Download Plant List
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity and Use of Trees and Shrubs in Smallholder Farming Systems In
Caldasia 43(1):49-64 | Enero-junio 2021 CALDASIA http://www.revistas.unal.edu.co/index.php/cal Fundada en 1940 ISSN 0366-5232 (impreso) ISSN 2357-3759 (en línea) BOTÁNICA Diversity and use of trees and shrubs in smallholder farming systems in the Colombian Andes Diversidad y uso de árboles y arbustos en sistemas de pequeña agricultura en los Andes colombianos Néstor García 1* | Juanita Peñaranda 1 | Natalia Sarmiento 1 • Received: 19/Dec/2019 Citation: García N, Peñaranda J, Sarmiento N. 2021. Diversity and use of trees and shrubs in smallholder farming • Accepted: 27/Oct/2020 systems in the Colombian Andes. Caldasia 43(1):49–64. doi: https://dx.doi.org/10.15446/caldasia.v43n1.84230. • Online Publishing: 9/Nov/2020 ABSTRACT This article describes the diversity and use of trees and shrubs in smallholder farming systems in three municipalities of the department of Boyacá in the Colombian Andes, and tests the relations between spe- cies richness, use, and a set of socio-economic and structural variables. We conducted ethnobotanical walks and semi-structured interviews on 24 farms to characterize all tree and shrub species. In total, we recorded 142 species with a predominance of natives (88) versus exotics (54). Species richness ranged between four and 40 (X = 25.17; SD = 10.13) per farm and was homogeneous among the municipalities (P > 0.05, Kruskal-Wallis test). We recorded 52 wild species, eight of them endemic, all representative of the surrounding native flora, of which 23 % had some type of use. Cultivated species were mostly represented by exotics that had been planted primarily as live fences, ornamentals, or edibles. -
Vegetation Survey of Mount Gorongosa
VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions. -
From Incentives to Impact: an Evaluation of The
FROM INCENTIVES TO IMPACT: AN EVALUATION OF THE SOCIOECOLOGICAL IMPACTS OF PAYMENTS FOR ECOSYSTEM SERVICES by KATHERINE MARIE BROWNSON (Under the Direction of Laurie A. Fowler) ABSTRACT Payments for Ecosystem Services (PES) programs have come into widespread use in recent decades. PES incentivize land managers to account for the value of ecosystem services (ES) that provide public benefits in their private decision-making. As programs can provide cash or in-kind incentives to rural land managers, they are also promoted for their potential to contribute to rural development, especially where economic opportunities may be otherwise limited. PES programs can vary significantly in the ES they target, the incentives they provide, the activities they incentivize, as well as in their scale, governance and participating actors. In this dissertation, I use a social-ecological systems framework to evaluate how the governance of PES influences both social and environmental outcomes to determine if trade-offs are occurring between multiple outcome types. I used a mixed- methods approach to evaluate PES impacts across scales, ranging from reviews of PES around the world to the impacts of particular PES interventions in rural Costa Rica. Specifically, I employed literature reviews, focus groups and semi-structured interviews to generate qualitative data and ecosystem services modeling, surveys and avian community composition analysis to generate quantitative data. My analyses revealed a range of positive social and environmental impacts of PES. Globally, I found that community engagement in local PES programs are improving social capital, community assets and program legitimacy. In rural Costa Rica, I found that local, community-based PES are improving the provisioning of multiple ES that are also directly benefiting local communities. -
Asclepiadospermum Gen. Nov., the Earliest Fossil Record Of
