p′ is commutative and [h, p′] p′: ⊆ 234 Contraction g = h + p p p′ = ǫp g′ = h + p′ → [h, h] h [h, h] h ⊆ −→ ⊆ (13.5) [h, p] p [h, p′] p′ ⊆ ⊆ [p, p] h + p [p′, p′] = 0 ⊆ 13.3 Simple Examples of In¨on¨u–Wigner Contractions In this section we illustrate several facets of In¨on¨u–Wigner contractions by contracting three different orthogonal groups. 13.3.1 The Contraction SO(3) ISO(2) → The infinitesimal generators of the Lie group SO(3) may be chosen as L = X = x ∂ x ∂ = ǫ x ∂ , with L and L defined by cyclic 1 23 2 3 − 3 2 1jk j k 2 3 permutation. The commutation relations are [L ,L ] = L 1 2 − 3 [L ,L ] = L (13.6) 2 3 − 1 [L ,L ] = L 3 1 − 2 Under contraction with respect to the subalgebra of rotations about the z-axis (infinitesimal generator L3) the operators L1 and L2 go to ǫL ǫ=1/R (1/R)L P 1 1 − 2 (13.7) ǫL −→ (1/R)L → +P 2 2 1 The commutation relations of the contracted algebra, ISO(2) = E(2), are [L , P ] = P 3 1 − 2 [L3, P2] = +P1 (13.8) [P1, P2] = 0 The three operators L3, P1, P2 generate the group of Euclidean motions of the plane, E(2), or inhomogeneous orthogonal transformations in the plane R2, ISO(2). This group consists of rotations about the z-axis, generated by L3, and displacements of the origin in the x- and y- direc- tions, generated by P1 = ∂1 and P2 = ∂2. To verify this interpretation we can imagine the group SO(3) acting on the sphere x2 + y2 + z2 = R2 in the neighborhood of the north pole 13.3 Simple Examples of In¨on¨u–Wigner Contractions 235 (0, 0, R), as shown in Fig. 13.1. An element in the Lie algebra so(3) can be written in the form L L θ L + θ L + θ L ( d ) 1 + (+d ) 2 + θ L (13.9) 1 1 2 2 3 3 −→ − 2 R 1 R 3 3 In the limit R we find → ∞ 1 L = 1 (x2∂ x3∂ )= 1 (y∂/∂z R∂/∂y) ∂/∂y = ∂ = P R 1 R 3 − 2 R − → − − 2 − 2 1 L = 1 (x3∂ x1∂ )= 1 (R∂/∂x x∂/∂z) +∂/∂x =+∂ =+P R 2 R 1 − 3 R − → 1 1 (13.10) The contracted limits of the operators L1 and L2 in the limit of a sphere of very large radius are operators P , +P describing displacements in − 2 1 the y and +x directions. In addition, the parameters θ ,θ and d , d − 1 2 1 2 are related by d1 = +Rθ2 d = Rθ (13.11) 2 − 1 As the radius of the sphere becomes very large, the two angles θ1,θ2 be- come small with the product Rθi (i = 1, 2) approaching a well-defined limit. This corresponds to a rotation through an angle θ2 = d1/R about the y-axis producing a displacement of d1 in the x-direction, and a rota- tion through an angle θ1 = d2/R about the x-axis producing a displace- ment of d in the y-direction. − 2 The Casimir operator for the group SO(3) contracts to an invariant operator as follows: 2[SO(3)] = L2 + L2 + L3 C 1 2 3 2[ISO(2)] = lim(1/R2) 2[SO(3)] C C 2 2 2 = lim[(L1/R) + (L2/R) + (L3/R) ] ∂2 ∂2 = ( P )2 + (+P )2 +0= + (13.12) − 2 1 ∂y2 ∂x2 This is just the Laplacian operator on the plane R2. 13.3.2 The Contraction SO(4) ISO(3) → This group is similar to SO(3) and can be treated similarly. The six generators are Li = ǫijkxj ∂k V = x ∂ x ∂ 1 i = j = k 3 (13.13) i i 4 − 4 i ≤ 6 6 ≤ 236 Contraction Fig. 13.1. Rotations on the surface of a sphere of radius R approach displace- ments in the plane as R →∞. The commutation relations are [L ,L ] = ǫ L i j − ijk k [L , V ] = ǫ V (13.14) i j − ijk k [V , V ] = ǫ L i j − ijk k We contract with respect to the subgroup SO(3) generated by the an- gular momentum operators Li, defining 1 1 Pi = lim Vi = lim (xi∂4 x4∂i)= ∂i (13.15) R R R R − →∞ →∞ − − The commutation relations of the contracted algebra are [L ,L ] = ǫ L i j − ijk k [L , P ] = ǫ P (13.16) i j − ijk k [Pi, Pj ] = 0 The operators Pi describe displacements in the x-, y-, and z- (i =1, 2, 3) directions. The contracted group is ISO(3), the Euclidean, or inhomo- geneous orthogonal group, on R3. 