The Unitary Representations of the Poincaré Group in Any Spacetime Dimension Abstract Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Off-Shell Interactions for Closed-String Tachyons
Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds. -
Meson Spectra from a Dynamical Three-Field Model of Ads/QCD
Meson Spectra from a Dynamical Three-Field Model of AdS/QCD A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Sean Peter Bartz IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Joseph I. Kapusta, Adviser August, 2014 c Sean Peter Bartz 2014 ALL RIGHTS RESERVED Acknowledgements There are many people who have earned my gratitude for their contribution to mytime in graduate school. First, I would like to thank my adviser, Joe Kapusta, for giving me the opportunity to begin my research career, and for guiding my research during my time at Minnesota. I would also like to thank Tom Kelley, who helped guide me through the beginnings of my research and helped me understand the basics of the AdS/CFT correspondence. My graduate school experience was shaped by my participation in the Department of Energy Office of Science Graduate Fellowship for three years. The research support for travel made my graduate career a great experience, and the camaraderie with the other fellows was also fulfilling. I would like to thank Dr. Ping Ge, Cayla Stephenson, Igrid Gregory, and everyone else who made the DOE SCGF program a fulfilling, eye-opening experience. Finally, I would like to thank the members of my thesis defense committee: Ron Poling, Tony Gherghetta, and Tom Jones. This research is supported by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. -
Group Theory
Appendix A Group Theory This appendix is a survey of only those topics in group theory that are needed to understand the composition of symmetry transformations and its consequences for fundamental physics. It is intended to be self-contained and covers those topics that are needed to follow the main text. Although in the end this appendix became quite long, a thorough understanding of group theory is possible only by consulting the appropriate literature in addition to this appendix. In order that this book not become too lengthy, proofs of theorems were largely omitted; again I refer to other monographs. From its very title, the book by H. Georgi [211] is the most appropriate if particle physics is the primary focus of interest. The book by G. Costa and G. Fogli [102] is written in the same spirit. Both books also cover the necessary group theory for grand unification ideas. A very comprehensive but also rather dense treatment is given by [428]. Still a classic is [254]; it contains more about the treatment of dynamical symmetries in quantum mechanics. A.1 Basics A.1.1 Definitions: Algebraic Structures From the structureless notion of a set, one can successively generate more and more algebraic structures. Those that play a prominent role in physics are defined in the following. Group A group G is a set with elements gi and an operation ◦ (called group multiplication) with the properties that (i) the operation is closed: gi ◦ g j ∈ G, (ii) a neutral element g0 ∈ G exists such that gi ◦ g0 = g0 ◦ gi = gi , (iii) for every gi exists an −1 ∈ ◦ −1 = = −1 ◦ inverse element gi G such that gi gi g0 gi gi , (iv) the operation is associative: gi ◦ (g j ◦ gk) = (gi ◦ g j ) ◦ gk. -
Arxiv:2012.15102V2 [Hep-Ph] 13 May 2021 T > Tc
Confinement of Fermions in Tachyon Matter at Finite Temperature Adamu Issifu,1, ∗ Julio C.M. Rocha,1, y and Francisco A. Brito1, 2, z 1Departamento de F´ısica, Universidade Federal da Para´ıba, Caixa Postal 5008, 58051-970 Jo~aoPessoa, Para´ıba, Brazil 2Departamento de F´ısica, Universidade Federal de Campina Grande Caixa Postal 10071, 58429-900 Campina Grande, Para´ıba, Brazil We study a phenomenological model that mimics the characteristics of QCD theory at finite temperature. The model involves fermions coupled with a modified Abelian gauge field in a tachyon matter. It reproduces some important QCD features such as, confinement, deconfinement, chiral symmetry and quark-gluon-plasma (QGP) phase transitions. The study may shed light on both light and heavy quark potentials and their string tensions. Flux-tube and Cornell potentials are developed depending on the regime under consideration. Other confining properties such as scalar glueball mass, gluon mass, glueball-meson mixing states, gluon and chiral condensates are exploited as well. The study is focused on two possible regimes, the ultraviolet (UV) and the infrared (IR) regimes. I. INTRODUCTION Confinement of heavy quark states QQ¯ is an important subject in both theoretical and experimental study of high temperature QCD matter and quark-gluon-plasma phase (QGP) [1]. The production of heavy quarkonia such as the fundamental state ofcc ¯ in the Relativistic Heavy Iron Collider (RHIC) [2] and the Large Hadron Collider (LHC) [3] provides basics for the study of QGP. Lattice QCD simulations of quarkonium at finite temperature indicates that J= may persists even at T = 1:5Tc [4] i.e. -