RESEARCH ARTICLE Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its biogeographic implications Cédric Del Rio1,2, Teng-Xiang Wang1,3, Jia Liu1,2, Shui-Qing Liang1,4, Robert A. Spicer1,5, Fei-Xiang Wu6, Zhe-Kun Zhou1,2,7, and Tao Su1,2,3,8 Manuscript received 29 September 2019; revision accepted 18 PREMISE: Apocynaceae is common in the fossil record, especially as seed remains from the November 2019. Neogene of Europe and North America, but rare in Asia. Intrafamilial assignment is difficult 1 CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna due to the lack of diagnostic characters, and new fossil and modern data are needed to Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, understand the paleobiogeography of this group. Yunnan 666303, China 2 Center of Conservation Biology / Economic Botany / Plant METHODS: We studied three Apocynaceae seed impressions from the Lower Eocene Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Niubao Formation, Jianglang village, Bangor County, central Qinghai-Tibetan Plateau. Mengla 666303, China Morphological data from living and fossil species were phylogenetically mapped to enable 3 University of Chinese Academy of Sciences, Beijing 100049, China systematic assignment. 4 Public Technology Service Center, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan RESULTS: We describe a new genus, Asclepiadospermum gen. nov., and two new species, 666303, China A. marginatum sp. nov. and A. ellipticum sp. nov. These species are characterized by an 5 School of Environment, Earth and Ecosystem Sciences, The Open elliptical seed, a margin surrounding the central part of the seed, and polygonal, irregular, University, Milton Keynes MK7 6AA, UK and small epidermal cells, and differ mainly in terms of the size of the margin and the 6 Key Laboratory of Vertebrate Evolution and Human shape of the apex. -
Summary: Monitoring for Sustainable Indigenous Forest
MONITORING FOR SUSTAINABLE INDIGENOUS FOREST MANAGEMENT IN THE GARDEN ROUTE NATIONAL PARK Knysna 2014 ii CONTENTS Page 1 INTRODUCTION 1 2 FOREST DYNAMICS MONITORING 2 2.1 Diepwalle Research Areas 2 2.2 Tsitsikamma strip plots 3 2.3 Permanent Sample Plots (PSPs) in nature reserves 3 2.4 National system of forest plots 3 3 FOREST DISTURBANCE AND RECOVERY 4 3.1 Gap dynamics research 5 3.2 Storms River big tree 5 3.3 Photo-monitoring of burnt forest 6 3.4 Koomansbos fire gap 7 3.5 Forest establishment 7 3.6 Forest succession on a burnt forest margin 7 4 UTILISATION OF FOREST PRODUCTS 8 4.1 Timber utilization 8 Permanent sample plots (PSPs) 9 Post-harvesting audit 11 4.2 Ferns 12 4.3 Bulbine 13 4.4 Bark 13 5 PLANT SPECIES OF CONSERVATION CONCERN 14 6 BLACKWOOD 15 6.1 Incidence of spread monitoring 15 6.2 Success of control action monitoring 16 6.3 Harkerville blackwood plot 16 iii 7 FAUNA 16 7.1 Antelope population monitoring 16 7.2 Rare mammal monitoring 16 7.3 Crowned eagle monitoring 17 7.4 The Knysna elephants 18 8 CULTURAL HERITAGE RESOURCE MANAGEMENT 19 9 SOCIAL MONITORING 19 9.1 Broad Based Black Economic Empowerment 19 9.2 Employment Equity 19 9.3 People and Conservation Park Based Education and Youth Development Programmes 20 9.4 Expanded Public Works Programmes (EPWP’s) 20 10 WASTE DISPOSAL 20 10.1 Hazardous waste 20 10.2 Household waste 21 11 CHEMICAL USAGE 21 12 COSTS, PRODUCTIVITY AND EFFICIENCY OF FOREST MANAGEMENT 21 13 CONCLUSION 22 APPENDIX 1: HARVEST TREE SELECTION CRITERIA APPLIED IN THE INDIGENOUS FORESTS OF THE GARDEN ROUTE NATIONAL PARK 23 APPENDIX 2: TREE LIST FOR THE INDIGENOUS FORESTS OF THE GARDEN ROUTE 24 1 1 INTRODUCTION The Garden Route National Park (GRNP) consists of a mosaic of diverse terrestrial, freshwater, estuarine and marine ecosystems, landscapes, and cultural heritage. -
Plant of the Month March 2020