13.3 Simple Examples of In¨on¨u–Wigner Contractions 237 As in the case SO(3) ISO(2), we can contract the second order → Casimir operator of SO(4) to that of ISO(3) 2 2 1 [ISO(3)] = lim (1/R )(L L + V V) R C →∞ · · = lim [(L/R) (L/R) + (V/R) (V/R)] (13.17) R · · →∞ ∂2 ∂2 ∂2 = 0+ P P = 2 = + + (13.18) · ∇ ∂x2 ∂y2 ∂z2 As before, this is no surprise. The contracted operator is the Laplacian on R3. What is a surprise is that there is a second nontrivial invariant operator. For SO(4) this is [cf. Eq. (9.24)] 2[SO(4)] = ǫijklX X 8L V (13.19) C2 ij kl → · The contracted limit of this operator is 2 2 [ISO(3)]/8 = lim (1/R)(L V) R C →∞ · = lim [L (V/R)] = L P (13.20) R · − · →∞ The two invariant operators P P = 2 and L P = L form a · ∇ · − ·∇ complete set of invariant operators for the group ISO(3). 13.3.3 The Contraction SO(4, 1) ISO(3, 1) → The group ISO(3, 1) consists of proper Lorentz transformations [SO(3, 1)] that leave invariant the quadratic form x2 + y2 + z2 (ct)2 (13.21) − as well as displacements of the origin in the three spacelike directions and one timelike direction.
Recommended publications
  • Group Theory
    Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk.
    [Show full text]
  • Relativity Without Tears
    Vol. 39 (2008) ACTA PHYSICA POLONICA B No 4 RELATIVITY WITHOUT TEARS Z.K. Silagadze Budker Institute of Nuclear Physics and Novosibirsk State University 630 090, Novosibirsk, Russia (Received December 21, 2007) Special relativity is no longer a new revolutionary theory but a firmly established cornerstone of modern physics. The teaching of special relativ- ity, however, still follows its presentation as it unfolded historically, trying to convince the audience of this teaching that Newtonian physics is natural but incorrect and special relativity is its paradoxical but correct amend- ment. I argue in this article in favor of logical instead of historical trend in teaching of relativity and that special relativity is neither paradoxical nor correct (in the absolute sense of the nineteenth century) but the most nat- ural and expected description of the real space-time around us valid for all practical purposes. This last circumstance constitutes a profound mystery of modern physics better known as the cosmological constant problem. PACS numbers: 03.30.+p Preface “To the few who love me and whom I love — to those who feel rather than to those who think — to the dreamers and those who put faith in dreams as in the only realities — I offer this Book of Truths, not in its character of Truth-Teller, but for the Beauty that abounds in its Truth; constituting it true. To these I present the composition as an Art-Product alone; let us say as a Romance; or, if I be not urging too lofty a claim, as a Poem. What I here propound is true: — therefore it cannot die: — or if by any means it be now trodden down so that it die, it will rise again ‘to the Life Everlasting’.