Representations of Certain Semidirect Product Groups* H
JOURNAL OF FUNCTIONAL ANALYSIS 19, 339-372 (1975) Representations of Certain Semidirect Product Groups* JOSEPH A. WOLF Department of Mathematics, University of California, Berkeley, California 94720 Communicated by the Editovs Received April I, 1974 We study a class of semidirect product groups G = N . U where N is a generalized Heisenberg group and U is a generalized indefinite unitary group. This class contains the Poincare group and the parabolic subgroups of the simple Lie groups of real rank 1. The unitary representations of G and (in the unimodular cases) the Plancherel formula for G are written out. The problem of computing Mackey obstructions is completely avoided by realizing the Fock representations of N on certain U-invariant holomorphic cohomology spaces. 1. INTRODUCTION AND SUMMARY In this paper we write out the irreducible unitary representations for a type of semidirect product group that includes the Poincare group and the parabolic subgroups of simple Lie groups of real rank 1. If F is one of the four finite dimensional real division algebras, the corresponding groups in question are the Np,Q,F . {U(p, 4; F) xF+}, where FP~*: right vector space F”+Q with hermitian form h(x, y) = i xiyi - y xipi ) 1 lJ+1 N p,p,F: Im F + F”q* with (w. , ~o)(w, 4 = (w, + 7.0+ Im h(z, ,4, z. + 4, U(p, Q; F): unitary group of Fp,q, F+: subgroup of the group generated by F-scalar multiplication on Fp>*. * Research partially supported by N.S.F. Grant GP-16651. 339 Copyright 0 1975 by Academic Press, Inc. -
Relativity Without Tears
Vol. 39 (2008) ACTA PHYSICA POLONICA B No 4 RELATIVITY WITHOUT TEARS Z.K. Silagadze Budker Institute of Nuclear Physics and Novosibirsk State University 630 090, Novosibirsk, Russia (Received December 21, 2007) Special relativity is no longer a new revolutionary theory but a firmly established cornerstone of modern physics. The teaching of special relativ- ity, however, still follows its presentation as it unfolded historically, trying to convince the audience of this teaching that Newtonian physics is natural but incorrect and special relativity is its paradoxical but correct amend- ment. I argue in this article in favor of logical instead of historical trend in teaching of relativity and that special relativity is neither paradoxical nor correct (in the absolute sense of the nineteenth century) but the most nat- ural and expected description of the real space-time around us valid for all practical purposes. This last circumstance constitutes a profound mystery of modern physics better known as the cosmological constant problem. PACS numbers: 03.30.+p Preface “To the few who love me and whom I love — to those who feel rather than to those who think — to the dreamers and those who put faith in dreams as in the only realities — I offer this Book of Truths, not in its character of Truth-Teller, but for the Beauty that abounds in its Truth; constituting it true. To these I present the composition as an Art-Product alone; let us say as a Romance; or, if I be not urging too lofty a claim, as a Poem. What I here propound is true: — therefore it cannot die: — or if by any means it be now trodden down so that it die, it will rise again ‘to the Life Everlasting’. -
Tachyons and the Preferred Frames
Tachyons and the preferred frames∗ Jakub Rembieli´nski† Katedra Fizyki Teoretycznej, UniwersytetL´odzki ul. Pomorska 149/153, 90–236L´od´z, Poland Abstract Quantum field theory of space-like particles is investigated in the framework of absolute causality scheme preserving Lorentz symmetry. It is related to an appropriate choice of the synchronization procedure (defi- nition of time). In this formulation existence of field excitations (tachyons) distinguishes an inertial frame (privileged frame of reference) via sponta- neous breaking of the so called synchronization group. In this scheme relativity principle is broken but Lorentz symmetry is exactly preserved in agreement with local properties of the observed world. It is shown that tachyons are associated with unitary orbits of Poincar´emappings induced from