Quantum State Complexity in Computationally Tractable Quantum Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Quantum State Complexity in Computationally Tractable Quantum Circuits PRX QUANTUM 2, 010329 (2021) Quantum State Complexity in Computationally Tractable Quantum Circuits Jason Iaconis * Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA (Received 28 September 2020; revised 29 December 2020; accepted 26 January 2021; published 23 February 2021) Characterizing the quantum complexity of local random quantum circuits is a very deep problem with implications to the seemingly disparate fields of quantum information theory, quantum many-body physics, and high-energy physics. While our theoretical understanding of these systems has progressed in recent years, numerical approaches for studying these models remains severely limited. In this paper, we discuss a special class of numerically tractable quantum circuits, known as quantum automaton circuits, which may be particularly well suited for this task. These are circuits that preserve the computational basis, yet can produce highly entangled output wave functions. Using ideas from quantum complexity theory, especially those concerning unitary designs, we argue that automaton wave functions have high quantum state complexity. We look at a wide variety of metrics, including measurements of the output bit-string distribution and characterization of the generalized entanglement properties of the quantum state, and find that automaton wave functions closely approximate the behavior of fully Haar random states. In addition to this, we identify the generalized out-of-time ordered 2k-point correlation functions as a particularly use- ful probe of complexity in automaton circuits. Using these correlators, we are able to numerically study the growth of complexity well beyond the scrambling time for very large systems. As a result, we are able to present evidence of a linear growth of design complexity in local quantum circuits, consistent with conjectures from quantum information theory. DOI: 10.1103/PRXQuantum.2.010329 I. INTRODUCTION this concept to gain insight into how closed quantum sys- tems reach equilibrium and thermalize under a generic Understanding the evolution of a quantum wave func- Hamiltonian dynamics [8]. tions from a simple initial state to a generic vector in Two of the main tools that have been used to under- an exponentially large Hilbert space is a notoriously dif- stand information scrambling are the entanglement entropy ficult problem in modern theoretical physics. Aspects of of the quantum state and the evolution of the out-of- this evolution underlie important open problems in quan- time-ordered (OTO) correlation function. It can be shown tum information theory, quantum many-body physics, and that the entanglement entropy in these systems grows lin- high-energy physics. Great progress has been made in early with time until it reaches a near maximal value [1], recent years by focusing on local random circuit mod- and a decay of the out-of-time ordered 4-point correlator els, which provide a relatively clean system where these has been shown to be equivalent to the Hayden-Preskill dynamics can be studied [1–5]. A particularly important definition of scrambling [9]. While such measurements are element of a generic quantum dynamics is the concept useful, it has become clear that these relatively simple of information scrambling. Originally studied in the con- measures cannot capture all the fine-grained aspects of the text of black holes [6,7], scrambling defines the process random unitary evolution. Two states may look maximally whereby initially local information spreads throughout the scrambled according to these two measures and yet have system and becomes stored in the many-body nonlocal important differences in the precise way the information is entanglement of the state. Similar works have since used stored nonlocally. Quantum state complexity theory has been suggested as a means to quantify these differences [10–12]. Roughly *[email protected] speaking, the complexity of a quantum state is the depth of the smallest local unitary circuit that can create the state Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Fur- from an initial product state. In random circuit models, ther distribution of this work must maintain attribution to the the growth of quantum state complexity directly corre- author(s) and the published article’s title, journal citation, and sponds to an increased difficulty in distinguishing the pure DOI. quantum state from the maximally mixed state [10]. This 2691-3399/21/2(1)/010329(19) 010329-1 Published by the American Physical Society JASON IACONIS PRX QUANTUM 2, 010329 (2021) is a physical property whereby initially local information the level spacing distribution of the entanglement spec- is more effectively hidden in high complexity states. trum. We will see that, by these measures, the automaton It is known that a generic Haar random state will have wave functions behave like highly complex states. a complexity that is