Plant of the Month March 2020 Distribution Information Mexico, Belize, Costa Rica, Guatemala, Honduras, Nicaragua Popular in nineteenth century gardens, our garden features a Common Name: Spineless Yucca and Panama. few venerable examples of Yucca gigantea. The plant growing Scientific Name: Yucca gigantea next to our Lotus Pond is perhaps a remnant of a rockery Lem. Native Habitat featuring Yuccas and Agaves referred to in a 1903 guide to Family: Asparagaceae Tropical Forest. the Botanic Garden. Etymology Description Yuccas in their native habitat are pollinated by individual Genus: Yucca – derived from An evergreen monocot that grows into a large palm-like species of moths (Tegeticula spp.). Flowers open at night and shrub to 10 metres, with a distinctive swollen base and are visited by adult moths. Moths gather pollen from the the Taino word for Cassava tapering, sometimes branched stems. Branches produce male floral parts (anthers) . Female moths then lay their eggs Species epithet: gigantea - Latin for large clusters of pliable,dark green leaves, 60-120 cm long, that lack amongst the unfertilised ovules at the base of the female the sharp spines characteristic of the genus. floral parts, before depositng the pollen on the top of the female part of the flower (stigma). The ovules of the now Flowers pollinated flower develop into seeds, providing the only Cup shaped creamy-white flowers are produced along a food source for the developing larvae of the moth. The moth paniculate inflorescence up to a metre long that emerges larvae generally doesn’t eat all of the seeds meaning the plant from a rosette of leaves. -
2016 Plant Names Catalog Alphabetical by Common Name
2016 Plant Names Catalog Alphabetical by Common Name LOCATION(S) IN COMMON NAME(S) BOTANICAL NAME FAMILY GARDEN abaca Musa textilis MUSACEAE Plot 76 abiu Pouteria caimito 'Whitman' SAPOTACEAE Plot 128a Abraham- bush:hardhead:scipio- Phyllanthus epiphyllanthus PHYLLANTHACEAE Plot 164 bush:sword-bush African iris Dietes iridioides IRIDACEAE Plot 143 Plot 131:Plot 19a:Plot African Mahogany Khaya nyasica MELIACEAE 58 African moringa Moringa stenopetala MORINGACEAE Plot 32a Plot 71a:Plot 83:Plot African oil palm Elaeis guineensis ARECACEAE 84a:Plot 96 African spiral flag Costus lucanusianus COSTACEAE Plot 76 African tulip-tree Spathodea campanulata BIGNONIACEAE Plot 29 alligator flag Thalia geniculata MARANTACEAE Royal Palm Lake Plot 158:Plot 45:Plot allspice Pimenta dioica MYRTACEAE 46 Amazon lily Eucharis x grandiflora AMARYLLIDACEAE Plot 131 Plot 131:Plot 151:Plot Amazon-lily Eucharis amazonica AMARYLLIDACEAE 152 Plot 176a:Plot American beauty Callicarpa americana LAMIACEAE 176b:Plot 19b:Plot berry 3a:Plot 51 anaqua Ehretia anacua BORAGINACEAE Plot 52 anchovy pear Grias cauliflora LECYTHIDACEAE Plot 112:Plot 32b andiroba:bastard Carapa guianensis MELIACEAE Plot 133:Plot 158 mahogany Plot 17:Plot 18:Plot angel's trumpet Brugmansia aurea SOLANACEAE 27d:Plot 50 angel's trumpet Brugmansia aurea x SOLANACEAE Plot 32b angel's trumpet Brugmansia 'Ecuador Pink' SOLANACEAE RPH-B4 angel's trumpet Brugmansia sp. SOLANACEAE Plot 133 Plot 143:Plot 27d:Plot angel's trumpet Brugmansia suaveolens SOLANACEAE 32b:Plot 3a:Plot 49:Plot 50 Brugmansia suaveolens -
Biologi Tanaman Industry, Ada Beberapa Pengertian
Diktat Kuliah BIOLOGI TANAMAN INDUS TRI Untuk Kalangan Mahasiswa Fakultas Biologi Universitas Medan Area Oleh: Drs. Riyanto, Msc Universitas Medan Area Medan 2012 UNIVERSITAS MEDAN AREA 2 KATA PENGANTAR Puji syukur dipanjatkan kehadirat Allah SWT atas selesainya penulisan Diktat Kuliah ini. Kami menyadari bahwa buku ini belum memuaskan para mahasiswa karena masih adanya kekurangan disana-sini. Untuk itu koreksi dan masukan dari rekan-rekan staff pengajar dan mahasiswa akan lebih menyempurnakannya untuk revisi dimasa datang. Semoga Diktat Kuliah ini dapat bermanfaat terutama bagi mahasiswa Fakultas Biologi UMA yang mengambil mata kuliah Biologi Tanaman lndustri. Medan, April 2012. Riyanto, Ors, Msc UNIVERSITAS MEDAN AREA 3 DAFTAR ISI Kuliah I: Pendahuluan Kuliah II: Biologi 'fanaman Serealia....... ................... Kuliah III: Biologi Tanaman Kacang-kacangan .................. ...... Kuliah IV: Biologi tanaman Umbi-umbian ............... .. ........ ... Kuliah V: Biologi Tanaman Hortikultura Buah-buahan ...... ..... Kuliah VI: Biologi Tanaman Hortikultura Sayur-sayuran .......... Kuliah VII: Biologi Tanaman Hortikultura Tanaman Hias ... ...... Kuliah VIII: Biologi Tanaman Hortikultura Tanaman Obat ............ Kuliah IX: Biologi Tanaman HTI ......................... ... .. Kuliah X: Biologi Tanaman Perkebunan Kelapa Sawit ............. .. Kuliah XI: Biologi Tanaman Perkebunan Karet .................... Kuliah XII: Biologi Tiuiaman Coldat, Kopi, Tea, Tembakau ........ Kuliah XIII: Biologi Tanaman Kapa'>, Nilam, Jarak ................ -