SO(2) little group instead of SO(2, 1) one. Therefore the corresponding elementary states are labelled by helicity. The cases of the ± 1 helicity λ = 0 and λ = 2 are investigated in detail and a correspond- ing consistent field theory is proposed. In particular, it is shown that the Dirac-like equation proposed by Chodos et al. [1], inconsistent in the standard formulation of QFT, can be consistently quantized in the pre- sented framework. This allows us to treat more seriously possibility that neutrinos might be fermionic tachyons as it is suggested by experimental data about neutrino masses [2, 3, 4]. arXiv:hep-th/9607232v2 1 Aug 1996 1 Introduction Almost all recent experiments, measuring directly or indirectly the electron and muon neutrino masses, have yielded negative values for the mass square1 [2, 3, 4]. It suggests that these particles might be fermionic tachyons. -
SUPERSYMMETRY 1. Introduction the Purpose
SUPERSYMMETRY JOSH KANTOR 1. Introduction The purpose of these notes is to give a short and (overly?)simple description of supersymmetry for Mathematicians. Our description is far from complete and should be thought of as a first pass at the ideas that arise from supersymmetry. Fundamental to supersymmetry is the mathematics of Clifford algebras and spin groups. We will describe the mathematical results we are using but we refer the reader to the references for proofs. In particular [4], [1], and [5] all cover spinors nicely. 2. Spin and Clifford Algebras We will first review the definition of spin, spinors, and Clifford algebras. Let V be a vector space over R or C with some nondegenerate quadratic form. The clifford algebra of V , l(V ), is the algebra generated by V and 1, subject to the relations v v = v, vC 1, or equivalently v w + w v = 2 v, w . Note that elements of· l(V ) !can"b·e written as polynomials· in V · and this! giv"es a splitting l(V ) = l(VC )0 l(V )1. Here l(V )0 is the set of elements of l(V ) which can bCe writtenC as a linear⊕ C combinationC of products of even numbers ofCvectors from V , and l(V )1 is the set of elements which can be written as a linear combination of productsC of odd numbers of vectors from V . Note that more succinctly l(V ) is just the quotient of the tensor algebra of V by the ideal generated by v vC v, v 1. -
Confinement and Screening in Tachyonic Matter
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Access Repository Eur. Phys. J. C (2014) 74:3202 DOI 10.1140/epjc/s10052-014-3202-y Regular Article - Theoretical Physics Confinement and screening in tachyonic matter F. A. Brito 1,a,M.L.F.Freire2, W. Serafim1,3 1 Departamento de Física, Universidade Federal de Campina Grande, 58109-970 Campina Grande, Paraíba, Brazil 2 Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba, Brazil 3 Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió, Alagoas, Brazil Received: 26 August 2014 / Accepted: 19 November 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract In this paper we consider confinement and way in which hadronic matter lives. In three spatial dimen- screening of the electric field. We study the behavior of sions this effect is represented by Coulomb and confinement a static electric field coupled to a dielectric function with potentials describing the potential between quark pairs. Nor- v ( ) =−a + the intent of obtaining an electrical confinement similar to mally the potential of Cornell [1], c r r br, is used, what happens with the field of gluons that bind quarks in where a and b are positive constants, and r is the distance hadronic matter. For this we use the phenomenon of ‘anti- between the heavy quarks. In QED (Quantum Electrodynam- screening’ in a medium with exotic dielectric. We show that ics), the effective electrical charge increases when the dis- tachyon matter behaves like in an exotic way whose associ- tance r between a pair of electron–anti-electron decreases. -
Supercritical Stability, Transitions and (Pseudo)Tachyons