exponentially large in system size N. In a dynamical context, the generalized k-point OTO As a result, almost all quantum states cannot be efficiently correlation functions can describe the growth of quantum simulated, even with a quantum computer [13]. A state state complexity beyond the scrambling time [11]. Again, that is the output of a depth D random circuit composed according to this metric, complexity in automaton circuits from a universal gate set will have a complexity that is appears to grow in the same way as in generic Haar random conjectured to grow linearly with D [14,15]. Ensembles of circuits. Furthermore, using our efficient quantum Monte these wave functions form what is known as an approx- Carlo algorithm, we are able to numerically study the imate projective unitary k-design [16]. Measurements on growth of these OTO correlation functions in this poorly k-designs can approximate, for large enough k, arbitrar- understood “beyond scrambling regime” for very large cir- ily high moments of measurements on fully Haar random cuits. By doing this, we are able to identify specific k-point states. On the other hand, states that are output from OTO correlation functions that appear to track the pre- Clifford circuits in general form only a unitary 2-design cise rate of complexity growth in local random circuits [17]. Although these wave functions display volume law and give results that are consistent with the linear growth entanglement and information scrambling, they are still conjectured in the literature [10,14]. of relatively low complexity and only approximate a few The rest of this paper is organized as follows. In Sec. moments of the Haar random states. II, we introduce and describe key properties of the quan- In this paper, we show that high complexity quantum tum automaton circuits. We also describe the quantum states can be prepared from a special type of nonuniver- Monte Carlo algorithm we use to simulate these wave sal local quantum circuit. These circuits, which we call functions. In Sec. III, we review the concept of quan- “automaton” quantum circuits, consist of any quantum tum state complexity, and describe several measurements gate that preserves the computational basis. These automa- that we use to distinguish between high and low complex- ton circuits have very recently started to be used as a ity states. We see that, by these metrics, automaton states tool for studying dynamics in quantum systems [18–20]. behave like high complexity Haar random states. We con- Specifically, in Ref. [20], it was realized that the opera- trast these results to those of low complexity Clifford wave tor entanglement and OTO correlator properties of such functions. In Sec. IV, we discuss the generalized k-point circuits appear to give results that are identical to that of out-of-time-ordered correlator as a probe of complexity a generic chaotic dynamics. We go beyond this and show growth in dynamic systems. We see that automaton cir- that, when acting on initial product states not in the compu- cuits can make use of these correlation functions to give us tational basis, automaton circuits produce highly entangled new insights into complexity growth beyond scrambling in wave functions in which the quantum state complexity local quantum circuits. In Sec. V we summarize our results grows with circuit depth in the same way as in univer- and discuss potential applications of this work. sal local random circuits. Furthermore, the evolution of these wave functions can be efficiently simulated clas- II. AUTOMATON QUANTUM CIRCUITS sically using a quantum Monte Carlo algorithm that we describe. This may be appreciated in the context of several A. Definitions and review of previous results other results in quantum information theory that demon- In this paper, we define automaton dynamics simply as strate that the presence of entanglement in a quantum state any unitary evolution of a quantum system that does not is not enough to show that a quantum algorithm that simu- generate any entanglement when applied to product states lates the state achieves a speedup over a classical algorithm in an appropriate basis (which we choose to be the com- [21–23]. Our results imply that complexity of the wave putational basis). As stated in Ref. [20], an automaton function is also not a sufficient condition for such purposes. unitary operator U acting on an appropriate set of product We do not attempt to provide a rigorous proof that states in a d-dimensional Hilbert space—labeled |m, with automaton circuits output states of high complexity. m ∈{0, ..., d − 1}—permutes these states up to a phase Instead, we characterize the complexity of the automaton factor, i.e., states using a series of measurements that were developed θ to probe the fine-detailed structure of wave functions. We U|m = ei m |π(m),(1) consider metrics such as the generalized kth Renyi entropy [12,24] and the sampled output bit-string distribution [25], where π ∈ Sd is an element of the permutation group on d which can be used to differentiate between high and low elements.