    [Show full text]
  • The Unitary Representations of the Poincaré Group in Any Spacetime Dimension Abstract Contents
    SciPost Physics Lecture Notes Submission The unitary representations of the Poincar´egroup in any spacetime dimension X. Bekaert1, N. Boulanger2 1 Institut Denis Poisson, Unit´emixte de Recherche 7013, Universit´ede Tours, Universit´e d'Orl´eans,CNRS, Parc de Grandmont, 37200 Tours (France) [email protected] 2 Service de Physique de l'Univers, Champs et Gravitation, Universit´ede Mons, UMONS Research Institute for Complex Systems, Place du Parc 20, 7000 Mons (Belgium) [email protected] December 31, 2020 1 Abstract 2 An extensive group-theoretical treatment of linear relativistic field equations 3 on Minkowski spacetime of arbitrary dimension D > 3 is presented. An exhaus- 4 tive treatment is performed of the two most important classes of unitary irre- 5 ducible representations of the Poincar´egroup, corresponding to massive and 6 massless fundamental particles. Covariant field equations are given for each 7 unitary irreducible representation of the Poincar´egroup with non-negative 8 mass-squared. 9 10 Contents 11 1 Group-theoretical preliminaries 2 12 1.1 Universal covering of the Lorentz group 2 13 1.2 The Poincar´egroup and algebra 3 14 1.3 ABC of unitary representations 4 15 2 Elementary particles as unitary irreducible representations of the isom- 16 etry group 5 17 3 Classification of the unitary representations 7 18 3.1 Induced representations 7 19 3.2 Orbits and stability subgroups 8 20 3.3 Classification 10 21 4 Tensorial representations and Young diagrams 12 22 4.1 Symmetric group 12 23 4.2 General linear
    [Show full text]
  • Group Contractions and Physical Applications
    Group Contractions and Physical Applications N.A. Grornov Department of Mathematics, Komz' Science Center UrD HAS. Syktyvkar, Russia. E—mail: [email protected] Abstract The paper is devoted to the description of the contraction (or limit transition) method in application to classical Lie groups and Lie algebras of orthogonal and unitary series. As opposed to the standard Wigner-Iiionii contractions based on insertion of one or several zero tending parameters in group (algebra) structure the alternative approach, which is connected with consideration of algebraic structures over Pimenov algebra with commu- tative nilpotent generators is used. The definitions of orthogonal and unitary Cayleye Klein groups are given. It is shown that the basic algebraic constructions, characterizing Cayley—Klein groups can be found using simple transformations from the corresponding constructions for classical groups. The theorem on the classifications of transitions is proved, which shows that all Cayley—Klein groups can be obtained not only from simple classical groups. As a starting point one can choose any pseudogroup as well. As applica— tions of the developed approach to physics the kinematics groups and contractions of the Electroweak Model at the level of classical gauge fields are regarded. The interpretations of kinematics as spaces of constant curvature are given. Two possible contractions of the Electroweak Model are discussed and are interpreted as zero and infinite energy limits of the modified Electroweak Model with the contracted gauge group. 1 Introduction Group-Theoretical Methods are essential part of modern theoretical and mathematical physics. It is enough to remind that the most advanced theory of fundamental interactions, namely Standard Electroweak Model, is a gauge theory with gauge group SU(2) x U(l).