Common and Scientific Names of Ornamental Crops
This is a section from the 2012 DISEASE CONTROL RECOMMENDATIONS FOR ORNAMENTAL CROPS Publication E036 The full manual, containing recommendations specific to New Jersey, can be found on the Rutgers NJAES website in the publications section: njaes.rutgers.edu/pubs/publication.asp?pid=E036 Note: The label is a legally-binding contract between the user and the manufacturer. The user must fol- low all rates and restrictions as per label directions. The use of any pesticide inconsistent with the label directions is a violation of Federal law. Mention or display of a trademark, proprietary product, or firm in text or figures does not constitute an endorsement by Rutgers Cooperative Extension and does not imply approval to the exclusion of other suitable products or firms. © 2012 Rutgers, The State University of New Jersey. All rights reserved. Revised: June 2012 Cooperating Agencies: Rutgers, The State University of New Jersey, U.S. Department of Agriculture, and County Boards of Chosen Freeholders, Rutgers Cooperative Exten- sion, a unit of the New Jersey Agricultural Experiment Station, is an equal opportunity program provider and employer. 2012 DISEASE CONTROL RECOMMENDATIONS FOR ORNAMENTAL CROPS Section III Common and Scientifi c Names of Ornamental Crops Note: Host plants are listed on pesticide labels by common or scientifi c name. Below is a list of plants included on the label of one or more pesticide products. Hosts denoted by an “x” are included in Section I, Disease Recommendations by Crop. Common name Other common names Scientifi c name x Abelia Abelia spp. Abutilon Velvetleaf, Chinese Lantern, Mallow, Abutilon spp. Flowering Maple Acacia Thorntree Acacia spp. -
Planterra Lighting Guide for Interior Landscape Design and People Can Thrive
Planterra ® Lighting Guide FOR INTERIOR LANDSCAPE DESIGN BY SHANE PLISKA edition 1.0 ©2019 Planterra Corporation Executive Summary rom living walls and atria to executive offices foliage, plant placement, geographic considerations, Fand luxury homes, interior design plans often include benefits to plants and people and more. The guide also recommendations for live plant installations. And why includes a list of plants based on their tolerance to low-, not? Plants provide many benefits to humans—for medium- and high-light environments. aesthetics and for health. However, planning for adequate Planterra created this white paper as a tool for architects, lighting and selecting plant species suitable for different landscape architects, interior designers and other profes- environments requires careful consideration. sionals looking to create environments where both plants The Planterra Lighting Guide for Interior Landscape Design and people can thrive. The comprehensive guide is also provides insight on light measurement, natural and designed to help the reader optimize client investments in artificial light parameters and sources, acclimatized and the longevity of the interior landscapes they design. PHOTO ©TONY FRANTZ ©TONY PHOTO planterra© lighting guide for interior landscape design www.planterra.com 2 ©2019 Planterra Corporation. edition 1.0 Contents Introduction 4 Light for Subsistence vs. Growth 5 The Benefits of Acclimatized Shade-Grown Foliage 7 Natural Light: Window and Skylight Glazing and Exposure 8 Lighting Location and Plant Placement 10 Artificial Light Parameters and Sources 11 Light Benefits for Plants and People 13 Basic Lighting Recommendations foR inteRioR Landscapes 14 pLant species Recommendations By Light toLeRance LeveLs 15 Living waLLs: speciaL consideRations 16 concLusion 17 acknowLedgements 17 RefeRences 17 Introduction roper lighting is essential for the long-term Phealth and aesthetics of interior landscape installa- This guide pertains to interior tions. -