Recommended publications
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Quantum Computation and Complexity Theory
    Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena .........
    [Show full text]
  • Bohmian Mechanics Versus Madelung Quantum Hydrodynamics
    Ann. Univ. Sofia, Fac. Phys. Special Edition (2012) 112-119 [arXiv 0904.0723] Bohmian mechanics versus Madelung quantum hydrodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria It is shown that the Bohmian mechanics and the Madelung quantum hy- drodynamics are different theories and the latter is a better ontological interpre- tation of quantum mechanics. A new stochastic interpretation of quantum me- chanics is proposed, which is the background of the Madelung quantum hydro- dynamics. Its relation to the complex mechanics is also explored. A new complex hydrodynamics is proposed, which eliminates completely the Bohm quantum po- tential. It describes the quantum evolution of the probability density by a con- vective diffusion with imaginary transport coefficients. The Copenhagen interpretation of quantum mechanics is guilty for the quantum mys- tery and many strange phenomena such as the Schrödinger cat, parallel quantum and classical worlds, wave-particle duality, decoherence, etc. Many scientists have tried, however, to put the quantum mechanics back on ontological foundations. For instance, Bohm [1] proposed an al- ternative interpretation of quantum mechanics, which is able to overcome some puzzles of the Copenhagen interpretation. He developed further the de Broglie pilot-wave theory and, for this reason, the Bohmian mechanics is also known as the de Broglie-Bohm theory. At the time of inception of quantum mechanics Madelung [2] has demonstrated that the Schrödinger equa- tion can be transformed in hydrodynamic form. This so-called Madelung quantum hydrodynam- ics is a less elaborated theory and usually considered as a precursor of the Bohmian mechanics. The scope of the present paper is to show that these two theories are different and the Made- lung hydrodynamics is a better interpretation of quantum mechanics than the Bohmian me- chanics.
    [Show full text]
  • Bounds on Errors in Observables Computed from Molecular Dynamics Simulations
    Bounds on Errors in Observables Computed from Molecular Dynamics Simulations Vikram Sundar [email protected] Advisor: Dr. David Gelbwaser and Prof. Alan´ Aspuru-Guzik (Chemistry) Shadow Advisor: Prof. Martin Nowak Submitted in partial fulfillment of the honors requirements for the degree of Bachelor of Arts in Mathematics March 19, 2018 Contents Abstract iii Acknowledgments iv 1 Introduction1 1.1 Molecular Dynamics................................1 1.1.1 Why Molecular Dynamics?........................1 1.1.2 What is Molecular Dynamics?......................2 1.1.2.1 Force Fields and Integrators..................2 1.1.2.2 Observables...........................3 1.2 Structure of this Thesis...............................4 1.2.1 Sources of Error...............................4 1.2.2 Key Results of this Thesis.........................5 2 The St¨ormer-Verlet Method and Energy Conservation7 2.1 Symplecticity....................................8 2.1.1 Hamiltonian and Lagrangian Mechanics................8 2.1.2 Symplectic Structures on Manifolds...................9 2.1.3 Hamiltonian Flows are Symplectic.................... 10 2.1.4 Symplecticity of the Stormer-Verlet¨ Method............... 12 2.2 Backward Error Analysis.............................. 12 2.2.1 Symplectic Methods and Backward Error Analysis.......... 14 2.2.2 Bounds on Energy Conservation..................... 14 3 Integrable Systems and Bounds on Sampling Error 16 3.1 Integrable Systems and the Arnold-Liouville Theorem............. 17 3.1.1 Poisson Brackets and First Integrals................... 17 3.1.2 Liouville’s Theorem............................ 18 3.1.3 Action-Angle Coordinates......................... 20 3.1.4 Integrability and MD Force Fields.................... 22 3.2 Sampling Error................................... 23 3.2.1 Equivalence of Spatial and Time Averages............... 23 3.2.2 Bounding Sampling Error......................... 24 3.2.3 Reducing Sampling Error with Filter Functions...........