    [Show full text]
  • Synchronization Over Cartan Motion Groups Via Contraction
    Synchronization over Cartan motion groups via contraction Onur Ozye¸sil¨ ∗ , Nir Sharony1, and Amit Singerz1,2 1Program in Applied and Computational Mathematics, Princeton University 2Department of Mathematics, Princeton University Abstract Group contraction is an algebraic map that relates two classes of Lie groups by a limiting process. We utilize this notion for the compactification of the class of Cartan motion groups. The compactification process is then applied to reduce a non-compact synchronization problem to a problem where the solution can be obtained by means of a unitary, faithful representation. We describe this method of synchronization via contraction in detail and analyze several important aspects of this application. One important special case of Cartan motion groups is the group of rigid motions, also called the special Euclidean group. We thoroughly discuss the synchronization over this group and show numerically the advantages of our approach compared to some current state-of-the-art synchronization methods on both synthetic and real data. Key Words. Synchronization, Cartan motion groups, group contraction, special Euclidean group 1 Introduction The synchronization (also known as registration or averaging) problem over a group is to estimate n n unknown group elements fgigi=1 from a set of measurements gij, potentially partial and noisy, of their −1 ratios gigj , 1 ≤ i < j ≤ n. The solution of this problem is not unique as the data is invariant to right −1 −1 action of an arbitrary group element g (also termed global alignment) since gigj = (gig)(gjg) . When all measurements are exact and noiseless, it is possible to solve the above synchronization problem as follows.
    [Show full text]
  • A Historical Note on Group Contractions
    A Historical Note on Group Contractions Erdal In¨on¨u˙ Feza G¨urseyInstitute PK: 6 C¸engelk¨oy, Istanbul,˙ Turkey I wish to welcome you to this meeting and hope that you will find it interesting and rewarding. It was organised, essentially, following the suggestions of Drs. Kim, Pogosyan, Gromov and Duru, that we should once more bring together people interested in various aspects of deformations of Lie groups, including quantum groups and the simplest case of contractions. I am happy to see that quite a few researchers have found time to come and join us here. The organising committee has asked me to give an introductory talk, as one of the two co-authors of one of the first papers on group contractions. Actually, since almost half a century passed since this paper was published in June 1953, 44 years ago to be exact, it can be considered as part of science history. Furthermore, as I am nowadays more interested in writing memoirs, rather than following current research developments, I shall tell you the story of this article. It has some interesting and instructive aspects from both scientific and human points of view and it will be a tribute to the memory of Prof. Wigner. In the beginning I must tell you that I completed all the requirements for a Ph.D. degree at CalTech in October of 1951, and then came to Princeton University as a visiting research fellow, to spend something like six months doing research, before going back to my native country, Turkey. My thesis was a phenomenological piece of work, applying the shower theory of Oppenheimer and Snyder to cosmic ray bursts observed by the team of Neher from CalTech.
    [Show full text]
  • Deformation and Contraction of Symmetries in Special Relativity
    DEFORMATION AND CONTRACTION OF SYMMETRIES IN SPECIAL RELATIVITY ADISSERTATION BY LUKAS KONSTANTIN BRUNKHORST DEFORMATION AND CONTRACTION OF SYMMETRIES IN SPECIAL RELATIVITY Am 28. Februar 2017 dem Fachbereich 1 der Universitat¨ Bremen zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat) vorgelegte Dissertation von LUKAS K. BRUNKHORST, geboren am 19.05.1989 in Bremen. Gutachter: Prof. Dr. Domenico Giulini Prof. Dr. Peter Schupp Datum des Dissertationskolloquiums: Montag, der 8. Mai 2017 iii ABSTRACT This dissertation gives an account of the fundamental principles underlying two concep- tionally different ways of embedding Special Relativity into a wider context. Both of them root in the attempt to explore the full scope of the Relativity Postulate. The frst approach uses Lie algebraic analysis alone, but already yields a whole range of alternative kinematics that are all in a quantifable sense near to those in Special Relativity, while being rather far away in a qualitative way. The corresponding models for spacetime are seen to be four-dimensional versions of the prototypical planar geometries associated with the work of Cayley and Klein. The close relationship between algebraic and geometric methods displayed by these considerations is being substantialized in terms of light-like spacetime extensions. The second direction of departures from Special Relativity stresses and develops the algebraic view on spacetime by considering Hopf instead of Lie algebras as candidates for the description of kinematical transformations and hence spacetime symmetry. This approach is motivated by the belief in the existence of a quantum theory of gravity, and the assumption that such manifests itself in nonlinear modifcations of the laws of Special Relativity at length scales comparable to the Planck length.