hep-th/0612031 SU-ITP-06/32 SLAC-PUB-12243 WIS/18/06-NOV-DPP Supercritical Stability, Transitions and (Pseudo)tachyons Ofer Aharonya,b, and Eva Silversteinc,d aDepartment of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel. bSchool of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA. cSLAC and Department of Physics, Stanford University, Stanford, CA 94305-4060, USA. dKavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA. Highly supercritical strings (c 15) with a time-like linear dilaton provide a large class ≫ of solutions to string theory, in which closed string tachyon condensation is under control (and follows the worldsheet renormalization group flow). In this note we analyze the late-time stability of such backgrounds, including transitions between them. The large friction introduced by the rolling dilaton and the rapid decrease of the string coupling suppress the back-reaction of naive instabilities. In particular, although the graviton, dilaton, and other light fields have negative effective mass squared in the linear dilaton background, the decaying string coupling ensures that their condensation does not cause large back-reaction. Similarly, the copious particles produced in transitions between highly supercritical theories do not back-react significantly on the solution. We discuss these features also in a somewhat more general class of time-dependent backgrounds with stable late-time asymptotics. December 2006 Submitted to Physical Review D Work supported in part by the US Department of Energy contract DE-AC02-76SF00515 1. Introduction It is of interest to understand cosmological solutions of string theory. Most solutions of general relativity coupled to quantum field theory evolve non-trivially with time, leading to a weakly coupled description only (at best) at asymptotically late times (or only at early times). -
Group Contractions and Physical Applications
Group Contractions and Physical Applications N.A. Grornov Department of Mathematics, Komz' Science Center UrD HAS. Syktyvkar, Russia. E—mail: [email protected] Abstract The paper is devoted to the description of the contraction (or limit transition) method in application to classical Lie groups and Lie algebras of orthogonal and unitary series. As opposed to the standard Wigner-Iiionii contractions based on insertion of one or several zero tending parameters in group (algebra) structure the alternative approach, which is connected with consideration of algebraic structures over Pimenov algebra with commu- tative nilpotent generators is used. The definitions of orthogonal and unitary Cayleye Klein groups are given. It is shown that the basic algebraic constructions, characterizing Cayley—Klein groups can be found using simple transformations from the corresponding constructions for classical groups. The theorem on the classifications of transitions is proved, which shows that all Cayley—Klein groups can be obtained not only from simple classical groups. As a starting point one can choose any pseudogroup as well. As applica— tions of the developed approach to physics the kinematics groups and contractions of the Electroweak Model at the level of classical gauge fields are regarded. The interpretations of kinematics as spaces of constant curvature are given. Two possible contractions of the Electroweak Model are discussed and are interpreted as zero and infinite energy limits of the modified Electroweak Model with the contracted gauge group. 1 Introduction Group-Theoretical Methods are essential part of modern theoretical and mathematical physics. It is enough to remind that the most advanced theory of fundamental interactions, namely Standard Electroweak Model, is a gauge theory with gauge group SU(2) x U(l). -
Spin(7)-Subgroups of SO(8) and Spin(8)
EXPOSITIONES Expo. Math. 19 (2001): 163-177 © Urban & Fischer Verlag MATHEMATICAE www. u rbanfischer.de/jou rnals/expomath Spin(7)-subgroups of SO(8) and Spin(8) V. S. Varadarajan Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA The observations made here are prompted by the paper [1] of De Sapio in which he gives an exposition of the principle of triality and related topics in the context of the Octonion algebra of Cayley. However many of the results discussed there are highly group theoretic and it seems desirable to have an exposition of them from a purely group theoretic point of view not using the Cayley numbers. In what follows this is what we do. In particular we discuss some properties of the imbeddings of Spin(7) in SO(8) and Spin(8). The techniques used here are well-known to specialists in representation theory and so this paper has a semi- expository character. We take for granted the basic properties of Spin(n) and its spin representations and refer to [2] for a beautiful account of these. For general background in representation theory of compact Lie groups we refer to [3]. The main results are Theorems 1.3 and 1.5, Theorem 2.3, and Theorems 3.4 and 3.5. 1. Conjugacy classes of Spin(7)-subgroups in SO(8) and Spin(8). We work over 1~ and in the category of compact Lie groups. Spin(n) is the universal covering group of SO(n). We begin with a brief review of the method of constructing the groups Spin(n) by the theory of Clifford algebras.