    [Show full text]
  • Quantum Speedup for Aeroscience and Engineering
    NASA/TM-2020-220590 Quantum Speedup for Aeroscience and Engineering Peyman Givi University of Pittsburgh, Pittsburgh, Pennsylvania Andrew J. Daley University of Strathclyde, Glasgow, United Kingdom Dimitri Mavriplis University of Wyoming, Laramie, Wyoming Mujeeb Malik Langley Research Center, Hampton, Virginia May 2020 NASA STI Program . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space science. papers from scientific and technical The NASA scientific and technical information conferences, symposia, seminars, or other (STI) program plays a key part in helping NASA meetings sponsored or co-sponsored by maintain this important role. NASA. The NASA STI program operates under the • SPECIAL PUBLICATION. Scientific, auspices of the Agency Chief Information Officer. It technical, or historical information from collects, organizes, provides for archiving, and NASA programs, projects, and missions, often disseminates NASA’s STI. The NASA STI program concerned with subjects having substantial provides access to the NASA Aeronautics and Space public interest. Database and its public interface, the NASA Technical Report Server, thus providing one of the • TECHNICAL TRANSLATION. English- largest collections of aeronautical and space science language translations of foreign scientific and STI in the world. Results are published in both non- technical material pertinent to NASA’s NASA channels and by NASA in the NASA STI mission. Report Series, which includes the following report types: Specialized services also include creating custom thesauri, building customized databases, • TECHNICAL PUBLICATION. Reports of and organizing and publishing research results. completed research or a major significant phase of research that present the results of For more information about the NASA STI NASA programs and include extensive data or program, see the following: theoretical analysis.
    [Show full text]
  • Stochastic Quantum Dynamics and Relativity
    Stochastic quantum dynamics and relativity Autor(en): Gisin, N. Objekttyp: Article Zeitschrift: Helvetica Physica Acta Band (Jahr): 62 (1989) Heft 4 PDF erstellt am: 25.09.2021 Persistenter Link: http://doi.org/10.5169/seals-116034 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Helvetica Physica Acta, Vol. 62 (1989) 363-371 0018-0238/89/040363-09$l .50 + 0.20/0 © 1989 Birkhäuser Verlag, Basel Stochastic quantum dynamics and relativity By N. Gisin Groupe de Physique Appliquée, Université de Genève, 20 rue de l'Ecole de Médecine, 1211 Genève 4, Switzerland (13. I. 1989) Abstract. Our aim is to unify the Schrödinger dynamics and the projection postulate.
    [Show full text]
  • Stochastic Hydrodynamic Analogy of Quantum Mechanics
    The mass lowest limit of a black hole: the hydrodynamic approach to quantum gravity Piero Chiarelli National Council of Research of Italy, Area of Pisa, 56124 Pisa, Moruzzi 1, Italy Interdepartmental Center “E.Piaggio” University of Pisa Phone: +39-050-315-2359 Fax: +39-050-315-2166 Email: [email protected]. Abstract: In this work the quantum gravitational equations are derived by using the quantum hydrodynamic description. The outputs of the work show that the quantum dynamics of the mass distribution inside a black hole can hinder its formation if the mass is smaller than the Planck's one. The quantum-gravitational equations of motion show that the quantum potential generates a repulsive force that opposes itself to the gravitational collapse. The eigenstates in a central symmetric black hole realize themselves when the repulsive force of the quantum potential becomes equal to the gravitational one. The work shows that, in the case of maximum collapse, the mass of the black hole is concentrated inside a sphere whose radius is two times the Compton length of the black hole. The mass minimum is determined requiring that the gravitational radius is bigger than or at least equal to the radius of the state of maximum collapse. PACS: 04.60.-m Keywords: quantum gravity, minimum black hole mass, Planck's mass, quantum Kaluza Klein model 1. Introduction One of the unsolved problems of the theoretical physics is that of unifying the general relativity with the quantum mechanics. The former theory concerns the gravitation dynamics on large cosmological scale in a fully classical ambit, the latter one concerns, mainly, the atomic or sub-atomic quantum phenomena and the fundamental interactions [1-9].