    [Show full text]
  • Wigner's Space-Time Symmetries Based on the Two-By-Two Matrices of the Damped Harmonic Oscillators and the Poincaré Sphere
    Symmetry 2014, 6, 473-515; doi:10.3390/sym6030473 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Wigner’s Space-Time Symmetries Based on the Two-by-Two Matrices of the Damped Harmonic Oscillators and the Poincaré Sphere Sibel Ba¸skal 1, Young S. Kim 2;* and Marilyn E. Noz 3 1 Department of Physics, Middle East Technical University, Ankara 06800, Turkey; E-Mail: [email protected] 2 Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA 3 Department of Radiology, New York University, New York, NY 10016, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-301-937-1306. Received: 28 February 2014; in revised form: 28 May 2014 / Accepted: 9 June 2014 / Published: 25 June 2014 Abstract: The second-order differential equation for a damped harmonic oscillator can be converted to two coupled first-order equations, with two two-by-two matrices leading to the group Sp(2). It is shown that this oscillator system contains the essential features of Wigner’s little groups dictating the internal space-time symmetries of particles in the Lorentz-covariant world. The little groups are the subgroups of the Lorentz group whose transformations leave the four-momentum of a given particle invariant. It is shown that the damping modes of the oscillator correspond to the little groups for massive and imaginary-mass particles respectively. When the system makes the transition from the oscillation to damping mode, it corresponds to the little group for massless particles.
    [Show full text]
  • Symmetry, Physical Theories and Theory Changes V1 Abstract
    Symmetry, Physical Theories and Theory Changes V1 Marc Lachieze-Rey∗ a, Amilcar Queirozy b, and Samuel Simonz c a Astroparticule et Cosmologie (APC), CNRS-UMR 7164, Universit´eParis 7 Denis Diderot, 10, rue Alice Domon et L´eonieDuquet F-75205 Paris Cedex 13, France b Instituto de Fisica, Universidade de Brasilia, Caixa Postal 04455, 70919-970, Brasilia, DF, Brazil and c Departamento de Filosofia, Universidade de Brasilia, Caixa Postal 04661, 70919-970, Brasilia, DF, Brazil Abstract We discuss the problem of theory change in physics. Particularly, we consider the theory of kinematics of particles in distinct space-time backgrounds. We propose a characterization of the concept of physics theory based on symmetries of these kinematics. The concepts and tools of the theory of groups will be extensively used. The proposed characterization is compatible with the modern ideas in philosophy of science { e.g. the semantic approach to a scientific theory. The advantage of our approach lies in it being conceptually simple, allowing an analysis of the problem of the mathematical structure and hints at a logic of discovery. The problem of theory change can be framed in terms of the notions of In¨on¨u-Wignercontraction/extension of groups of symmetry. Furthermore, from the group of symmetry the kinematic equations or physics laws associated with the underlying physical theory can be obtained { this is notoriously known as the Bargmann-Wigner program. ∗ [email protected] y [email protected] z [email protected] 1 Contents I. Introduction 2 II. Physics, Physical Theory and Domains 4 III. Contractions and Extensions of Groups 6 A.
