SciPost Physics Lecture Notes Submission The unitary representations of the Poincar´egroup in any spacetime dimension X. Bekaert1, N. Boulanger2 1 Institut Denis Poisson, Unit´emixte de Recherche 7013, Universit´ede Tours, Universit´e d'Orl´eans,CNRS, Parc de Grandmont, 37200 Tours (France)
[email protected] 2 Service de Physique de l'Univers, Champs et Gravitation, Universit´ede Mons, UMONS Research Institute for Complex Systems, Place du Parc 20, 7000 Mons (Belgium)
[email protected] December 31, 2020 1 Abstract 2 An extensive group-theoretical treatment of linear relativistic field equations 3 on Minkowski spacetime of arbitrary dimension D > 3 is presented. An exhaus- 4 tive treatment is performed of the two most important classes of unitary irre- 5 ducible representations of the Poincar´egroup, corresponding to massive and 6 massless fundamental particles. Covariant field equations are given for each 7 unitary irreducible representation of the Poincar´egroup with non-negative 8 mass-squared. 9 10 Contents 11 1 Group-theoretical preliminaries 2 12 1.1 Universal covering of the Lorentz group 2 13 1.2 The Poincar´egroup and algebra 3 14 1.3 ABC of unitary representations 4 15 2 Elementary particles as unitary irreducible representations of the isom- 16 etry group 5 17 3 Classification of the unitary representations 7 18 3.1 Induced representations 7 19 3.2 Orbits and stability subgroups 8 20 3.3 Classification 10 21 4 Tensorial representations and Young diagrams 12 22 4.1 Symmetric group 12 23 4.2 General linear