    [Show full text]
  • Quantum Information Science: Emerging No More
    Quantum Information Science: Emerging No More Carlton M. Caves Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA Final: 2013 January 30 Quantum information science (QIS) is a new field of enquiry, nascent in the 1980s, founded firmly in the 1990s, exploding in the 2010s, now established as a discipline for the 21st Century. Born in obscurity, then known as the foundations of quantum mechanics, the field began in the 60s and 70s with studies of Bell inequalities. These showed that the predictions of quantum mechanics cannot be squared with the belief, called local realism, that physical systems have realistic properties whose pre-existing values are revealed by measurements. The predictions of quantum mechanics for separate systems, correlated in the quantum way that we now call entanglement, are at odds with any version of local realism. Experiments in the early 80s demonstrated convincingly that the world comes down on the side of quantum mechanics. With local realism tossed out the window, it was natural to dream that quantum correlations could be used for faster-than-light communication, but this speculation was quickly shot down, and the shooting established the principle that quantum states cannot be copied. A group consisting of quantum opticians, electrical engineers, and mathematical physicists spent the 60s and 70s studying quantum measurements, getting serious about what can be measured and how well, going well beyond the description of observables that was (and often still is) taught in quantum-mechanics courses. This was not an empty exercise: communications engineers needed a more general description of quantum measurements to describe communications channels and to assess their performance.
    [Show full text]
  • Quantum Computing in the NISQ Era and Beyond
    Quantum Computing in the NISQ era and beyond John Preskill Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA 30 July 2018 Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today’s classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away — we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing. 1 Introduction Now is an opportune time for a fruitful discussion among researchers, entrepreneurs, man- agers, and investors who share an interest in quantum computing. There has been a recent surge of investment by both large public companies and startup companies, a trend that has surprised many quantumists working in academia. While we have long recognized the commercial potential of quantum technology, this ramping up of industrial activity has happened sooner and more suddenly than most of us expected. In this article I assess the current status and future potential of quantum computing. Because quantum computing technology is so different from the information technology we use now, we have only a very limited ability to glimpse its future applications, or to project when these applications will come to fruition.
    [Show full text]
  • Observables and Dynamics Quantum to Classical from a Relativity Symmetry and Noncommutative-Geometric Perspective
    Journal of High Energy Physics, Gravitation and Cosmology, 2019, 5, 553-586 http://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Observables and Dynamics Quantum to Classical from a Relativity Symmetry and Noncommutative-Geometric Perspective Chuan Sheng Chew, Otto C. W. Kong*, Jason Payne Department of Physics and Center for High Energy and High Field Physics, National Central University, Taiwan How to cite this paper: Chew, C.S., Kong, Abstract O.C.W. and Payne, J. (2019) Observables and Dynamics Quantum to Classical from a With approaching quantum/noncommutative models for the deep micro- Relativity Symmetry and Noncommutative- scopic spacetime in mind, and inspired by our recent picture of the (projec- Geometric Perspective. Journal of High tive) Hilbert space as the model of physical space behind basic quantum me- Energy Physics, Gravitation and Cosmolo- gy, 5, 553-586. chanics, we reformulate here the WWGM formalism starting from the ca- https://doi.org/10.4236/jhepgc.2019.53031 nonical coherent states and taking wavefunctions as expansion coefficients in terms of this basis. This provides us with a transparent and coherent story of Received: March 21, 2019 Accepted: May 6, 2019 simple quantum dynamics where both the wavefunctions for the pure states Published: May 9, 2019 and operators acting on them arise from the single space/algebra, which ex- actly includes the WWGM observable algebra. Altogether, putting the em- Copyright © 2019 by author(s) and phasis on building our theory out of the underlying relativity symmetry—the Scientific Research Publishing Inc. This work is licensed under the Creative centrally extended Galilean symmetry in the case at hand—allows one to na- Commons Attribution International turally derive both a kinematical and a dynamical description of a quantum License (CC BY 4.0).