    [Show full text]
  • Carroll Versus Newton and Galilei: Two Dual Non-Einsteinian Concepts of Time
    arXiv:1402.0657v5 [gr-qc] Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time C. Duval1∗, G. W. Gibbons2†, P. A. Horvathy3,4‡, P. M. Zhang3§ 1Centre de Physique Th´eorique, Marseille, France 2D.A.M.T.P., Cambridge University, U.K. 3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China 4Laboratoire de Math´ematiques et de Physique Th´eorique, Universit´ede Tours, France (Dated: March 12, 2014) Abstract The Carroll group was originally introduced by L´evy-Leblond [1] by considering the contraction of the Poincar´egroup as c → 0. In this paper an alternative definition, based on the geometric properties of a non-Minkowskian, non-Galilean but nevertheless boost-invariant, space-time structure is proposed. A “du- ality” with the Galilean limit c →∞ is established. Our theory is illustrated by Carrollian electromagnetism. Keywords: Carroll group, group contraction, Bargmann space, non-relativistic electromagnetism arXiv:1402.0657v5 [gr-qc] 11 Mar 2014 ∗ Aix-Marseille Universit´e, CNRS, CPT, UMR 7332, 13288 Marseille, France. Universit´ede Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France. mailto:[email protected] † mailto:[email protected] ‡ mailto:[email protected] § mailto:[email protected] 1 Contents I. Introduction 3 II. The Carroll group as a contraction 4 III. Carroll structures: geometrical definition 6 A. Newton-Cartan manifolds 6 B. Carroll manifolds 7 IV. Unification: Bargmann, Newton-Cartan, Carroll 9 A. Bargmann manifolds 10 B. Family tree of groups 10 C. Newton-Cartan as the base of Bargmann space 11 D. Carroll as a null hyper-surface embedded into Bargmann space 11 V.
    [Show full text]
  • Group Theory
    Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [206] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [100] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [418]. Still a classic is [248]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦gj ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi, (iii) for every gi exists an inverse −1 ∈ ◦ −1 −1 ◦ element gi G such that gi gi = g0 = gi gi, (iv) the operation is associative: gi ◦ (gj ◦ gk)=(gi ◦ gj) ◦ gk.
    [Show full text]
  • REGULAR QUANTUM DYNAMICS James Emory Baugh
    REGULAR QUANTUM DYNAMICS A Thesis Presented to The Academic Faculty by James Emory Baugh In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy School of Physics Georgia Institute of Technology December 2004 REGULAR QUANTUM DYNAMICS Approved by: Dr. David Finkelstein, Advisor Dr. Turgay Uzer School of Physics School of Physics Dr. Alex Kuzmich Dr. Andrew Zangwill School of Physics School of Physics Dr. Carlos Sa de Melo Dr. Eric Carlen School of Physics School of Mathematics Date Approved: November 22, 2004 This work is dedicated to my mother, Mary Rose Baugh Bacon. Her support both moral and financial cannot be repaid. iii TABLE OF CONTENTS DEDICATION ...................................... iii LIST OF TABLES ................................... v LIST OF FIGURES .................................. vi SUMMARY ........................................ vii CHAPTER 1 INTRODUCTION ......................... 1 1.1 Singular and Regular Groups of Physics . 1 1.2 The Galileo and Lorentz Group . 5 1.3 The Poincar´eand deSitter Group . 5 1.4 Canonical Lie Group . 6 1.5 Segal group . 6 1.6 Stationary and Dynamical Systems . 7 CHAPTER 2 INHOMOGENOUS LIE GROUPS AND ALGEBRAS .. 9 2.1 Introduction . 9 2.2 The Heisenberg Singularity . 11 2.3 The Regularizing Expansion . 13 CHAPTER 3 REGULARIZED OSCILLATOR DYNAMICS ....... 14 3.1 Introduction . 14 3.2 Harmonic Oscillator Dynamics . 15 3.3 Extending The Dynamic Algebra . 16 3.4 Regularization of the Dynamic Lie Algebra . 17 3.5 Representations . 22 CHAPTER 4 CONCLUSIONS .......................... 25 APPENDIX A — THE CLASSICAL LIE GROUPS ............ 27 APPENDIX B — INHOMOGENOUS LIE GROUPS ........... 32 REFERENCES ..................................... 34 iv LIST OF TABLES Table 1 Induced Singular Homotopies . 10 Table 2 Groups Over Spaces .
    [Show full text]