In Vitro Regeneration of an Endangered Ornamental Plant Impala Lily (Adenium Multiflorum Klotzsch)
Indian Journal of Fundamental and Applied Life Sciences ISSN: 2231-6345 (Online) An Online International Journal Available at http://www.cibtech.org/jls.htm 2012 Vol. 2 (3) July-September, pp.42-50/Tulika Talukdar Research Article IN VITRO REGENERATION OF AN ENDANGERED ORNAMENTAL PLANT IMPALA LILY (ADENIUM MULTIFLORUM KLOTZSCH) *Tulika Talukdar *Department of Botany, Krishnagar Govt. College, University of Kalyani, Krishnagar, 741101,West Bengal, India *Author for Correspondence ABSTRACT Adenium multiflorum Klotzsch is an endangered ornamental plant belonging to the family Apocynaceae. Poor seed germinability and very low multiplication rate of planting materials pose high threat to this pot plant, and its difficult propagation makes conservation essential. The present investigation is an effort to establish Adenium for micro-propagation and sub-culturing as a rapid, cost-effective alternative tool. Juvenile leaves were used as explants for in vitro organogenesis through callusing and cultured on three different basal media-MS, B-5 and N6 supplemented with phytohormones -α-naphthaleneacetic acid (NAA), kinetin and Gibberelic Acid (GA). Regenerated shoots were transferred to half strength basal media (MS, B-5 and N6) supplemented with 2% (w/v) sucrose, 0.8% difcobactoagar and different concentrations of growth regulators - NAA and kinetin for 1-2 weeks. The regenerated shoots were also tested on growth regulator free half strength basal media for rooting. The complete rooted plantlets were initially acclimatized in moist chamber and finally under semi-shady condition. This is the first report of complete regeneration of A. multiflorum from callus via shoot organogenesis. Key Words: Adenium Multiflorum Klotzsch, In Vitro, Ornamental, Regeneration, Basal Medium, PGRS INTRODUCTION Adenium multiflorum Klotzsch, also known as Impala Lily, is a beautiful ornamental plant in the family Apocynaceae. -
Antimicrobial and in Vitro Enzyme Inhibitory Activities of Selected
International Journal of Herbal Medicine 2018; 6(2): 97-103 E-ISSN: 2321-2187 P-ISSN: 2394-0514 Antimicrobial and in vitro enzyme inhibitory activities IJHM 2018; 6(2): 97-103 Received: 14-01-2018 of selected Zimbabwean ethno-veterinary medicinal Accepted: 15-02-2018 plants used in folklore animal wound management Amos Marume Department of Paraclinical Veterinary Studies, Faculty of Veterinary Science, University of Amos Marume, Gift Matope, Star Khoza, Isaac Mutingwende, Takafira Zimbabwe, MP167 Mt Pleasant, Mduluza, Tariro Mawoza, Tariro D Chawana, Tafadzwa Taderera and Harare, Zimbabwe Ashwell R Ndhlala Gift Matope Department of Paraclinical Veterinary Studies, Faculty of Abstract Veterinary Science, University of Plants are often justifiably used in folklore medicine. A determination of the antibacterial, antifungal and Zimbabwe, MP167 Mt Pleasant, anti-enzymatic activities of the extracts of Cissus quadrangularis, Adenium multiflorum and Erythrina Harare, Zimbabwe abyssinica. Microdilution bioassays were used for both antibacterial and antifungal activities. Bacteria used are Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Brevibacillus Star Khoza agri and Staphylococcus epidermis. Fungi used are Candida albicans, Trichophyton mentagrophytes, Department of Clinical Pharmacology, College of Health Trichophyton tonsurans and Microsporum canis. Non-radioactive HIV-RT colorimetric ELISA was used Sciences, University of Zimbabwe, for the anti-reverse transcriptase activities. E. abyssinica leaf and A. multiflorum crude extract fractions P.O. Box A178, Avondale, Harare, exhibited the best antibacterial and antifungal properties. Ethanol extract fractions gave the best Zimbabwe antimicrobial properties. All plants exhibited good anti-reverse transcriptase-1 activities. Erythrina abyssinica leaf extracts gave the best anti-tyrosinase activity followed by E. abyssinica bark then A.