    [Show full text]
  • Approaches to Quantum Error Correction
    S´eminaire Poincar´e 1 (2005) 65 { 93 S´eminaire Poincar´e Approaches to Quantum Error Correction Julia Kempe CNRS & LRI Laboratoire de Recherche Informatique B^at. 490, Universit´e de Paris-Sud 91405 Orsay Cedex France We have persuasive evidence that a quantum computer would have extraordinary power. But will we ever be able to build and operate them? A quantum computer will inevitably interact with its environment, resulting in decoherence and the decay of the quantum information stored in the device. It is the great technological (and theoretical) challenge to combat decoherence. And even if we can suitably isolate our quantum computer from its surroundings, errors in the quantum gates themselves will pose grave difficulties. Quantum gates (as opposed to classical gates) are unitary transformations chosen from a continuous set; they cannot be implemented with perfect accuracy and the effects of small imperfections in the gates will accumulate, leading to an eventual failure of the computation. Any reasonable correction- scheme must thus protect against small unitary errors in the quantum gates as well as against decoherence. Furthermore we must not ignore that the correction and recovery procedure itself can introduce new errors; successful fault-tolerant quantum computation must also deal with this issue. The purpose of this account is to give an overview of the main approaches to quantum error correction. There exist several excellent reviews of the subject, which the interested reader may consult (see [Pre98b],[Pre99], [NC00], [KSV02], [Ste99, Ste01] and more recently [Got05]). 1 Introduction \We have learned that it is possible to fight entanglement with entanglement." John Preskill, 1996 In a ground breaking discovery in 1994, Shor [Sho94] has shown that quantum computers, if built, can factor numbers efficiently.
    [Show full text]
  • Can a Machine Infer Quantum Dynamics? Training a Recurrent Neural Network to Predict Quantum Trajectories from Raw Observation
    Can a machine infer quantum dynamics? Training a Recurrent Neural Network to Predict Quantum Trajectories from Raw Observation. arXiv:1811.12420 Emmanuel Flurin* S. Hacohen-Gourgy, L. Martin, I. Siddiqi Quantum Nanoelectronics Laboratory, UC Berkeley *Quantronics, CEA Saclay, France The Quantum Slot Machine intro A Quantum Information Processing Experiment Heralding Prep Quantum Evolution Tomo Readout 500 m intro Black Box Quantum Mechanics Preparation Evolution Measurement intro Black Box Quantum Mechanics Preparation Evolution Measurement Quantum mechanics gives intro Black Box Quantum Mechanics Preparation Evolution Measurement intro Black Box Quantum Mechanics Preparation Evolution Measurement intro Stochastic Quantum Evolution continuous measurement Preparation Evolution+ Measurement Continuous Monitoring Quantum mechanics gives intro Stochastic Quantum Evolution continuous measurement « POVM » Preparation Evolution+ Measurement measurement Continuous Monitoring backaction + coherent dynamics L.S. Martin Physical parameters have to be separately calibrated and fine-tuned intro Inferring Quantum Dynamics continuous measurement If one have a large set of instances Supervised Deep Learning learns no matter how complicated the problem is • language translation • medical diagnosis • image & speech recognition • LHC signal processing intro Inferring Quantum Dynamics Heralding Prep Evolution Tomo Readout Superconducting circuits provides instances per minutes Deep neural network can learn with no prior on quantum mechanics if spans a complete
    [Show full text]